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This document describes the port of the Chorus virtual memory manager to  the Hewlett-Packard 
Precision Architecture RISC (PA-RISC) workstation. The information contained in this paper will 
be of interest to people who: 

e intend to  port the Chorus virtual memory section. 

intend to port a virtual memory design to the Hewlett-Packard PA-RISC. 

The reader is strongly encouraged to read the following PA-Chorus documents before reading this 
document : 

Technical Report CSE-92-3, Porting Chorus to the PA-RISC: Project Overview 

This research is supported by the Hewlett-Packard Company, Chorus Systkmes, and Oregon Advanced Computing 

Institute (OACIS). 



1 Introduction 

This document is part of a series of reports describing the design decisions made in porting the 
Chorus Operating System to the Hewlett-Packard 9000 Series 800 workstation. This document 
describes the design and implementation of the virtual memory manager port. 

In addition to this report, certain other sections of the virtual memory implementation are 
described in other PA-Chorus technical reports. The virtual memory initialization routines are 
described in [S] and the page fault interface is described in [ll]. 

Section 2 gives an overview of the PA-RISC memory management unit (MMU). Section 3 gives 
a very brief overview of Chorus virtual memory management. Section 4 presents the tasks involved 
in porting the VM system to the PA-RISC. The machine-dependent interface is shown in section 5. 
The implementation of the machine-dependent interface is described in section 6. Finally, section 7 
evaluates our approach. 

2 Overview of the PA-RISC Memory Management Unit 

This section describes the memory management unit of the PA-RISC. The material in this section 
is covered in greater detail in the Precision Architectulre and Instruction Set Reference Manual [7]. 

Virtual Address 
0 31 32 63 
I Space ID I Offset 

32 
2 bytes 
per space 

Figure 1: Address Space Partitioning 



Short Pointer 
0 1 31 

I 

32 

address 
space 

(U u u 
Space A Space B Space C Space D 

Figure 2: The upper two bits of a short pointer axe used to  select one of four space registers. This 
space register selects which 32-bit address space is used. The contents of the short pointer are then 
used as an offset into the 32-bit address space. Since the upper two bits are already known, the 
remaining 30 bits are used to address a single quadrant within the address space. 

2.1 Address Space 

The PA-RISC supports the concept of a large virtual memory space that can be shared by all 
processes. Virtual memory is partitioned into segments, called address spaces, each containing 
232 bytes. The number of address spaces is dependent on the level of the architecture. Level 1 
systems have 216 address spaces, level 1.5 systems support 224 address spaces, and level 2 systems 
support 232 address spaces. Figure 1 shows how the virtual memory space is partitioned. Each 
virtual address consists of two components: an address space identifier and a space offset. The space 
identifier (SID) is used to select an address space and the space offset determines the location within 
the address space. The space identifier can be stored in any of the PA-RISC's 8 space registers. 
The offset is stored in a general purpose register. The PA-RISC allows addressing using both long 
(> 32-bit) pointers and short (32-bit) pointers. Instructions using long pointers specify two 32-bit 
registers (1  space register and 1 general purpose register) used to  generate a 64-bit address. Short 
pointers are generated by using segments in the following way. The two most significant bits of a 
32-bit pointer (stored in a general purpose register) are used to select one of four space registers 
(SR4-SR7). The contents of the selected space register are concatenated with the short-pointer 
to  form a 64-bit address (see figure 2). Note that when using short pointers, each space register 
(SR4-SR7) can only address a single quadrant (1 gigabyte) of its address space, i.e., SR4 addresses 
the first quadrant, SR5 the second, SRG the third, and SR7 the fourth. 



Figure 3: Hash Table Entry 
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Figure 4: PDIR Entry 
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2.2 Address Translation 
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Like other architectures, the PA-RISC uses a translation look-aside buffer (TLB) to  support virtual 
to  physical address translation. Unlike other RISC implementations, the PA-RISC requires that 
TLB misses must be handled by s0ftware.l 

Next PDE Index (21) H 

In order to  manage a larger virtual address space, the PA-RISC uses an inverted page table 
structure called the Physical Page Directory (PDIR). Each entry in the PDIR represents a physical 
page so the number of entries in the PDIR is proportional to  the number of physical pages in 
memory. The advantage of an inverted page table structure over a standard page table structure 
is that the former grows with the size of physical memory while the later grows with the size of 
virtual memory. 
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Space Id (32) 

On TLB misses, software must determine if there is a valid PDIR entry that satisfies the 
translation. To accomplish this, software must search the PDIR for an entry that maps the virtual 
page. One disadvantage of an inverted page table structure is that it is not straight forward to  
locate a page's PDIR entry given its virtual address. The PA-RISC suggests the use of a hashing 
algorithm. A hash function takes a virtual address as input and returns an index into a hash table. 
Each hash table entry represents a hash bin organized as a linked list. Software must traverse the 
list t o  determine whether the desired translation exists. If no suitable translation is found, a page 
fault handler is called. Figure 3 shows the format of a hash table entry (HTE) and figure 4 shows a 
PDIR entry (PDE). The linked list is composed of a HTE followed by a variable number of PDE's. 
The H-bit is used to  determine when the end of the list has been reached. When the H-bit is 0, the 
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'Hewlett-Packard mentions that future implementatio~ls of the PA-RISC may provide hardware TLB refill. 
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Figure 5: Access Rights Field 
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Figure 6: Protection ID 

Next PDIR Index points to the next PDE in the list. (Otherwise the PDE is the last in the list.) 
The Space Id and Page Frame fields contain the space identifier and space offset (minus page offset) 
of the virtual page. (The physical page number is the index of the PDIR entry.) The protection 
information is stored in the access rights and access ID fields. 

2.3 Memory Protection 

In addition to supporting address translations, the TLB is also responsible for enforcing memory 
protection. Because the TLB is only used when the processor is in virtual addressing mode, 
protection checking is disabled when running in physical addressing mode. The TLB maintains 
protection information in two fields: the access rights and the access ID. The 7-bit access rights 
field encodes the allowed access types and privilege levels into three sub-fields: type, privilege level 
1 (PLI), and privilege level 2 (PL2) .  Figure 5 shows the layout of the access rights field. Table 1 
describes the interpret ation of the field. 

