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Abstract 

The Computational Chemistry Database Project (CCDB) is a joint effort of computer sci- 
entists at The Oregon Graduate Institute and computational chemists and computer scientists 
at Battelle Pacific Northwest Laboratory's (PNL) Molecular Sciences Research Center and Ap- 
plied Physics Center. This report describes the database and browser prototypes implemented 
on a Sun4 Sparcstation 2, using Object Design's Release 1.1 of ObjectStore, and includes an 
evaluation of ObjectStore as a potential vehicle for object-oriented scientific application systems. 

1 Introduction 

This report recounts our experience implementing a prototype computational chemistry database 
using Object Design's Release 1.1 of ObjectStore on a Sun4 Sparcstation 2. The purpose of this 
work was to explore basic features of ObjectStore and to determine if the system is a candidate 
for development of the full computational chemistry database. The prototype exercises what we 
believe is the minimum functionality required for our final system. For more information about 
the full information model, see "Database Support for Computational Chemistry" [CusSl]. The 
prototype database was populated with twenty experiments, representing three computational in- 
vestigations: ethylene, methane and water. Concomitant to this effort, and in order to compare 
and contrast products, the same design was implemented in three other database systems: Encore, 
Postgres and Gemstone. Three teams of two or three graduate students each completed the other 
implementations. 

In this report, we first briefly outline the Computational Chemistry Database Project (CCDB) 
and the subset of the information model implemented in the prototype. We then go on to describe 
ObjectStore and how we used ObjectStore in our project. We consider enhancements to the pro- 
totype implementation and describe several aspects of the prototype which we would have done 
differently if we had known then what we think we know now. Finally, based on this development 
experience, we critique ObjectStore and evaluate the product as a whole with respect to Zdonik 
and Maier's object-oriented threshold and reference models [ZM90]. Please bear in mind that this 
critique of Objectstore-after only a few weeks of intensive use-is still somewhat premature. A 
feature whose absence we lament here may be lurking at the turn of the next page in the Reference 
Manual. 

The ObjectStore schema as well as sample data and queries are included in the appendices. The 
C++ program used to load the database, data used to populate the database, and query programs 
are available from the authors upon request. 



2 The Computational Chemistry Database Project 

The Computational Chemistry Database Project is a joint effort of computer scientists at  the 
Oregon Graduate Institute (OGI) and computational chemists and computer scientists a t  Battelle 
Pacific Northwest Laboratory's (PNL) Molecular Sciences Research Center and Applied Physics 
Center. Together with PNL computer scientists D. Michael DeVaney and James Thomas, we have 
identified ab initio computational chemistry (i.e., chemistry from first principles) as an area of 
initial research from which to explore the applicability of emerging database technology to high 
performance scientific applications. Our primary domain scientist collaborator at PNL is Dr. David 
Feller, an active researcher in computational chemistry and himself an author of the computational 
chemistry program MELDF [DF86, FBD87, FD90, Fe1911. 

Computational chemistry applications are both computation and data intensive, and have in 
common with other computational science applications the need both for increasing the speed of 
calculations and for storing and viewing large amounts of specialized information. In addition, the 
"laboratory" in which a computational chemist works typically comprises different computation- 
ally intensive programs as well as molecular visualization tools, each requiring differently formatted 
input and producing differently formatted output. Most computational chemistry applications typ- 
ically run on a number of different architectures a.nd operating syst,ems, with the chemist selecting a 
target machine for a given experiment based on an estimate of the resources needed. Such a hetero- 
geneous computing environment is common to other computational sciences. Our review of current 
research indicates that computational chemistry is a good choice for exploring data management 
problems facing scientific researchers in general [Be183, BP87, Be188, BW90, Bur89, Che90, Boago, 
DozgO, FB90, GPKF90, HS86, LWS87, LPS90, Olk86b, Olk86a, PL88, SOW84, Gar89, Wat891. 

