
Porting Chorus to the PA-RISC: Booting

Jon Znouye, Marion Hakanson
Ravindranath Konuru and Jonathan Walpole

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 92-004

January 1992

Porting Chorus to the PA-RISC: Booting

Jon Inouye
Marion Hakanson

Ravindranat h Konuru
Jonathan Walpole

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

January 1992

This document describes the steps involved in booting Chorus on the Hewlett-Packard Precision
Architecture RISC (PA-RISC) workstation. The information contained in this paper will be of
interest to people who:

intend to boot an operating system on PA-RISC machines.

The reader is strongly encouraged to read the following PA-Chorus documents before reading this
document :

Technical Report CSE-92-3, Porting Chorus to the PA-RISC: Project Overview

This research is supported by the Hewlett-Packard Company, Chorus Systkmes, and Oregon Advanced Computing

Institute (OACIS).

1 Introduction

This document is part of a series of reports describing the design decisions made in porting the
Chorus Operating System to the Hewlett-Packard 9000 Series 800 workstation. This document
describes the steps involved in booting Chorus on the Hewlett-Packard 9000/834 workstation,
which uses the Precision Architecture (PA-RISC) processor.

We started out with the low level Tut (HP-UX 2.0) boot code. One of our goals was to reuse
as much of this code as possible, which would reduce the amount of low level code we would have
to debug. This was very important, especially since the HP 9000/834 has a very complex I/O
architecture and we lacked any sophisticated debugging tools. Writing the PA-Chorus boot code
involved modifying the Tut code to match the Chorus startup sequence. In the remainder of this
section, we present an overview of the PA-RISC boot mechanisms and the Chorus startup sequence.
Section 2 describes the Chorus utility used to build a boot image. Section 3 concentrates on the
Chorus boot program and section 4 covers Chorus kernel initialization. Section 5 describes the
PA-Chorus memory map and how it evolved from HP-UX 2.0 (Tut). The modifications to the
Tut code are discussed in section 6. Finally, we evaluate our approa.ch to booting Chorus on the
PA-RISC in section 7.

1.1 PA-RISC Boot Sequence

Boot can be triggered by several mechanisms: power on, the reset button, software "reboot", and
the access port. Figure 1 outlines the low-level PA-RISC boot sequence. These steps are generally
followed by all operating systems running on PA-RISC platforms. (For more information on the
Hewlett-Packard PA-RISC boot sequence, consult [I] .)

The first utility to run is the Processor Dependent Code (PDC). This firmware initializes the
hardware and sets up the registers before loading the first software, the Initial Program Loader
(IPL). In our case (series 800), the IPL is the Initial System Loader (ISL). The ISL allows a user
to get the boot-up characteristics of the system, modify these characteristics, or load and execute
a program. Once the ISL is finished, the boot image is loaded by a special loader. The loader is
responsible for loading the boot image and executing it. Chorus assumes the existence of a loader
on the target platform and we used the standard HP-UX loader.

We were able to use the PA-RISC boot sequence without any modifications. In addition to
the boot hardwarelfirmware, the PA-RISC 110 architecture also provides a uniform interface to
the processor and 1 / 0 modules. The Processor Dependent Code (PDC) procedures act as an
interface to processor-dependent operations. The 110 Dependent Code (IODC) routines provide
a mechanism to obtain module-type dependent information from an I/O module. We used IODC
calls to implement very simple device drivers which enabled us to write to the console and read
from the keyboard.

Loader '7
Figure 1: PA-RISC Boot-up Sequence

1.2 Chorus Startup Sequence

The Chorus startup sequence is composed of two components: boot and the kernel initialization.
The boot component is responsible for setting up the machine specific environment that is rela-
tively operating system independent. Kernel initialization deals with the initialization of both the
machine-dependent and machine-independent sections of the Chorus operating system. Typically,
ports of Chorus use two actors to implement these tasks. The boot actor runs the boot program and
the kernel actor performs the kernel initialization. (For more information on the Chorus startup
sequence consult [2] .)

The Chorus boot and kernel initialization takes place in four major phases:

1. Creating the boot image

2. Loading the boot image

3. Running the boot program

4. Initializing the kernel

2 Creating the boot image

The utility program btChorus is used to create the boot archive. Its usage is a follows:

btChorus -1 load -b boot -k kernel [-s supActor I* [-u usrActor I*

rzzmz-l
Boot File Data

Root Structure
contains information

and BSS
System Actor 1

Code, Data, BSS
. . .
. . .
. . .
. . .
. . .