Because the PA-RISC uses a globally shared address space, it requires an additional form of 
protection mechanism that enforces protection between processes running at the same privilege 
level. This mechanism is the access ID. The access ID is a 15-bit field that can be thought of as a 
capability. This field must match one of the four protection ID'S (PID) in the PA-RISC7s control 
registers (CR8,CR9,CR12,CR13). An access ID of zero indica.tes the page is public. A public page 
always passes a protection ID check, i.e., only an access rights check is performed. Note that an 
access ID is assigned to a PDIR entry while a PID is assigned to a thread. A thread can have more 
than four protection ID'S associated with it, but only four can be cached in the control registers at  
any point in time. Figure 6 shows the format of the protection ID field. In addition to the 15-bit 
protection ID, the field contains a write-disable (WD) bit. When this bit is set, writes that match 
the protection ID result in protection  fault^.^ 

2Unless PID checking is disabled by running in physical address mode or disabling the Processor Status Word's 
P-bit. 



Table 1: Access Rights Interpretation 

The PDE also contains four bit flags which may be used to support memory management 
operations. The R-bit (reference) is set when a page has been referenced. The D-bit (dirty) is set 
when a page could have been modified. The T-bit and B-bit are used to generate traps which can 
be useful in program debugging. The use of these bit flags is explained in more detail in [ll]. 

2.4 Virtually Addressed Cache 

Privilege 
check 

read: PL < PL1 
write: Not allowed 
execute: Not allowed 
read: PL < PL1 
write: PL < PL2 
execute: Not allowed 
read: PL 2 PL1 
write: Not allowed 
execute: PL2 < PL 5 PL1 
read: PL _< PL1 
write: PL 5 PL2 
execute: PL2 _< PL < PL1 
read: Not allowed 
write: Not allowed 
execute: PL2 < PL 5 PL1 
read: Not allowed 
write: Not allowed 
execute: PL2 5 PL _< PL1 
read: Not allowed 
write: Not allowed 
execute: PL2 < PL < PL1 
read: Not allowed 
write: Not allowed 
execute: PL2 5 PL < PL1 

Type value 
(in binary) 

000 

001 

010 

011 

100 

101 

110 

111 

The PA-RISC uses a virtually addressed cache. This type of cache uses part of the virtual address 
(instead of the physical address) to index the cache directory. This allows the cache to  be accessed 
without waiting for the TLB to generate the physical address. The PA-RISC's cache uses a physical 
index only when in physical addressing mode, i.e., the cache is still used in physical addressing mode. 
(This occurs either when address translation is disabled or the processor is executing instructions 
that load and store physical addresses.) 

Allowed access types 
and GATEWAY promotion 

Read-only: data page 

Read/Write: dynamic data page 

ReadIExecute: normal code page 

Read / Wri te/Execu te: 
Dynamic code page 

Execute: promote to 
privilege level 0 

Execute: promote to  
privilege level 1 

Execute: promote to 
privilege level 2 

Execute: remain at 
privilege level 3 



The major disadvantage of using a virtually addressed cache is dealing with address aliases. 
When address aliases are present it is possible for multiple copies of the same data to exist within 
the cache. This is undesirable for reasons of cache consistency. (Smith refers to this as the synonym 
problem [14].) The PA-RISC is rather unusual in that the cache is part of the architecture. Rather 
than implement alias detection within the cache, the PA-RISC requires that software maintain the 
consistency of the cache. The following quotation is from PA-RISC reference manual [7]: 

Caches are not required to detect that the same physical memory location is accessed 
by different virtual addresses or by both an physical and a virtual address, except for 
equivalently-mapped addresses. Since this condition, loosely called aliasing, can be 
caused only by software running at the most privileged level, it is the responsibility of 
such software to avoid the ambiguities it may create. This requires flushing the affected 
address range from the caches prior to any of the following: 

I .  Changing the address mapping in  the TLB's. 

2. Making an absolute access to a location which might reside in  the caches as a result 
of an access by a virtual address that was not equivalently-mapped. 

3. Making a virtual access to a location which might reside in  the caches as a result 
of an  access by its absolute address that was not equivalently-mapped. 

4. Making a virtual access to a location which might reside in  the caches as a result 
of an access by a different virtual address. 

We separate types of address aliases into two categories: 

virtual-virtual This type of aliasing occurs when two different virtual addresses map to  the same 
physical address. Aliases of this type can be genera.ted by performing memory mapping or 
remapping operations. 

virtual-physical This type of aliasing occurs when non-equivalently mapped addresses are ref- 
erenced using both virtual and physical addresses. The PA-RISC reference manual defines 
equivalently mapped addresses as those virtual addresses which meet two conditions: 1) The 
virtual address has a space identifier equal to 0, and 2) the virtual address has a virtual offset 
equal to  the absolute address. These aliases are generated when physical addressing is used 
to access pages that are also virtually addressed. 

Note that aliases become a problem only when the number of bits used for cache index include 
part of the page number. If the cache is indesed using only the bits representing the page offset, 
then aliases would fall within the same set in the cache. The PA-RISC can detect aliasing within 
the same set since it keeps the physical address as part of the tag.3 By restricting the cache size to 
the logical page size multiplied by the cache set-associativity, aliases are forced to fall within the 
same set. Under this restriction virtually addressed caches would remain part of the implementation 
and not part of the architecture. Rather than limit cache sizes to fit this restriction the PA-RISC 
requires software to maintain cache consistency in the presence of address aliases. 

3Most cache implementations are able to resolve aliases within the same set, but detecting aliases in different sets 
is a more difficult task. 



3 Overview of the Chorus Memory Management Hierarchy 

This section gives a very brief description of the Chorus virtual memory manager. The material in 
this section is covered in greater detail in two Chorus Systkmes technical reports [I, 2].4 

The Chorus virtual memory management system is organized in a layered manner. Chorus 
defines a generic memory interface (GMI) which is supposed to separate the kernel dependent 
memory abstractions from any underlying hardware architecture. The kernel dependent layer 
above the GMI supports the Chorus virtual memory abstractions for system calls and interprocess 
communication. Underneath the the GMI lies a general memory manager for some type of memory 
management unit. For supporting architectures with demand-paged virtual memory management 
units, Chorus uses a layer called the paged virtual memory manager (PVM). Below the PVM lies 
the machine-dependent layer (MMU)' that is responsible for fully supporting a specific memory 
management unit. 
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Figure 7: Chorus VM Class Hierarchy 

Chorus is primarily implemented in C++, an object-oriented language. The virtual memory 
abstractions are implemented as a set of C++ classes. There are four major classes: page, region, 
context, and object. A page represents an instance of a physical memory page. There should 
be no more instances of pages than physical memory pages in the system. A context represents 
a virtual address space. A region represents a valid address range within a context. Regions 
are mapped to  secondary storage objects called segments. Segments are managed outside the 
kernel by servers called mappers. Figure 7 gives a general overview of the Chorus v3.3 virtual 
memory class hierarchy and the layer in which each class resides. The arrows represent the direction 
of inheritance i.e., base-class + derived-class. Objects prefixed by mmu belong to  the machine 
dependent layer (MMU) while objects prefixed by gmi tend to belong to  the PVM layer. The 
Chorus kernel abstractions (context, segment, region) are kernel dependent classes. They exist in 
the virtual memory (VM) layer above the generic memory interface. The machine-dependent layer 
is responsible for implementing two classes: mmuPage and mmucontext. 

