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1 Introduction 

This document is part of a series of reports describing the rationale, goals, technical and organiza- 
tional issues that arose in porting the Chorus operating system to  the Hewlett-Packard 9000/834 
workstation (the 9000/834 workstation uses the Precision Architecture RISC 1.0 (PA-RISC) pro- 
cessor). This document presents an overview of the project and outlines the ther reports that are 
available in the series. The series of reports is intended for people interested in porting Chorus or 
interested in gaining a better understanding of the interaction bet ween the PA-RISC architecture 
and the machine dependent (and independent) layers of a micro-kernel operating system. 

The PA-Chorus project began in October 1990 with several goals. The members of the project 
had not previously performed an operating system port and therefore, one of the main objectives 
in undertaking the port was educational: we wanted to gain some general experience with low- 
level operating system code, and modern architectures. More specific goals of the port were to 
understand the interaction between micro-kernel operating system design and the HP PA-RISC 
architecture, and as a side-effect, to produce the infrastructure necessary to support distributed 
operating system research at Oregon Graduate Institute. An additional goal was to  be able to offer 
a stable PA-RISC version of the Chorus kernel to other operating system researchers. However, 
the availability of the PA-Chorus kernel is largely in the hands of Chorus Systhmes and Hewlett- 
Packard since PA-Chorus contains a considerable amount of code that is owned by one or other of 
these parties. I t  is important to note that we never had the goal of producing a production-quality 
port of Chorus/MiX, or of achieving binary compatibility with HP-UX or other versions of Unix. 

Funding for the project was provided through Hewlett-Packard's New Wave Computing Univer- 
sity Grants Program, with additional support provided by Chorus Systbmes and Oregon Advanced 
Computing Institute (OACIS). 

This document contains an overview of both the PA-RISC and Chorus, discusses the organiza- 
tion of the project, and outlines the content of, and relationship between, the other documents in 
the series. 

2 PA-RISC Overview 

The HP Precision Architecture program is the largest system development program ever undertaken 
by Hewlett-Packard Company. The Precision Architecture RISC (PA-RISC) was designed to serve 
as a common foundation for HP's computer systems and to excel in all of HP's computer markets. 
This section outlines the salient features of PA-RISC insofar as they relate to operating system 
design. More complete details of the architecture can be found in [lo, 12, 8, 11, 61. 

The memory hierarchy of the PA-RISC consists of registers (32 general-purpose, 25 control and 8 
space registers), an architecturally visible cache (i.e., there are instructions for cache management), 
main memory, and an 1/0 system. The kernel and all processes share a global 64 bit virtual address 
space. Protection is supported at the granularity of pages using the following mechanisms: access 
rights (to specify the type of access); access identifiers (to restrict access to specific processes); and 
four privilege levels. Transfers between privilege levels are supported efficiently using a mechanism 



that avoids trap handling overheads. A translation lookaside buffer (TLB) is used to  support virtual 
address translation. 

A prominent feature of the PA-RISC is that its cache is virtually addressed. Virtually addressed 
caches allow TLB and cache lookup to  be performed in parallel. This may reduce cache access times 
which, in turn, can decrease the CPU cycle time and hence increase the speed of the processor. 
The cache is used both in virtual and physical addressing mode. In virtual addressing mode the 
cache is given (part of) a virtual address. In physical addressing mode the physical address is used 
to  determine the index into the cache. Virtually addressed caches pose significant problems for 
operating systems that map physical pages to  more than one virtual address a t  the same time. We 
will refer t o  this behavior as aliasing. The effects of aliasing are discussed in detail in some of the 
other reports in the series (see section 5). 

In order t o  support a large, sparsely populated address space the PA-RISC architecture rec- 
ommends using an inverted page table. Instead of maintaining an entry for every virtual page in 
the address space, inverted page tables maintain an entry for every physical page. This approach 
potentially reduces the size and complexity of page-table data structures, particularly if operating 
systems allow non-resident page information to  be supported at  a granularity coarser than pages. 

Several features of the PA-RISC architecture are characteristic of prominent recent trends in 
computer architecture, particularly the move towards larger address spaces and virtually addressed 
caches. Consequently, many of the observations we made in porting Chorus to  the PA-RISC have 
broader relevance. 

Further details of the PA-RISC architecture and its interaction with operating system design 
(specifically Chorus) will be presented in the other reports in this series (see section 5). 

3 Chorus Overview 

Chorus is a micro-kernel-based distributed operating system architecture. The Chorus architecture 
consists of a minimal kernel (called the nucleus) that provides the mechanisms upon which to  
build higher level operating systems (called sub-systems). One of the most important sub-systems 
currently implemented above the Chorus nucleus is a Unix System V compatible sub-system called 
Mix. In this project we ported version 3.3 of the Chorus nucleus and version 3.2 of Mix to  the 
HP PA-RISC. The current reports in this series cover only the Chorus kernel. However, in this 
section we outline the overall architecture of the Chorus/MiX system and discuss some of the salient 
features of its design. Further information on Chorus/MiX can be found in [3, 4, 1, 2, 51'. 