System Actor N
Code, Data, BSS

Figure 2: Structure of Generated load file

This utility is a UNIX program that should be easily ported to any UNIX system that is compliant
with either the standard a.out or COFF format. Since HP-UX has its own binary format we
needed to port this utility in addition to the boot code.

b t C h o r u s takes executable boot, kernel, supervisor (supAct), a.nd user (usrAct) actors and
creates the boot archive, load, that looks like a single executable image to the loader. The archive
is formed by extending the BSS1 section of the boot actor to include the binary images of all the
other actors. Thus, the first instruction that gets executed in load is the same as the first instruction
that would get executed in boot. The structure of the executable file load is shown in figure 2.

2.1 Structure of the HP-UX Executable

The structure of an HP-UX executable file is defined by the Spectrum Object Module (SOM)
format specification [3]. An a.out file obeying the SOM format has structure shown in figure 3.
Except for the first header, all the headers need not occur in the given order.

2.1.1 Root S t r u c t u r e

The Root structure is defined in include/HP800/load.h. The Root structure consists of de-
scriptors for the load image, i.e., the kernel and the actors that comprise the boot archive. This
structure is used to pass information between b t c h o r u s , the boot program, and the Chorus kernel.

' Uninitialized data.

I File Header I

I Fixu~reauest array I
Symbol strings space
Compiler dictionary

(Zero or Part of BSS
in the final Data Page

Figure 3: HP-UX a.out structure

Some of the structures and fields relevant to btChorus are shown in figure 4. The LOAD structure
is a special data section within the ROOT structure that contains machine dependent information
on all the actors in the boot image.

btChorus performs the following main steps in creating the boot archive. The actual names
of headers have been omitted to give an overall picture.

1. Read the header of the boot file and update the bt-entry point in the load structure. Create
the file loadand copy the header of the boot into the loadfile. Copy the text and data segments
of the boot into load. Explicitly allocate the BSS space of boot in load.

2. Allocate one physical page size space in the file for the Root/Load structure in Load and start
copying the kernel and the boot actors.

3. Read the headers from kernel and update the kernel descriptor in the load structure. Copy
the text and data segments from kernel into load. Allocate space equal to kernel BSS size
(round to the nearest multiple of physical page size) in 1oa.d and set the BSS size in the kernel
descriptor to zero.

4. Repeat step 3 for each of the boot actors except for allocating BSS and changing the header.
(The BSS sections of the boot actors are allocated during kernel initialization.)

5. Now seek to the beginning of the space in load which was reserved earlier for Root structure
and copy the Root structure from memory into the file. Update the header of Load to indicate
the data size of load. This would be equal to boot data + BSS + sizeof(Root Structure) +

typedef struct (
long v-addr ;

unsigned long size;
3 desc-sect;

typedef struct
desc-sect code ;
desc-sect data;
unsigned long size-bss;
long pt-entry ;

> desc-bin;
typedef struct €

char name [I61 ;
desc-bin act ;
long cap C41;
int userActor;

3 desc-act; /* Actor descriptor */

typedef struct (
desc-kern kern ;
desc-act act [lo];
short nb-act ;
long bt-entry ;

3 KnLoad; /* LOAD structure */

typedef struct I

KnLoad Load;
1 KnRoot; /* ROOT structure */

/* Starting Virtual address */

/* Size of this section in bytes */

/* code descriptor */
/* data descriptor */
/* size of the BSS in bytes */
/* entry point in the actor's text segment */

/* Actors' capability */
/* I=> user Actor, O=>system Actor */

/* Maximum number of boot actors */
/* Number of actors */
/* entry point of the load image */

Figure 4: Root Structure

kernel size + boot actors' sizes. Set the BSS size field in the header of load to be zero since
everything has been explicitly allocated in load. The file is now ready to be executed.

The standard HP-UX loader loads the bootable image into memory and transfers control to
the entry point of the load. This is the code of the original boot program. This code knows that
the Root structure starts at the first page aligned address after its data+BSS. It accesses the Load
Structure for the kernel descriptor finds the entry point and transfers control.