'Chorus technical reports are available via anonymous ftp from cse.ogi.edu (129.95.40.2) in directory pub/chorus- 
reports 

5The acronym MMU stands for the Memory Management Unit layer. 



4 Porting Strategy 

The port of the Chorus virtual memory management section to  the Hewlett-Packard PA-RISC was 
performed in a series of phases: 

1. Familiarization Phase 

2. Task Specification Phase 

3. Design Phase 

4. Implementation Phase 

5. Validation Phase 

6. Analysis Phase 

The Familiarization Phase dealt with getting to know the PA-RISC architecture and the Chorus 
virtual memory management section. The Task Specification Phase was responsible for determining 
which tasks were necessary to  port the Chorus VM section to the PA-RISC. This included deter- 
mining the correct specifications of the machine dependent interface. The design of the machine 
dependent layer was performed in the Design Phase. The code for the machine dependent layer was 
written during the Implementation Phase and validated during the Validation Phase. The Analysis 
Phase was responsible for performance analysis and optimization. 

4.1 Familiarization Phase 

This phase was used to  study the PA-RISC and the Chorus virtual memory manager. There is 
an ample amount of well-written documentation on the PA-RISC memory management unit. We 
started out using the Precision Architecture and Instruction Set Reference Manual [7]. In addition 
to this document, we spent a great deal of time reading the reports out of the Tut project [5 ] .  The 
Tut project involved porting Mach 2.0 to the PA-RISC and its reports were invaluable in assisting 
us with the Chorus virtual memory port. The Tut documentation also helped us understand the 
Tut source code (which was also provided to us). 

Documentation on the Chorus virtual memory design was available in the form of two of tech- 
nical reports [I, 21. While detailing the design of the Chorus virtual memory management section, 
these reports did not help in determining the necessary steps involved in porting it. In particular, 
we had no information on the machine dependent interface for the Chorus MMU layer. In October 
1990 we were given the Chorus Kernel v3.2 Implementation Guide [3], but it did not contain any 
useful information on the machine dependent virtual memory interface. The Chorus Kernel v3.3 
Implementation Guide [4] contained more information on the machine dependent virtual memory 
interface but we didn't receive it until May 1991. We ended up having to  determine the specifi- 
cations of the machine dependent layer from reading the Chorus code of previous ports to  other 
architectures. 



For the most part, both the Tut and Chorus kernel code was well documented and very readable. 
There was a section of the virtual memory code implementing the Chorus PVM layer that could 
have been better document. Initially, we did have a problem reading the Tut code because of the 
proliferation of #if def 's. Once we were able to filter this out, the code was much easier to  read. 

We also used this phase to become more familiar with the PA-RISC instruction set and its 
assembly language. We wrote several assembly language programs and experimented with the 
debugger (adb). Unfortunately, many of the more interesting instructions could only be executed 
at the highest privilege level. It would have been nice to have some form of simulator or development 
platform on which we could have executed code at the highest privilege level. 

4.2 Task Specification Phase 

The Task Specification Phase was used to define tasks necessary to  port the Chorus virtual mem- 
ory manager to the PA-RISC. To help facilitate this, three members of the group visited Chorus 
Systkmes in late October 1990. Three general tasks were outlined at this stage: 

Virtual memory initialization 

Machine dependent layer 

r Page Fault Interface 

The virtual memory initialization is the machine dependent section of the Chorus boot program 
that enables virtual addressing. The machine dependent layer is a set of C++ classes used by 
the Chorus portable layers. These classes form the interface between the portable layer and the 
machine dependent layer in a manner similar to Mach's pmap. The page fault interface is a bridge 
between the machine dependent exceptions (page faults and protection) and the Chorus portable 
layer. It allows higher level Chorus mechanisms to use page and protection faults to  implement 
various optimization features e.g., copy-on-write memory and lazy page allocation. Each of these 
tasks is further documented in other reports 18, 111. 

4.3 Design Phase 

The design phase involved mapping the Chorus virtual memory abstractions on to the PA-RISC 
memory management features. This section details some of the major design decisions we made 
and our rationale for each decision. In some cases the design is described in other documents. We 
followed a few basic principles in developing our designs: 

Reuse Tut code (modified HP-UX 2.0). By reusing this code (which we knew worked) we 
hoped to save time in getting our initial implementation running. It was especially important 
for us to attempt to reuse the low level assembly language code since we were not very familiar 
with the PA-RISC assembly language. 



Simplicity. Originally, we started to develop some rather ambitious plans and ended up 
finding out that it was extremely hard to get anything to work. We then revised our policy 
to  keep things simple, get something working, and then get ambitious! 

Avoid changes in the Chorus portable layer. Where possible, we wanted to avoid making any 
modifications to  the portable code. This would make integrating our code with future kernel 
releases much simpler. 

Keep HP-UX compatibility. When we had to make choices, many of these were influenced 
by how HP-UX did things. Initially, one of our goals was to port Chorus/MiX in a way that 
allowed us to  run HP-UX binaries. 

4.3.1 Address Space Part i t ioning 

An early problem in using a shared address space is deciding how to partition it. We decided to 
take a similar approach to HP-UX. HP-UX uses the four space registers (SR4-SR7) to  partition a 
process' address space into four quadrants (see figure 8). HP-UX assigns quadrants for a process 
as follows: 

First quadrant (SR4): Used for code. When a process enters kernel mode SR4 is set to the 
kernel's space number (SID=O). 

Second quadrant (SR5): Used for a process' private data and stack. 

Third quadrant (SR6): Used for shared libraries 

Fourth quadrant (SR7): Used to access the shared gateway pa.ge6 and shared memory seg- 
ments. 