The Chorus nucleus has four key components: a communication manager, a virtual memory 
manager, a supervisor, and a multi-tasking executive. Each of these is discussed, in turn, in the 
following paragraphs. 

The communication manager provides support for both local and global interprocess commu- 
nication using the Chorus abstractions of ports, port groups, and messages. Messages in Chorus 

'Chorus Systhrnes technical reports are available via anonymous ftp from cse.ogi.edu (129.95.40.2) in directory 
pub/chorus-reports 



are untyped and uninterpreted by the nucleus. Messages are also fixed in size. Chorus implements 
the transfer of virtual memory regions in the virtual memory manager, independently of the com- 
munication manager. In other words, unlike Mach, Chorus separates the issues of IPC and virtual 
memory. The communication manager consists entirely of portable code. 

The virtual memory manager manages the memory local to a site (one Chorus nucleus runs per 
site). It provides the abstraction of a context: an address space which is divided into a number of 
non-overlapping regions. Regions define the valid portions of a context. The abstraction Chorus 
provides for a secondary storage object is called a segment. Regions are generally mapped to 
segments, and segments are managed outside the nucleus by segment mappers. The virtual memory 
system consists of a portable layer and a machine-dependent layer. The machine-dependent layer 
presents a generic memory management interface (i.e., a machine independent interface) to  the 
portable layer. Many of the problems we faced in porting Chorus to the PA-RISC arose because of 
conflicts between the PA-RISC architecture and the definition of this interface (see [7] for details). 

The supervisor is a dispatcher for external events such as interrupts and traps. Chorus allows 
system actors (an actor is the unit of resource allocation in Chorus, analogous to a task in Mach) to  
connect handlers to specific interrupts and to connect arrays of routines to trap invocations. Sub- 
systems can use this facility to provide a flexible and efficient system call interface (as opposed to 
implementing sub-system calls using Chorus IPC, for example). Since the supervisor deals directly 
with the hardware (i.e., when handling traps and interrupts), and must manage processor-specific 
thread context information, much of the supervisor code is machine dependent (see [9] for details). 

Finally, the multi-tasking executive provides priority-based preemptive scheduling and fine-grain 
synchronization. The multi-tasking executive is mostly portable. 

The Mix 3.2 sub-system is a modular multi-server implementation of Unix System V release 
3.2. Mix consists of a set of cooperating system servers, each dedica.ted to managing a particular 
type of resource, and running above the Chorus nucleus. The key system servers are the Process 
Manager, the File Manager, the Device Manager, the Pipe Manager, and the Socket Manager. The 
Process Manager provides a Unix system call interface by connecting its routines to  traps, and 
hence must run in system mode (in the same address space as the kernel). Normally, the File and 
Device Managers also run in system mode in order to be able to execute privileged 1/0 instructions 
(the Mix 3.2 version of the File Manager contains the disk driver). Other servers run in user mode. 
Neither the Process Manager, nor the File Manager are completely portable. In other words, we 
had to do some work, mostly in the Process Manager, to port them to the PA-RISC. 

The various components of the Chorus nucleus are discussed in more detail in the other docu- 
ments in this series (see section 5 of this document) and in [3, 4, 1, 2, 51. 

4 Porting Strategy and Organization 

There were four members of the project team: twograduate students (Jon Inouye and Ravindranath 
Konuru), a systems administrator (Marion Hakanson), and a faculty member (Jonathan Walpole). 
The division of responsibilities was roughly as follows: 



Jonathan Walpole: Overall project management. 

Jon Inouye: porting the Chorus virtual memory system. 

Ravindranath Konuru: Porting the Chorus supervisor. 

Marion Hakanson: Remaining tasks and system administration. 

None of the team members had performed an operating system port before, neither did they 
have any experience working with the PA-RISC or Chorus. Therefore, the early phases of the 
project involved a substantial amount of time for familiarization. Existing code was studied and 
reused wherever possible. In particular, we reused machine-dependent code from the PA-RISC 
versions of HP-UX, and Tut (a port of Mach 2.0 to the PA-RISC performed a t  Hewlett-Packard 
Laboratories), and machine independent Chorus code. We also had access to  machine-dependent 
Chorus code for several other architectures (Motorola 88000, 68020, and Intel 386). 

The project involved several identifiable phases. In the first pha,se we concentrated on famil- 
iarizing ourselves with the PA-RISC using high-level architectural documents from HP, and we 
studied the internals of Chorus by reading documentation and attending a course organized by 
Chorus Systkmes. 

In the second phase of the project we started to reuse low-level boot code from HP-UX in 
order to  build a bootable image that could perform primitive output, and eventually input, to  the 
console. In particular we used the initial system loader ISL, and BOOT loader from HP-UX, and 
some low-level hardware initialization code from the Tut project. We also experimented with the 
btChorus utility in Chorus in order to  build a single bootable image from several executable files. 
This phase of the project was considerably more time-consuming than we anticipated. There is no 
doubt that reusing existing code simplified our task considerably. However, we frequently spent 
large amounts of time struggling with problems that would have been trivial to  solve had we had 
sufficient knowledge of the PA-RISC and the code we were trying to  reuse. A brief visit from 
HP Labs employee, Bart Sears, one of the original Tut project members, proved extremely useful. 
However, even closer interaction with HP engineers could certainly have saved us much time and 
frustration. 