3 The Boot Program

The boot program is responsible for initializing the environment so the kernel initialization can
take place. It should:

Set up a stack

Install the kernel and system actors at specific locations in the target virtual memory system.

Enable virtual addressing.

Fill in certain sections of the Chorus LOAD structure.

Transfer control to the kernel initialization procedure.

From the Chorus point of view, the major tasks of the boot program are to set up the stack (so
that you can call C routines) and to initialize the machine dependent memory structures (to turn
on virtual address translation). Normally, the boot program resides in a separate executable file.
The Chorus startup sequence was designed to be separated into two actor^.^ The boot actor's
primary task is to run the boot program, i.e., set up a stack to run C code and enabled virtual
address translation. Unfortunately, the HP-UX startup code makes no distinction between boot
program tasks and kernel initialization tasks. Code that is used to enable address translation also
initializes several kernel variables. This is a problem because if the boot and kernel functionality
is placed in separate actors they cannot directly address each others data!3 Rather than pass data
through the LOAD structure, we decided to leave the boot program in the kernel. We then built
a dummy boot actor whose only task was to jump into the kernel. Our kernel actor code now
executes both the boot program and the kernel initialization. While this method may have wasted
some physical memory (since Chorus normally deallocates the pages used by the boot actor after
boot has completed) it saved us from making extensive modifications to the HP-UX code.

Before any C procedures can be called, the stack and certain processor registers must be set
up. This task is described in the supervisor document [8].

Before virtual address translation can be enabled, the page tables and processor context must be
initialized. Current PA-RISC implementations require translation look-aside buffer (TLB) misses

'This allowed the space used by the boot actor to be reclaimed during kernel initialization. It also allows the
kernel to be recompiled without recompiling the boot actor.

3Using 32-bit pointers.

to be handled by software. Because of this, all exception handling code for TLB misses must be
set up before address translation is enabled.

The two tables used to handle TLB misses are the hash table (HT) and the physical page
directory (PDIR). These are the tables that are searched to determine whether a particular virtual
address mapping can be satisfied without a page fault, i.e., they are used during TLB miss handling
[4]. Before address translation is enabled, the page table entries corresponding to the boot actors
(boot, kernel, systemActorl, etc.) should be initialized to the correct translations and protections.

Since the boot program often moves system actors around, it must specify the physical address
location of each system actor before branching into the kernel. It performs this task by writing
values into the LOAD structure which are then read by the kernel initialization program.

4 Kernel Initialization

The kernel entry point is specified in the LOAD structure and is the point to which the boot
program transfers control. The kernel initialization process is responsible for the following tasks:

Initializing the supervisor (SV) section.

Initializing the memory management unit (MMU) section.

Initializing the low level device drivers

Calling KnInit () (Initializing the portable section.)

Branching to KnMainO.

Of these tasks, the most work went into the supervisor and memory management initialization.

4.1 SV Initialization

The supervisor is responsible for initializing the machine dependent data structures, e.g., processor
registers, interrupt vectors, etc. The supervisor must also call the C++ constructors for static objects
and set up the dummy thread structure. These tasks are described in the supervisor document[8].

4.2 MMU Initialization

The Chorus MMU initialization deals with the construction of the machine dependent virtual
memory data structures. After this initialization is performed, the MMU level should be able to
provide the MMU interface described in [7]. Chorus MMU initialization has three major tasks:

Create the kernel context.

Initialize the pool of MMU pages.

Fill in certain fields of the LOAD structure.

The kernel context, referred to by the global pointer Kerne lcon tex t , is the Chorus object
representing the address space used by the kernel and all system actors.

The pool of MMU pages contains mmuPage objects. Each object represents a physical page
of memory. When mmuPage objects are created and destroyed they are allocated and returned to
this pool, called the pagepool. This pool has functionality similar to that of the Unix BSD core
map. Once the pool has been created, the mmuPage objects describing the kernel and system
actors should be initialized and removed from the pool since those physical pages are already in
use.

The LOAD structure is initially filled in by b tChorus and later updated by the boot program.
During the kernel initialization phase certain fields are modified by the machine dependent section
which are later used by the portable section of the kernel initialization. These fields are described
in section 6.4.

5 Memory Map

This section describes the memory map of the PA-Chorus kernel and how it evolved from HP-UX
and Chorus. We tried to keep close to the HP-UX memory map to reuse as much Tut code as
possible.