One interesting decision we faced was whether to extend a process address space beyond 32-bits. 
Since Chorus assumes 32-bit addressing in both its machine-independent and machine-dependent 
interfaces we decided to limit each process to a 32-bit address space, i.e., use only short pointers. 
Extending the Chorus virtual memory manager to incorporate 64-bit addresses was an enormous 
task that we didn't want to perform. Once we limited a process to a 32-bit address space we 
needed to decide how to use our four space registers (SR4-SR7). Unlike HP-UX, which shares text 
by sharing the same text segment, Chorus uses memory mapping. For this reason we assigned a 
single space identifier for a process' text and data segments. The initial implementation doesn't 
support shared libraries so SR6 is not used. Figure 9 shows the space register usage used by 
PA-Chorus. 

4.3.2 Address  Translation 

The major design decision here was the format of the page tables i.e., whether or not we would use 
the PDIR format. Since TLB refill is software controlled we had a great deal of flexibility in our 

'The gateway page is used to promote a process privilege level during a system call. 
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Figure 8: HP-UX Process Model 

page table design. We first weighed the advantages and disadvantages of using the PDIR structure. 
We considered the following advantages of using the PDIR structure: 

1. Number of entries is proportional to  the amount of physical memory. 

2. We could reuse a large portion of the HP-UX code for PDIR management. 

3. We could take advantage of hardware TLB refill in later implementations. 

The disadvantages of the PDIR structure were as follows: 

1. Address translation on a TLB miss fault is more expensive because it requires a hash on the 
virtual address followed by a linear search through a portion of the PDIR. 

2. The PDIR only contains the protection information for pages currently in memory. 

3. The PDIR entry does not support aliasing since, in its current format, it only has space for 
one virtual page entry. 

The final choice reduced to  two separate decisions. The first was whether or not t o  use an inverted 
page table. The second was whether or not to keep the PDIR format used by the HP-UX code. We 
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Figure 9: PA-Chorus Process Model 

decided to  use both an inverted page table and the PDIR entry format for our initial implement* 
tion. The biggest factor involved in this decision was the reuse of HP-UX code, however there were 
other reasons to  support the decision. One was the fact that the inverted page table format was 
well suited to  Chorus' approach to memory protection. Chorus maintains memory protection infor- 
mation at  the region level which allows protection to be maintained at  a much coarser granularity 
for pages currently not in memory. 

4.3.3 Protection 

One easy task was to  translate the Chorus protection rights into PA-RISC access rights. Ta- 
ble 2 shows the mapping used between the Chorus protection rights and the PA-RISC access 
rights. While this let us determine how to use the access rights, we still needed to  decide on 
how we would use the protection identifiers (PID's). The PA-RISC uses four control registers 
(CR8,CR9,CR12,CR13) to  check protection rights. HP-UX assigns one PID to each of the text 
(CR8) and data (CR9) sections. CR12 and CR13 are used to  cache shared memory PID's. Since 
the PA-RISC uses a globally shared virtual address space, PID's are used to  protect a process's 
address space. Since Chorus shares text by memory mapping, we didn't have a machine-dependent 
interface where we could have used to PID's to implement copy-on-write or shared text. We ended 
up assigning one PID to each Chorus context. 



Table 2: Protection Translation (Numeric values in binary) 

4.3.4 Kernel Memory Map 

The PA-Chorus kernel memory map and virtual memory initialization are described in [8]. 

Chorus Protections 

4.3.5 MMU Classes 

PA-RISC Protections 
3 

Value 
000 
001 
010 
011 
100 
101 
110 
111 

The interface between the Chorus portable layers and the machine dependent layer is specified by 
two C++ classes. The description of the interface is described in section 5 and the implementation 
is presented in section 6. 

Symbolic Name 
mmuReadU 
mmuExecU 
mmuWriteU 
mmuWriteExecU 
mmuReadS 
mmuExecS 
mmuWriteS 
mmuWriteExecS 

4.3.6 Traps and Page Faults 

Symbolic Name 
PDEAR-URKR 
PDEAR-URXKR 
PDEAR-URW 
PDEAR-URWX 
PDEAR-KR 
PDEAR-KRX 
PDEAR-KRW 
PDEAR-KRWX 

Type 
000 
010 
001 
011 
000 
010 
001 
011 

The design and implementation of the PA-RISC trap handlers for PA-Chorus is described in [ l l ] .  

4.3.7 Handling Aliasing 

PL1 
11 
11 
11 
11 
00 
00 
00 
00 

The majority of the hard problems in the virtual memory port were related to dealing with address 
aliases. As pointed out in section 2.4 the PA-RISC requires software to maintain cache consistency 
in the presence of address aliases. We decided to deal with aliasing in three stages. 

PL2 
11 
11 
11 
11 
00 
00 
00 
00 

Stage 1: Never allow aliases to exist within the cache. 

Stage 2: Under certain safe conditions allow aliases to exists within the cache. 

Stage 3: Modify the interfaces which generate aliases. 

Stage 1 followed our principle of keeping things simple. In this phase we prevented aliasing from 
occurring within the cache by flushing the cache whenever aliases could have been generated. 



This was implemented by synchronizing access to physical pages by allowing only a single address 
translation to  exists for each physical page at any point in time. For example, if a physical page 
was mapped into two contexts only one of those contexts would be allowed to access the page. If 
a thread operating in the other context attempted to address the page it would result in a pseudo- 
page-fault. This fault would not result in any I/O activity, instead the address translation for the 
first context would be invalidated and the cache would be flushed. (Since the PA-RISC allows you 
to selectively flush the cache, only a single page need be flushed rather than the entire cache). A 
new mapping to the second context would be established. We call this technique pseudo-aliasing 
since the portable layer believes that multiple mappings exists while the machine dependent layer 
allows a t  most one mapping to exists at any point in time. 

The objective of phase 2 is to eliminate unnecessary cache flushes. While pseudo-aliasing is 
rather simple to implement, it is not very efficient. There is a performance cost in the time spent 
flushing the cache plus the time spent refilling it. Stage 2 involves recognizing when aliases can 
safely exist within the cache and avoiding cache flushes under those conditions. 

Stage 3 is even more ambitious. The objective of this phase is to modify the interfaces in the 
machine dependent layer to avoid generating aliases in the first place. This phase requires that 
modifications be made to code in the portable layer. 