3 Computational Chemistry Informat ion Model 

In this section we briefly describe each entity in the subset of the "Computational Chemistry 
Information Model" which we implemented in the prototype. (See Figure 1.) All entities with 
the exceptions of laboratory apparatus and molecular template were implemented as persistent 
C++ classes. However, the prototype database contains far fewer attributes than the full model, 
in particular for computational results (especially molecular orbitals), molecule, basis set, level of 
theory and code packages. 

Described below are the computational chemistry entities each with its corresponding attributes, 
as implemented in the prototype database. For the Objectstore C++ class definitions corresponding 
to these entities, see Appendix B. 

1. Chemist. A chemist performs one or more experiments and may be the author of one or 
more basis sets. 

(a) Name. The chemist's name, a structured text field, e.g., Last, First, MI. 
(b) Address. The chemist's address, usually the laboratory where chemist works. 

(c) Email Address. The chemist's electronic mail address. 

2. Experiment. An experiment is either a laboratory experiment or a computational chemistry 
experiment, and may be a collaborative effort of more than one chemist. An experiment pro- 
duces one or more observable properties for a molecule. This relationship between experiment 
and a set of observable properties can be modeled by a function which, given an experiment 
and a property, returns a set of value-unit pairs. (See "observable property", item 10.) 



Figure 1: Computational Chemistry Database: Information Model 

(a) Name. A textual annotation, or run title, by which a chemist identifies the experiment. 

(b) Citation. An unformatted text field (may be null) describing the source of data for this 
experiment. 

(c) Date begun. Initially, only the date that the experiment was actually begun is included 
in the database. Eventually, this should be a full time stamp so that experiments begun 
on the same day can be ordered. 

(d) Date completed. Again, date completed will eventually be a full time stamp. This field 
may be null if the experiment is ongoing. 

(e) Site. Site where the experiment was performed. This may be different from the per- 
forming chemist's address. 

3. Labora tory  Exper iment .  A laboratory experiment measures one or more observable prop- 
erties and is conducted on a laboratory apparatus. 

4. Labora tory  Appara tus .  A laboratory apparatus is an instrument on which a laboratory 
experiment is conducted. Eventually, this entity should include additional information about 
the apparatus that will contribute to the proper interpretation of the experiment, e.g., calli- 
bration. 

(a) Instrument. Instrument used to  conduct the experiment, e.g., "mass spectrometer". 

5. Computa t iona l  Chemis t ry  Exper iment .  A computational chemistry experiment is run 
on some code package, using some basis set, and is taken to an appropriate level of theory. 



With a large enough basis set and high enough level of theory, molecular properties could 
be deduced exactly; of course, such a calculation might take months or years, or even be 
intractible given current computing machinery. 

A computational chemistry experiment deduces one or more observable properties, and is 
confirmed by one or more observable properties (measured by some laboratory experiment). 
This relationship between a computational chemistry experiment and a set of observable 
properties can be modeled by a function which, given a computational experiment and a 
property, returns a laboratory experiment. 

(a) Computational Environment Description. 

i. Computer. The platform on which the experiment run, e.g., Cray2, Sun$. 
ii. Operating System. The operating system (and version thereof) under which the 

experiment was run. 
iii. Code version. The version of the Code Package used to  run this experiment. This 

version number may differ from the current code package version. See item 7b below. 
iv. CPU time. Processing time, in milliseconds, used by this experiment. 
v. Elapsed time. Wall clock time, in minutes, elapsed during the time the experiment 

was running. 

(b) Results. The results of a computational chemistry experiment are, in effect, the location 
of the electrons surrounding the molecule in question, a t  the molecule's "most stable" 
configuration, i.e., a t  the lowest energy. 

i. Escf. "Self-consistent field energy", a floating point number. 
ii. Esdci. "Singles and doubles, configuration interaction energy", a floating point 

number. 

6. Molecule. A molecule is the subject of one or more experiments. 

(a) Name. Molecule name, a text field, such as "water", or "ethylene". 