Figure 5 diagrams the kernel memory layout used by HP-UX 2.0.4 A section is equivalently
mapped if its virtual address and its physical address are identical i.e., the lower 32 bits are identical
and the space identifier is equal to zero. Any section that is addressed using both physical and
virtual addresses should be equivalently mapped to avoid losing cache consistency.

Chorus places no restrictions on the ordering or the placement of the boot, kernel, and system
actors other than the fact that they must be paged aligned. The ROOT s t r u c t u r e is page aligned
and located at a fixed virtual address (referred to by the symbolic name Choruscontext) so that
all actors can access it.

The PA-Chorus boot image is shown in figure 6 and the kernel memory map is displayed in
figure 7. Since we reused the HP-UX boot code, the lower portion of the kernel memory map is
identical to that of HP-UX. The boot text and data are a single page apiece since the boot actor's
only purpose is to branch into the kernel.

While HP-UX uses two procedures to set up the kernel memory map PA-Chorus extends the
functionality of realmain() (see section 6.3.1) to perform the memory mapping task. The UNIX
related data structures in HP-UX have been encapsulated in the data sections of the Chorus/MiX
system actors and are not seen by the kernel.

4The format of these tables was based on those used in the Tut documentation.

Real Address Virtual address

0x00000000
0x00000800
0x00008000
0x00008800
0x00009800
start-text

etext

start-data
edata

iopdir
pdir

uptr
ubase
STACKADDR
=0x80000000

ecmap

Figure 5: HP-UX Kernel Memory Layout

Real Address

Boot Text

Boot Data and Bss

ROOT structure

Kernel Text

Kernel Data

Kernel Bss

Actor 1 Text

Actor 1 Data

0
0
0

Actor N Text

Actor N Data

Virtual Address

Choruscontext

LOAD.kern.text.vmAddr

LOAD. kern.data.vmAddr

Figure 6: PA-Chorus Boot Image

6 Implementation

This section discusses the files and routines that represent the tasks performed in the Chorus
startup sequence.

This file implements the btChorus utility. We modified this file to comply with the HP SOM
format.

In order to reuse as much low-level Tut code as possible we made a major change in the division
of work between the boot and kernel relative to other ports of Chorus. In other Chorus ports, the
boot code establishes the virtual memory mapping and turns on virtual memory before entering
the kernel code. In our case, boot is a stub that transfers control to the kernel which does all the
virtual memory initialization.

The syntax of command line a,rguments for btChorus have been changed. The earlier syntax
was:

btChorus -1 load -b boot -k kernel [-s Actor+]

On the PA-RISC, this syntax does not allow supervisor and user actors t o be distinguishable. The

11

Real Address Virtual address

start-text

pdir

(SID = 0)

0x00001000
0x40000000

(SID = 1)
Ox00001000
0x40000000

(SID = N)

Figure 7: PA-Chorus Kernel Memory Layout

reason for the change is that it is not possible to distinguish a supervisor actor and a user actor
based on their starting address since PA-RISC uses a segmented architecture.

Another change is the allocation of BSS for the kernel. Chorus does not allocate BSS for kernel
and lets the boot code do all the allocation by moving the code to proper addresses in memory.
Since our boot program was actually in the kernel, if we didn't allocate kernel BSS in bt Chorus
then a system actor would be residing in the kernel's BSS space. This meant we couldn't use any
uninitialized variables until we moved the system actors to a new location. Rather than worry
about this, we decided it would be simpler to allocate the kernel's BSS area in the boot archive.
This resulted in our boot archive being larger than necessary.

This file contains the majority of the low level assembly language routines that make up the boot
program (but are placed in the kernel actor). These routines set up the initial processor context,
initial system stack, interrupt vectors, and turn on virtual memory. Modifications made to this file
are described in the supervisor document [S].

The routines in this file are responsible for setting up the machine dependent data structures so
that address translation can be enabled. We started out with the original Tut file vm-machdep.~
[I] which was used during the port of Mach 2.0 to the HP 9000 Series 800 workstation. We only
made modifications to the procedure realmain().

The routine that is responsible for setting up the initial memory structures and mappings is called
realmain(). The comprehensive list of the tasks performed by this routine is given in [6]. The
following is a brief list of the tasks performed by realmain().

Initialize memory globals

Scan the 1 / 0 system and set up 1 / 0 space.