Stage 1 was used for the initial implementation. Stage 2 and 3 are scheduled from late 1991 till 
March 1992. The techniques used in this port and their performance implications will be published 
in another document [9]. 

4.4 Implementation Phase 

Once the design reached a stable state, the implementation was relatively easy. The hardest part was 
writing the assembly language code! The implementation of the three major tasks is documented 
in other project technical reports. In addition to the implementation of the design there were other 
tasks that needed to be performed. The Tut code needed to be integrated into the Chorus source 
environment. There were several cases where conflicts (or duplications) between the Chorus and 
Tut header files needed to be resolved. There was also a slight delay in attempting to compile some 
of the Chorus sources because we didn't have a C++ 1.2 compiler. Luckily, Chorus Systhmes was 
very responsive in getting us the newer v3.3 sources that could be compiled under C++ 2.0. 

4.5 Validation Phase 

In order to validate the kernel we used a set of kernel tests provided by Chorus Systbmes. These 
tests are described in other documents [G, 101. We did need to write an additional test to validate the 
virtual memory section. This test at tempted to verify that cache consistency was being maintained 
by the virtual memory manager. 



4.6 Analysis Phase 

In progress (i.e., this document was published before this phase was completed. Performance results 
may be published in future documents.) 

5 MMU Interface 

The MMU interface is similar in nature to Mach's pmap.  It specifies the interface between the 
portable and machine-dependent layer. The Chorus MMU interface is specified by the methods of 
two C++ classes: mmuPage  and m m u c o n t e x t .  

5.1 MMU Interface: Class mmuPage 

The class m m u P a g e  is derived from PVM class vmPage.  An mmuPage represents the interface 
between the PVM abstract page and the machine-dependent MMU page. Each instance of an 
mmuPage represents a physical page of memory. This class must implement the following methods: 

opera tors  - In C++ 2.0, the operators new and delete are used to allocate and deallocate 
the storage used by a class. Constructors are used to initialize the instance of the class once 
storage has been allocated. 

mmuPage(u1ong)  - This constructor initializes a mmuPage descriptor but doesn't touch 
the contents of the page. The parameter is a historical artifact from earlier versions of the 
Chorus nucleus and can be ignored. It was used to represent the memory protection rights 
the page should be assigned. 

mmuPage(u long,mmuPage*)  - This constructor also initializes the contents of the page 
descriptor, but the contents of the page are copied from a given source page. As with the 
first mmuPage constructor, the ulong parameter can be ignored. 

~ m m u P a g e ( )  - This destructor should perform all the necessary tasks of cleaning up a 
mmuPage descriptor. 

void unload() - Removes the page descriptor (for this page) from all page tables mapping 
the page. 

void r e a d o n l y 0  - Resets the protection rights for this page so that writes are disallowed. 

void fillZero(unsigned long, unsigned long) - Fills a section of the page with zeros. 

mmuPageS ta tus  ge t s t a tu s ( )  - Returns the most significant modification status for this 
physical page, either mmuPage Written or mmuPage Untouched. 

void se t s t a tu s ( )  - Marks this page dirty (mmuPage Written) or unmodified (mmuPageUn- 
touched). 



P h A d d r  ge tPhysAddr( )  - Returns the physical address of the page. This method is only 
called by vmObject::getPhysAddr() which is called from the system call ScVmGet-  
PhysAddrO.  We were informed that this system call is only used for the Compaq's floppy 
disk driver. 

void* getAddr(u-long) - Returns a pointer that can be used to  access the page. Rather 
than using actual physical addresses, Chorus uses a global map to emulate the use of physical 
addresses. The global map is a section of the kernel's virtual address space that maps the 
entire physical address space. Rather than return a physical address, getAddr()  should 
return the virtual address within the global map that corresponds to page offset specified by 
the parameter. 

5.2 MMU Inter face :  Class m m u c o n t e x t  

The class m m u c o n t e x t  represents a virtual address space. It is the base class of derived classes 
v m c o n t e x t  and context .  There is one instance of this class for the kernel and system actors (ref- 
erenced by the pointer Kerne lcon tex t )  and one instance for each user actor (with the currently 
executing actor's context being referenced by the pointer Cur ren tcon tex t ) .  In the Chorus ports 
to the Motorola 88000 and Intel 80386 this class was used as a process's address translation tree.8 
The PA-RISC uses a single globally shared inverted pa.ge table and has no requirements for any 
particular page table format. (This is a feature of having software TLB miss handling.) It uses a 
physical page directory (PDIR) for both physical-to-virtual and virtual-to-physical address trans- 
lations for all pages in memory. This simplifies the implementation of this class since the PA-RISC 
does not require separate address translation trees for individual processes. The following methods 
must be supported by this class: 

r mmuContext ( )  - Creates a new context. This involves allocating the physical pages needed 
to  store the address translation tree and initializing them. 

r ~ m m u C o n t e x t ( )  - Destroys a context. This involves deallocating the physical pages used 
to  store the address translation tree. 

void unload(VmAddr ,VmAddr)  - Unmaps all virtual pages within the address range, 
i.e., their address translations are invalidated. 

void load(VmAddr,mmuPage*,  mmuProtec t ion)  - This method maps a physical page 
to a virtual address and assigns it certain protections rights. 

void schedule() - Schedule a context. Normally this method is used to adjust the virtual 
memory translation tables from one context to another. This usually involves modifying some 
processor registers so the hardware TLB miss handling routines can access the correct page 
tables. 

7This should not be confused with the class GlobalMap. 
'An address translation tree is a hierarchical structured page table. 



6 MMU Implementation 

This section describes the implementation of the two machine dependent classes: mrnuPage  and 
m m u c o n t e x t .  The implementation was complicated by the PA-RISC's virtually indexed cache 
and the use of address aliasing by the Chorus MMU interface. 

6.1 Class: mmuPage 

The class m m u P a g e  represents a physical page of memory. Memory locations for memory mapped 
1/0 are not represented by instances of this class. 