(b) Chemical Formula. Molecular formula, a text field, e.g., HzO, or C2H4. 
(c) Structure. The location of the atoms in the molecule given as Cartesian coordinates 

(x ,  y,  z) in angstroms, the atomic mass and charge, for each atom in the molecule. 

7. C o d e  Package. A code package is a computational chemistry application program or pro- 
grams on which a computational chemistry experiment is run. 

(a) Name. Name of the code package, e.g., "Gaussian", "GAMESS". 

(b) Version. The database will always return, unless otherwise specified, the object repre- 
senting the version of the code package in current use. Code package versions on which 
particular experiments were run are also stored in the database. (See item 5(a)iii.) 
There will be one code package instance per software publisher's version, per platform 
type, per compiler used to compile that version. Additional meta information required 
for interpretation of experimental results will be stored in the full project database. 

i. Code Version Name. Name given to  the version by the publisher. 
ii. Available On. Platform on which this version runs. 

iii. Compiler Version. Language, version and release of the compiler used to  compile 
the code. 



iv. Available Date. Date this version of the code became available. May be null if not 
yet available. 

v. Archived Date. Date this version of the code was archived. May be null. 

8. Basis Se t .  The selection of the basis set is critical not only to  how efficiently a computational 
experiment will run, but also to  its correctness. Eventually, the CCDB database will proba- 
bly interface with a basis set library, which will contain more detailed information on basis 
sets. Much more detailed information than is given below is required by most computational 
chemistry programs and (in any case) for experimental comparability. 

(a) Name. e.g., STO-3G, Dunning DZP, 4-31G, 6-311G, 4-31G*. 

9. Level of  Theory .  The levelof theory is an input parameter that specifies the degree of 
specificity and accuracy to  which an experiment should be taken. 

(a) Name. e.g., MP2, MP3. 

10. Observable  P rope r ty .  An observable property is basically a property-unit-value triple, 
represented as two text fields (for the name of the property described and the units in which 
its value is give) and one floating point number (representing the value of the property). The 
database includes, but is not limited to, the following properties: hydrophobicity, polarizabil- 
it y, hyper-polarizabilit y, and anisotropicit y. 

4 CCDB Sample Queries and Delete Operations 

In this section we briefly specify the queries and operations which we chose t o  implement in the 
prototype. The queries described below should each retrieve a set of experiments, t o  be displayed 
using either a terse or verbose format, as specified. A terse display should present only identifying 
data for the set of experiments, preferably one experiment per line in a tabular form, e.g., performing 
chemist(s), molecule (name and formula), code (na.me), basis set (name), and level of theory (name). 
A verbose display should present all data about that experiment including results. 

The six prototype queries are: 

1. Display experiments .  This query prepares a terse-display of experiment(s) performed by 
a given chemist, identified by name. 

2. Display exper iments  ordered  b y  date .  This query prepares a terse-display of all exper- 
iments, but also includes the date each experiment was initiated. The display is ordered by 
date in most-recent-first order. 

3. Display exper iments  for a given molecule. This query prepares a terse-display of the 
experiments for a given molecule. An optional extension would allow the user t o  limit the 
search to specified observable properties, or to  laboratory or computational experiments only. 

4. Create a collection of experiments .  This query is in effect a manual selection facility 
allowing the user to  browse a set of experiments, from which a new collection of experiments 
is created. After displaying in verbose form each experiment in a given set, it allows the user 
to  indicate whether that experiment should be included in the new collection. Once each 
member of the old set is displayed, the user can name the new collection. 



5. Delete  a n  exper iment  from t h e  database. When deleting an experiment from the 
database, all fields in other objects that refer to it must be set to null. "Orphaned objects" 
should also be deleted, for example, in the case where a particular observable property is 
referred to by just one computational experiment, and that experiment is deleted. If the 
database system does not maintain referential integrity and provide garbage collection for 
unreachable objects, the application should do so. 