Patch the TLB miss handling routines

Initialize hash table (HT) and physical page directory (PDIR).

Map initial kernel address space and system actors into HT and PDIR.

There are several global variables that are set by realmain(). Several of these are obtained from
locations in Page Zero [5] , e.g., the size of physical memory. The PDC-CACHE call is performed

to obtain the various characteristics of the cache such as its size, block size, associativity, etc. These
parameters are used to optimize the performance of cache flush/purge operations.

To determine the size and location of the data and BSS sections, realmain() makes use of
loader flags such as e d a t a and end . This creates a problem when the kernel is not loaded as the
boot image. Because PA-Chorus uses a boot archive, the kernel is simply part of the BSS section
of the boot actor and the loader flags point to the boot actor's locations instead of the kernel's
locations. All reference to these flags were replaced by references to the global LOAD structure.

We made several minor code alterations to both b tChorus and realmain() to adjust to the
Chorus memory map (shown in figure 7). These alterations dealt with the additional task of
mapping the actors within the boot image into the virtual address space. We allocated the kernel
BSS (uninitialized data) within the boot image so we did not need to allocate it in realmain().
Once the amount of memory required for the system tables (hash table, physical page directory,
and page pool) is calculated, the system actors are moved to the first page following the system
tables. The BSS sections for the actors are allocated after kernel initialization is completed.

realmain() also initializes the hash table and PDIR entries for the initial memory map.

realmain() calls the routine module-configure() which is responsible for scanning the I/O sys-
tem and setting up the 110 memory space. It needs to find out what busses are available, and
what modules are available on those busses [5] . It allocates a portion of the 1/0 address space for
each bus, and sets up the hard physical address space (HPA) for each module on a bus. We made
no modifications to this procedure.

This file contains the routine mmuIni t() which performs the initialization of the kernel virtual
memory structures. It must perform the following tasks:

Create the KernelContext.

Create the pool of free mmuPage descriptors.

Initialize all mmuPage descriptors mapping the boot actors and remove all descriptors map-
ping the kernel and boot actors from the pool.

Fill in the fields of the LOAD structure.

The KernelContext is created by calling the method new for class context . Normally, this
involves the creation of a page table for the address space. Since we chose to adopt the HP-UX
PDIR structure, all con texts share a single inverted page table which simplifies context creation.

The class PagePool (described in detail in section 6.4.1) consists of a pool of m m u P a g e de-
scriptors, where each mmuPage descriptor represents a physical page. The mmuPage descriptors
representing the physical pages being used by the system actors must be initialized. Those descrip-
tors representing the pages being used by the kernel do not need to be initialized since they will
never be swapped out.

The f i r s tpage fields (two for each boot actor5) in the LOAD structure should be updated. Dur-
ing boot, this field contains the physical page number of the first page used by each boot actor's code
~ e c t i o n . ~ After MMU initialization, the f i r s tpage field should reference the mmuPage descriptor
representing that physical page instead of the page number. The MMU initialization should also
set the context start and end addresses for both user and supervisor actors (c txUsrStar tAddr ,
c txUsrEndAddr , c txSvStar tAddr , a n d ctxSvEndAddr) . These addresses specify the range
in which regions may be created.

6.4.1 PagePool

The class PagePool is responsible for the allocation and deallocation of mmuPage descriptors.
Each mmuPage descriptor represents a physical page of memory. There is one instance of class
PagePool (called pagepool) that is created in the static constructor phase of the kernel initializa-
tion. The pagepool contains a reference to a contiguous block of memory which can be conceptually
thought of as a pool of mmuPage descriptors. There is a unique minupage descriptor associated
with each physical page in memory. The block of memory for the pagepool is allocated in real-
main() and its location and size (in elements) is stored in the LOAD structure. The PagePool
constructor then accesses the information in the LOAD structure to initialize itself. The page-
Pool is used by the mmuPage C++ methods new and delete to allocate and deallocate mmuPage
descriptors.

7 Evaluation

Chorus' separation of the boot and kernel initialization components is an interesting new concept.
However, we didn't believe it had enough advantages to modify the Tut code to separate the boot
and kernel initialization tasks.

The most interesting thing about the boot sequence is Chorus' method of creating a bootable
image from multiple executable files. We like this modular aspect of Chorus which allows you to
boot up different system actors (servers) without having to recompile the kernel.