6.1.1 Local Variables 

There seem to be no restrictions on the names used for instance variables, as long as this class 
can execute the methods specified by its interface. The class mmuPage maintains four instance 
variables: 

pde* ref; 
PGstatus pagest atus ; 
mmuPageStatus s ta tus ;  
d l i s t  pgctx; 

A reference to the page's PDE is kept in ref. Since the PDE7s are ordered in a one-to-one re- 
lationship with the mmuPage descriptors (this was a design decision, not a Chorus restriction), 
it is not necessary to keep a reference to  a mmuPage's PDE. This was a space vs. performance 
decision that trades off keeping the reference rather than recalculating it each time it is needed. 
The pages t a tu s  flag indicates whether a page is UNALLOCATED (unused), ALLOCATED (used 
but unmapped), LOADED (contains one valid virtual address translation), or SHARED (contains 
more than one valid virtual address translation). The s t a tu s  flag indicates whether a page is dirty 
or clean. This flag may be unnecessary as the information is also kept in the PDE D-bit. Later 
versions will most likely eliminate the s t a tu s  flag. Its original purpose was as a double check to  
make sure the integrity of the D-bit was maintained when changing the mapping from one virtual 
page to  another during address aliasing. The pgCtx  link is used by the class m m u c o n t e x t  to  
keep track of the pages currently mapped into its address space. 

6.1.2 Operators :  new(size-t) & new(size-t,mmuPage*) 

As stated previously, the operators new and delete  are used to  allocate and free the storage used 
by an instance of this class. There are two new operators: one that is normally used and one that 
is only used during kernel initialization. The operator used during normal operation allocates a 
page descriptor from the pool of free page descriptors. The second operator returns the same page 



descriptor given to it as an argument i.e. the specific page. This method is only used during kernel 
initialization when it is necessary to initialize the pages of the boot actors, i.e., there is a need to 
allocate specific pages rather than arbitrary ones. 

6.1.3 Operator: delete() 

This operator returns an mmuPage descriptor to the pool of free page descriptors. 

6.1.4 Method: mmuPage(u-long) 

This constructor sets status to ALLOCATED. As mentioned previously, the single parameter has 
no value and can be ignored. 

6.1.5 Method: mmuPage(u~long,PGstatus) 

The second constructor performs the exact same tasks as the constructor mentioned above but sets 
the page status as LOADED rather than ALLOCATED. This constructor is used during kernel 
initialization when the pages of the boot actors are being initialized. These pages have been mapped 
during boot and their status should show this. 

6.1.6 Method: mmuPage(u~long,mmuPage*) 

The last constructor operates in a similar manner to the first, but it also initializes the contents 
of the page from a source page. The first parameter (supposedly specifying the protection rights) 
can be ignored. The second parameter is a reference to the mmuPage descriptor representing the 
source page. 

The initial implementation flushes the virtual addresses (if the pages are mapped), copies data 
using physical addressing, and flushes the physical addresses after the copy completes. Since flushing 
the cache is an expensive operation, future implementations will attempt to eliminate these cache 
flushes by copying using virtual addresses [12]. Since this method is normally used to  initialize an 
unmapped page from a mapped page, we can reduce the amount of cache flushes to one page by 
using using virtual addresses for the loads and physical addresses for the stores [9]. 

6.1.7 Met hod: ~mmuPage( )  

This method resets the page's status to UNALLOCATED. 



6.1.8 Met hod: void map(sid~t,soffset~t,mmuProtection,uint) 

This method (called load() in other ports) is used to establish a mapping between this page and 
a virtual page. The first two parameters contain the space identifier and space offset of the virtual 
page. The third parameter specifies the (Chorus) protections to  be associated with this page. The 
final parameter contains the access identifier to be used by this page. 

This method becomes complicated if the page is already mapped. We have two things to  worry 
about: address aliasing and PDIR entries. As pointed out in a previous section, the operating 
system is responsible for maintaining cache consistency in the presence of address aliases. In 
addition, the PDE structure isn't suited to provide more than one mapping per physical page. We 
would need to augment this structure with additional information so the TLB miss handlers could 
resolve aliased pages without consulting the portable layers. One such approach is described in 
[13]. Because of these problems, we took a simple approach for the initial implementation. If the 
page is already mapped, it is first unloaded using the unload() method and then the new mapping 
is installed. We call this technique pseudo-aliasing because it simulates address aliasing but allows 
no more than one mapping to exist within the PDIR (and TLB) at a given point in time. 

The new mapping is established by adding the PDE to the hash bin for that virtual address 
and initializing the PDE. The page's PDE fields are filled using the information passed in the 
parameters. Note that the protection identifier is passed as a 15-bit value so it should be shifted 
over before being assigned to the pde-protid field.g All the bit flags in the PDE are cleared with 
the exception of the D-bit. 

6.1.9 Method:  void unload() 

The method must flush the page's contents from the cache. Even though the page is clean it must 
still be flushed to avoid leaving stale data in the cache. The page's PDIR entry is the removed 
from the hash bin it belongs to and flushed from the TLB. In the future, this method may take a 
flag indicating whether a cache flush is really necessary (see mmuColltext method unload()). 

6.1.10 Method:  void r e a d o n l y 0  

This method sets a page's protection rights to disallow writes. The page's PDIR entry is examined 
to determine its current access rights. These access rights are set by modifying the 3-bit type field 
of the access rights to indicate a read-only page. If the page is not already marked read-only, the 
entry should be flushed from the TLB. 

'The header files for HP-UX include the write-disable bit in the pde-protid field. 



6.1.11 Method: void setProtection(mmuProtection) 

This is a more general version of the method above in that it resets the PDIR entry's protection to  
any possible Chorus protection. Note that the protection passed in is a Chorus protection. It must 
be translated into the appropriate access rights and stored in the PDIR entry. Table 2 shows the 
translation from various Chorus protections to PA-RISC protections. If the new protection differs 
from the old one, the TLB entry for the page must be flushed. 

6.1.12 Met hod: void fillZero(u-long offset,ulong size) 

This procedure fills a section of a page with zeros. The first parameter specifies the offset within 
the page and the second parameter specifies how many bytes to  zero. 

If the page is mapped, then this routine zeros the area using 64-bit virtual addresses. Note 
that protection id (PID) checking should be disabled while this routine is running. This avoids 
protection faults when the kernel doesn't have the appropriate PID for the page. If the page is not 
mapped then this routine zeros the area using physical addresses and then flushes those addresses 
from the cache. 

6.1.13 Method: mmuPageStatus getstatus() 

This method must return mmuPage Written if the page is dirty or mmuPageUntouched otherwise. 
Since the TLB (dirty) D-bit trap handler was not modified to update the status flag, this method 
must examine the D-bit in it's PDE. If the D-bit is set then the local flag status should be updated 
and the value mmuPage Written should be returned. Otherwise mmuPageUntouched is returned. 