6. Delete  a basis set f rom the database. Referential integrity should be preserved, as above. 

5 Object Design's ObjectStore 

ObjectStore [Obj] implements a client-server database model, providing persistence by storage class 
either through its DMLIDDL extensions to C++ or through a C++ library interface. An Object- 
Store database can be distributed onto several workstations. Three processes must be running 
to support an application: "ossvr" (one ObjectStore database server for each workstation client); 
"osdirman" (at least one directory manager per site to maintain the Objectstore namespace); in ad- 
dition, one ObjectStore cache manager is required for each workstation on which client applications 
run. 

Objects are declared persistent through the use of ObjectStore's parameterization of the C++ 
"new" command. Navigation in the database to persistent objects is performed by starting at 
a persistent variable (known in ObjectStore as a "root" variable). Because objects are declared 
persistent via allocation, persistence is orthogonal to type. This important characteristic of Ob- 
jectstore means that the in-memory structure of persistent objects can be the same as that for 
nonpersistent objects and, hence, allows the use of existing C or C++ code with ObjectStore. The 
developer can choose to use ObjectStore's extensions to C++ (the Data Manipulation Language 
or DML), implemented via a C++ preprocessor (itself a preprocessor to C) or a library interface 
(with which developers can use their preferred C++ compiler). 

In addition to the C++ preprocessor and libraries, ObjectStore supplies database utilities and 
development tools, including a graphical schema designer, a database browser (that can be used 
to navigate from persistent variables to persistent objects and includes a basic interactive query 
facility), and an interface to the GNU debugger. 

6 Project Development 

The initial prototype development effort spanned about four weeks. Two programmers, working 
about three-quarters time, started from an ObjectStore independent C++ program designed to 
load the data into C++ in-memory structures. At the onset of the project, neither had significant 
experience programming in C++, and one had a cursory knowledge of ObjectStore. We successfully 
populated the database with all 20 experiments and implemented the specified queries. 

6.1 Developing the Schema 

We used ObjectStore's Schema Designer to generate a simple schema with classes and relationships 
between classes. To add attributes and methods, and for all schema modifications, we simply edited 
the C++ ".hh" file. 



6.2 Populating the Database 

We opted to automatically load the database using C++ iostream libraries, converting to an Ob- 
jectstore program a C++ program we wrote to read a highly modified version of the input data. 
This approach helped us isolate ObjectStore issues from those of C++ and nicely illustrated the 
functionality ObjectStore provides over C++. Automatically loading the database from data files 
required tedious by-hand modifications to the input data as well as a high front-end programming 
effort. However, once working, the automatic load made it easy to modify the schema, refine the 
input datasets, and reload the database. 

An enhancement to the system on which we are currently working is an interactive object en- 
try and modification routine to generate test data and to fix minor data errors without explicitly 
deleting and reloading an entire computational experiment or set of experiments. As the prototype 
now stands, we must delete and reload by hand every object related to a given chemist's computa- 
tional experiments simply to change the email address of that chemist. Providing a better object 
entry and modification facility for a given application involves writing specific methods to change 
object properties and is programming intensive. A welcome addition to ObjectStore would be a 
rudimentary object editor as an extension to the browser. 

The somewhat troublesome issue of value identity vs. object identity arose in checking for 
and excluding duplicate objects, When loading the database, we decided not to create a new 
chemist, lab experiment, property, basis set, code package, level of theory or observable property 
if an object with "equal values" already existed in the database. Atom objects were duplicated if 
included in different molecules. In order to determine if a referred to object was "equal in valuen 
to an object already existing in the database, we used a primary-key-like attribute (serial number). 
This artificially generated attribute is not a viable long term solution. 

ObjectStore7s set collection facility makes it easy to check for (shallow) object identity, but to 
check for value identity, each attribute in the new object must be checked against each attribute 
in the existing persistent object. However, even this is probably too stringent a requirement. A 
chemist who moves from PNL to LNL is still the same chemist. Even more to the point: "Dave 
Feller" is (probably) the same chemist as "David Feller". Something akin to the upfront relational 
discipline of defining unique primary keys as tuple identifiers cannot be avoided in object-oriented 
systems, and carries some design and implementation cost. 