While most Chorus system actors are able to run outside kernel space, they are usually placed
in kernel space for performance reasons. The ~najority of these performance reasons are related
to the cost of entering and exiting the kernel. On other architectures, entering the kernel may
require a trap and a change an address space, i.e., switching page tables, flushing the cache. Using

51n this instance boot actor refers to one of the actors in the boot image other than then the boot and kernel
actors.

'There is also a field for the data section.

Virtual address Real Address

0x00000000

0x00000800
0x00008000

0x00010800

start-text

pdir

0x00001000

0x40000000
(SID = 1)

hash table for PDIR
I/O PDIR
PDIR
PagePool
System Actor 1 Text
System Actor 1 Data

0
0
0

Actor N Text
Actor N Data

FREE MEMORY

0x00001000

0x40000000
(SID = N)

equivalently mapped
equivalently mapped
equivalently mapped
equivalently mapped

non-equivalently mapped
non-equivalently mapped

non-equivalently mapped
non-equivalently mapped

Figure 8: Future PA-Chorus Kernel Memory Layout

the gateway and global address space, the PA-RISC allows kernel entry with a cost slightly more
expensive than a procedure call.

A disadvantage of having system actors reside in the kernel address is that they require an
address range to be reserved for them. Since no two actors may overlap in the system address
space it can be bothersome to manage the address space as the number of possible system actors
grow. There is also the problem of managing different data pointers within the same 32-bit address
space. This problem is described in the Supervisor document [8].

It would be nice to have the ability to place each actor (even system actors) into a separate
232 byte segment by using a different space identifier for each actor. While user actors would run
at the lowest privilege level, system actors could run at the same privilege level as the kernel but
in a different protection domain. This would allow the kernel's segment to be protected from all
actors and remove the tedious partitioning of the kernel's 32-bit address space. Figure 8 shows a
possible memory layout where each actor would reside in its own 32-bit address space. It would
still be possible for system actors to share the kernel's 32-bit address space but it would no longer
be the default solution.

Another aspect of Chorus that we were not able to evaluate was the placement of device ini-
tialization code in the device manager (DM), a system actor. The Tut code initializes devices in
the kernel. Since memory modules need to be initialized before use and the 1/0 address space is
dependent on the number of 1/0 modules, certain device initialization needs to be performed in
the kernel. Should we ever attempt to port the DM, it will be interesting to see how appropriate
the code is to the PA-RISC.

8 Future Work

There is a considerable amount of work to do to separate boot code from kernel initialization code.
We didn't feel there were enough advantages in it to perform this task.

A more interesting task would be placing system actors into separate (32-bit) address spaces.
This may help create a more modular implementation without sacrificing performance.

9 Acknowledgements

Many thanks to Jean-Jacques Germond who gave us detailed information on the Chorus boot image
and to Vadim Abrossimov who helped clear up some misconceptions about the responsibilities of
the MMU initialization routine. Bart Sea.rs suggested the partitioning of system actors into separate
address spaces and outlined the advantages.

References

[I] Chia Chao. Initializing the Tut Kernel. Technical Report HPL-DSD-88-39, Hewlett-Packard
Laboratories, 1988.

[2] CHORUS Kernel v3.3 Implementation Guide. Technical Report CS/TR-90-71, Chorus
Systkmes, 1991.

[3] Hewlett-Packard. Spectrum Object File Format, October 22, 1985.

[4] Hewlett-Packard. Precision Architecture and Instruction Set Reference Manual, third edition,
April 1989.

[5] Hewlett-Packard. Precision 1/0 Architecture Reference Specification, 0.93 edition, January
1990.

[6] Hewlett-Packard. Snakes HP- UX/Spectrum Kernel Initialization and Machine Interface Inter-
nal Maintenance Specifications, August 1990.

[7] Jon Inouye, Marion Hakanson, Ravindranath Konuru, and Jonathan Walpole. Porting Chorus
to the PA-RISC: Virtual Memory Manager. Technical Report CSE-92-5, Oregon Graduate
Institute, January 1992.

[8] Ravindranath Konuru, Marion Hakanson, Jon Inouye, and Jonathan Walpole. Porting the
Chorus Supervisor and Related Low-Level Functions to the PA-RISC. Technical Report CSE-
92-6, Oregon Graduate Institute, January 1992.