6.1.14 Method: setstatus() 

We restrict this operation to  mapped pages. Should an unmapped page execute this method, it 
will not have any effect on the MMU data structures. In marking a page mmuPageWritten the 
D-bit should be set in the page's PDE. In marking a page mmuPageUntouched the PDE's D-bit 
should be examined first. If the page is already clean then nothing more needs to  be done. If the 
page was dirty, the D-bit should be reset and the TLB should be flushed for that PDE. This will 
enable future writes to  that page to have a chance to  set the D-bit. 

6.1.15 Method: vmAddr getPhysAddr0 

This is a dangerous interface for the PA-RISC. Any use of physical addresses on non-equivalently 
mapped pages can result in cache inconsistency. This method can be easily implemented by calcu- 
lating the page number from its index in the pagepool. The page number would then be shifted 
over by the correct number of bits to obtain the physical address. 



We considered taking an exception if this method was called. We could then determine what 
programs were attempting to  use this method. The compromise solution was to  return the physical 
address but print a message stating that a dangerous method was called that could possible corrupt 
cache consistency. 

6.1.16 Method: void* getAddr(u1ong) 

This method is usually implemented using some form of aliasing such as the global map. Rather 
than actually implement a global map in the kernel address space, we set up a temporary mapping 
in the PDIR and TLB. A portion of the kernel address space (starting at 0x3F000000) was reserved 
for the global map. 

When getAddr() is called, a mapping to  that page's global map address is set up in the 
PDIR. If the page is currently mapped, the page is first unloaded in a manner similar to  that of 
pseudo-aliasing. If some other thread requires the use of the original mapping, it takes a TLB miss 
trap into the Chorus page fault handler. During this process, the original mapping is restored and 
the mapping to  the global map is removed. Though the mapping is normally used right after the 
call, there is a chance that it can be lost before it is used. For this reason, we added additional 
code to  the TLB miss fault handling routines to  reestablish a mapping if the fault lies in the region 
reserved for the global map (only for processes executing at  the most privileged level). This is a 
hack and a quick solution for some fundamental incompatibility between the MMU interface and 
virtually addressed caches. 

6.2 Class: mmucontext  

With the PA-RISC's use of an inverted page table, there is no need to  use a multi-level page 
table for each context. On this architecture, mmucontext represents a protection domain within a 
global address space instead of a private process address space. We assign each context two unique 
identifiers. One represents the context's space identifier (SID) and the other represents the context's 
protection identifier (PID). For simplicity, it was decided to  constrain each context to  a single SID 
for our initial implementation. Because Chorus uses memory mapping, as opposed to  sharing global 
address segments, to  shared memory we couldn't make much use of the PA-RISC's global address 
space without modifying portable code. (This is discussed in more detail in section 7.3.) 

6.2.1 Local Variables 

This class contains four instance variables: 

s id- t  spaceId; 
u-int protId; 
d l i s t  p g l i s t  ; 
vrnAddr myDataPointer; 
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and protId represent the space identifier and access identifier for all pages in this 
pgList is a list of mmuPage descriptors that are currently mapped to  virtual pages in 
The content of myDataPointer is the PA-RISC's data pointer value. When switching 

between threads belonging to different system actors the data pointer must be reset.'* The value 
is stored in the mmucontext structure. 

6.2.2 Method: mmuContext() 

All this constructor does is initialize the spaceld and protId fields t o  unique identifiers obtained 
from special pools for space and access identifiers.ll In other ports of Chorus, when a new context is 
created it is allocated some physical memory resource which it uses for the root page of its memory 
tree structure. The PA-RISC doesn't require any per-process page tables since i t  uses the PDIR 
for translations. 

6.2.3 Method: ~mmuContext() 

This method returns the values of it's spaceId and protId to  their respective pools. 

6.2.4 Method: void unload(vmAddr,vmAddr) 

In order t o  unmap the physical pages within the address range this method must determine which 
virtual pages within the address range are currently in memory (mapped to  physical pages). Since 
the PA-RISC uses an inverted page table (it keeps physical pages in sequential order) it was more 
difficult to  sequentially invalidate virtual pages. We came up with several choices: 

a Search the entire PDIR for addresses in the virtual range. 

a Maintain a bitstring for each context. Each bit would represent a single PDIR entry, so 
searching the PDIR would be reduced to searching a bitstring for 1's. 

a Maintain an unsorted list of pointers to  PDIR entries used by the context. 

The first method is undesirable since it is obviously slower than the second method. The third 
method has advantages over the second method in that you can search only PDIR entries mapped 
to  the context. We chose to  implement the third method. The head of the page list is represented 
by pglist.  When this method is called, a linear search over the pgList is made and all pages in 
the desired range are unmapped. Since this method is normally called before context destruction, 
a linear search over the pgList is not as expensive as it may seem. One inefficiency in the initial 
implementation is that this method calls the mmuPage method unload() which flushes the page 
from the cache. If this context has many physical pages in memory it may be more efficient t o  flush 

''This needs to be done only within the kernel's address space since user actor's data pointers are automatically 
assumed to be placed at 0x40000000, i.e., the second quadrant. 

"These unique identifiers are NOT Chorus UID's. 



the entire cache once and avoid the individual page flushes for each physical page loaded into this 
context. 

6.2.5 Method: void load(vmAddr,mmuPage*,mmuProtection) 

This method calls the mmuPage method map and adds the page to its list of pages. A check 
is made to determine if the page is already loaded into the context before adding it to  the list. 
The copy-on-write process uses page faults (which can result in loads) to perform page protection 
modifications. 

6.2.6 Method: schedule() 

The purpose of this method is to switch the page table structure from one context's mapping to  
another, i.e., from one context's address translation tree to another's. Since we used the PA-RISC 
PDIR table (which is shared by all contexts), this method doesn't need to perform any task. 

7 Evaluation 

The hardest part of the virtual memory port was determining what the correct interfaces were. 
The lack of documentation on the Chorus MMU interface caused numerous bugs in the machine 
dependent design which slowed us considerably. Establishing the interfaces from reading source 
code was not very efficient and should have been avoided. This was evident when we received the 
newer v3.3 kernel sources in April 1991. Several of the interfaces taken from older v3.2 sources 
were obsolete and needed to be updated to the v3.3 interface. Most of these changes were simple 
(required for C++ 2.0 compatibility) but required that the new source code be read. 

We found that the features of the PA-RISC's memory management unit support the Chorus 
mmuContext interface very well but has several conflicts with the mmuPage interface. 