The consoIe input and output functionality in our intial standalone bootable image was sup- 
ported using the PA-RISC's PDC (processor dependent code) and IODC (110 dependent code) 
routines. These are ROM-based, software-callable routines resident on the processor and I/O mod- 
ules respectively. The significance of these routines is that they provide primitive functionality for 
booting, initialization, and configuration. In particular, they allow console 110 to be implemented 
without requiring interrupts or device driver support. Had we obtained the documentation about 
these routines earlier in the project we could have sa.ved much time and frustration. 

Another task performed early on in the project involved writing utility routines for byte copying 
and zeroing pages. 

The Chorus specific aspects of the port were divided broadly into two parts (virtual memory 
and supervisor), and each part was assigned to  a separate individual. Jon Inouye ported the virtual 
memory system, which involved writing the MMU hardware initialization code, designing new 



MMU classes and virtual memory-related data structures, writing code to  handle virtual memory 
traps (such as TLB misses and page faults), defining the Chorus memory map, and performing the 
virtual memory aspects of Chorus initialization. 

Ravindranath Konuru ported the supervisor, which involved writing code to manage thread 
contexts, perform interrupt, trap and exception handling, perform kernel initialization, define and 
manage thread contexts, manage simple devices (timer and console), implement a low-level debug- 
ger, and support system call interfaces for user and supervisor actors. Chorus kernel initialization 
requires virtual memory support, but does not initially require interrupt support. Therefore, we 
started out by implementing a kernel that did not support interrupts, and then introduced and 
tested interrupt support under the full kernel. An alternative approach would have been to  in- 
crementally test interrupt handling using the earlier standalone boot code. However, our schedule 
made the former approach more appropriate (i.e., because we didn't have the interrupt handling 
code written as early as we originally planned). 

The testing and debugging phases of the project involved studying, porting, installing, and 
running the Chorus kernel test suite (K-tests). These programs test the full functionality of the 
kernel in both single pass and continuous modes. One problem we encountered at this stage was 
that we didn't have a machine on which to run a stable Chorus system. This would have made 
it much easier to understand the behavior of the test programs in an error-free environment. In 
retrospect, the lack of such a machine, combined with a lack of adequate documentation on the 
k-test source code and build environment, was a time-consuming mistake. 

From a managerial standpoint we grossly underestimated the time and effort required in two key 
areas of the project. First, we didn't take into account the large overhead of administrative tasks 
such as setting up new machines, organizing source code (source tree layout) and build environment, 
installing new tools, providing utility programs for kernel 1 / 0  and debugging etc. Secondly, we 
didn't expect to be stalled on so many low level details in the early boot stages of the port. We 
would strongly advise anyone considering a similar venture to ensure that they have easy access 
to someone with extensive knowledge of the underlying architecture. Such a person should be 
prepared to  answer questions potentially on a daily basis. 

5 Outline of Other Reports in the Series 

There are a total of six reports in this series, each one describing different aspects of the project. 
The report numbers and titles are as follows: 

"Porting Chorus to the PA-RISC: Project Overview," OGI Technical Report No. CSE-92-009. 

"Porting Chorus to the PA-RISC: Booting" OGI Technical Report No. CSE-92-004. 

"Porting Chorus to the PA-RISC: Virtual Memory Manager" OGI Technical Report No. 
CSE- 92-005. 

"Porting the Chorus Supervisor a,nd Related Low-Level Functions to the PA-RISC" OGI 
Technical Report No. CSE- 92-006. 



"Porting Chorus to the PA-RISC: Building, Debugging, Testing and Validation" OGI Tech- 
nical Report No. CSE-92-007. 

"Porting Chorus to the PA-RISC: Overall Evaluation" OGI Technical Report No. CSE-9% 
008. 

The first report (this one) presents an overview of the project and provides perspective for 
the other reports. This report is intended to be read in conjunction with one or more of the 
other reports in order to gain any detailed information about the project. Report 2 describes the 
approach taken to booting PA-Chorus, including a discussion of the various options that were open 
to us, our reuse of low-level code from Tut, virtual memory initialization, and the Chorus boot 
and initialization procedure. Report 3 discusses the Chorus and PA-RISC virtual memory systems. 
It covers the major design decisions and presents details of the design and implementation of the 
Chorus machine-dependent classes for the PA-RISC. Report 4 covers a host of issues relating to the 
Chorus supervisor. Key issues include: an overview of the supervisor design, interrupt, trap, and 
exception handling on the PA-RISC, system call handling, the reuse of low-level handler code from 
Tut, thread context structure, context switching, and memory management trap handling. Report 
5 covers the approaches we took to building, debugging, testing and validating the PA-Chorus 
kernel. Finally, report 6 presents an overall evaluation of the matches and mismatches between 
Chorus and the PA-RISC. 
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