7.1 Evaluation: mmucontext 

The class context represent's a process' address spa.ce. We found that it could be implemented quite 
easily as a process' protection domain. This class seems to be an artifa.ct of older private per-process 
address space architectures and was easily implemented on a global address space architecture. 

Using the PDIR simplified the construction and destruction of instances of class mmucontext. 
There was no need to allocated physical pages for per-context page tables. This made context 
creation much faster and required less physical memory space for page tables. 

The only difficult tasks in implementing mmucontext was the deallocation of the pages for a 
given address range. This method is usually used to unload all physical pages within a context 



prior to  context deletion. Since an inverted page table isn't well suited to  traverse a virtual address 
range (you would need to  hash and search for each virtual page) we needed to  maintain a list of 
physical pages loaded in each context. When a range of pages are deleted, this list is searched and 
all physical pages within the range are deallocated. Though we haven't had a chance to  profile the 
system yet, we don't believe this will result in a significant performance penalty. 

7.2 Evaluation: mmuPage 

The major problem with the implementation of class mmuPage centers on the operating system's 
responsibility to  maintain cache consistency. While maintaining cache consistency is not necessarily 
difficult, it can grow in complexity as performance becomes more of an issue. The complexity of 
the implementation depends on the amount of performance expected. The loss in performance 
is a result of the ability of the mmuPage interface to generate address aliases. This requires the 
operating system to flush parts of the cache for certain operations. Pseudo-aliasing is a very simple 
solution but suffers a large loss of performance due to  cache flushes. (We plan to  quantify this 
performance loss in the next evaluation of the system [9].) 

The following four methods can generate address aliases: mmuPage (third constructor), get- 
PhysAddr, getAddr, map. The third mmuPage constructor initializes a target (this) page from a 
source page. Aliases can be created if the target page is not yet mapped i.e., need to  use physical 
addresses. If the mapping of the target page has been determined by the time this method is called, 
then the interface could be modified to allow the portable layer to  pass the virtual address of the 
target page down to the machine-dependent layer. By using the virtual address (instead of the 
physical address) in the copying routine, it would be possible to  avoid flushing the cache. 

The method getPhysAddr() returns a physical address. Use of that physical address on 
non-equivalently mapped pages can result in the generation of virtual-physical aliases. Use of this 
call by code in the portable layer may result in cache consistency problems for architectures with 
virtually addressed caches. 

The method getAddr() is used to  generate a mapping to a physical page which can then be 
used to  address that page. Should a mapping already exists, this can result in virtual-virtual aliases 
being generated. Since this method is heavily used by the IPC mechanisms (to obtain addresses 
which are then used to  copy data), it can result in degraded IPC performance. This interface could 
be improved by using a method of the form int getAddr(Address*) where Address would be a 
structure representing an address. This Address could also be passed to a kernel machine-dependent 
memory copy routine. For the PA-R.ISC, this would allow the MMU layer to  return a global 64-bit 
address instead of a local 32-bit address. By using the suggested interface, a machine-dependent 
copy routine could use global addresses and avoid generating a new mapping. There would still 
be a problem if the page was not mapped, i.e., no valid virtual address. A mapping could then be 
created and returned, but future use of that mapping could still create address aliases. 

The method map() is used to load pages into contexts. When a page is loaded into more 
than one context, address aliases are created. Chorus uses page sharing to  implement copy-on- 
write memory and shared text. It could more efficiently implement shared text a t  a higher level of 
abstraction. 



7.3 Supporting a mmuRegion class 

Chorus maintains the abstractions of a segment, context, region, and page in the PVM layer while 
only allowing the MMU layer to support the abstractions for the context and page. In certain 
cases, it might be beneficial to provide a mmuRegion class. We weren't able to take advantage of 
certain PA-RISC features because Chorus implements certain operations on regions by performing 
many operations on pages. In certain cases, it would be more efficient to operate on regions rather 
than pages. As an example let's look at protection modifications in the case of copy-on-write data 
and shared code. 

Chorus maintains protection at region granularity in the portable layer and a t  page granularity 
in the MMU layer. When the protection of a Chorus region changes, the protection for each 
physical page in that region must be changed. (This is normally done to  support copy-on-write.) 
The PA-RISC provides a write-disable bit for each protection ID. When this bit is set, writes to 
pages with the same access ID result in protection traps. This port did not use the write-disable bit 
at all for two reasons. The first deals with the concept of threads. Protection ID'S are associated 
with each thread context. To mark pages with a certain access ID read-only, all threads with 
matching protection ID'S must be found and the write-disable bit set on all of them. The other 
problem concerns the assignment of the protection ID'S. Ideally, protection ID'S would be assigned 
to  regions since Chorus maintains protection at the region level. Unfortunately, the region level 
resides in the portable layer and not in the machine-dependent layer. 

One disadvantage of the mmuRegion approach is that implementations on architectures without 
large granularity protection may become more complicated, i.e., they may now have to do the work 
that was performed in the portable layers (mapping region operations to operations on pages). The 
protection handlers may also be more of a problem, e.g., the first write to a copy-on-write region 
would be more complicated to handle. 

In the case of shared text, Chorus establishes multiple regions mapping to the same segment. 
For the PA-RISC, this results in the generation of address aliases. It would be more efficient to  
inform the machine-dependent layer that the entire segment is being shared. This would allow us to 
share segment identifiers and remove aliasing created by sharing code. (Some of these suggestions 
will be addressed in more detail in another document 191.) 

8 Conclusions 

We presented the strategy used in porting the Chorus virtual memory manager to  the HP PA- 
RISC. Key design decisions were discussed and explained. We described the interface for the 
Chorus machine-dependent layer and the implementation for the Hewlett-Packard PA-RISC. We 
noted that the implemention of the class nlmuContest was very simple while the implementation 
of the class mmuPage was more difficult. The difficulty was not necessarily in correctness, but in 
performance. In this implementation, performance was not a goal. Because of this, we expect the 
performance of the operating system to be rather poor compared to commercial operating systems 
running on the same platform. 



Several changes to the Chorus machine-dependent interface were suggested to  take advantage of 
a globally shared virtual address space and to improve performance on virtually addressed caches. 

9 Future Work 

The majority of the future work involves improving the performance of the MMU layer. This work 
is aimed at generalizing the MMU interface for virtually addressed caches and reducing the amount 
of cache flushes needed to support address aliasing. A variety of performance related experiments 
are currently being planned. These experiments and their performance benefits are described in 
another document [9]. 
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