6.3 Using the Browser to Verify the Database 

We used the ObjectStore browser extensively in our development work, and found it extremely 
helpful. Indeed, the browser worked so well, we never felt compelled to learn the GNU debugger. 

6.4 Query Implementation 

Implementing the prototype queries using the DML interface in ObjectStore was straightforward. 
ObjectStore enforces referential integrity constraints as long as named inverse relationships are 
defined in the schema. The six database operations described in Section 4 are categorized below 
into those which (1) display experiments, (2) create a new collection, and (3) delete experiments: 

1. Displaying experiments by chemist, date and molecule. These queries were implemented using 
ObjectStore's set iterator "foreach". ObjectStore provides support for ordering a display by 
date through a general sorting capability. Ranking functions are supplied for basic types, and 
users can write rank functions for user-defined types. The order of the set iterator "foreach" 



can be controlled using the "index path" option, and either ascending or descending order 
can be specified. 

An ObjectStore alternative to using the "foreach" set iterators is to specify a query declara- 
tively using the "bracket-notation". (See item 8 in Section 8.4.) 

2. Creating a collection of experiments. Viable options in Ob jectstore for creating a new col- 
lection of objects with a dynamically specified, user-defined name include: 

(a) Create a persistent class to act as a kind of umbrella class. This class includes as in- 
stances the set of user-supplied names and pointers to the new, user-defined, persistent 
collections. For example, define an umbrella class named "personal experiments"; each 
instance of "personal experiments" is a set of experiments. Suppose a chemist is in- 
terested in comparing computational experiments performed on ethane that use basis 
sets authored by Dunning. The query would create a new instance of "personal experi- 
ments", with a user supplied name, e.g., "ethane experiments using Dunning basis sets". 
Into this set, the query would place pointers to the persistent experiments of interest, 
as specified by the user. 

(b) Use the user-supplied name as a persistent variable containing a pointer to  the new 
collect ion. 

(c) Create a new and separate database for the specified set of experiments, copying into 
the new database all the referenced objects. 

(d) Same as option 2c above, but use the ObjectStore cross-database reference mechanism 
so that objects referred to need not be copied. 

Option 2a was chosen to implement the creation of a new collection. We preferred option 2a 
to option 2b because option 2a isolates user-generated persistent variables to the "user's 
experiment set" class, while option 2b clutters the database with user-defined names and 
complicates the maintenance of referential integrity. We chose option 2a over option 2c 
because it is more space efficient and does not require duplicating objects, even though it 
does not provide the capability of creating a separate database that could be shipped to a 
different site, as option 2c would. We did not take time to pursue option 2d, cross-database 
references. 

An enhancement to our implementation of this query would be to allow the user to add, 
modify, or delete experiments from his or her personal set of experiments without affecting 
experiments in the public database. 

3. Deleting experiments and basis sets from the database. 

Because the Computational Chemistry Information Model did not specify a named relation- 
ship from basis set back to chemist (and we did not implement this inverse relationship), 
ObjectStore does not provide integrity checking when a basis set is deleted. Deleting a basis 
set thus causes "invalid persistent pointers" in the chemist and computational experiment 
objects. 

Short of including the inverse relationship pointers, or programmatically disallowing the dele- 
tion of a basis set referred to by an experiment, one could maintain referential intergrity by 
creating a new attribute for basis set: inactive status. A "delete basis set" query on a basis set 
that refers to a computational experiment would render that basis set inactive. A "list basis 



set" query would not list inactive basis sets, but a query of coinputational experiments will 
indicate that the associated basis set is inactive. We much prefer the overhead of maintaining 
inverse relationships to this alternative. 

7 Lessons Learned and Future System Enhancements 

Because we were relatively inexperienced C++ programmers and time was short, we did not take 
full advantage of encapsulation, constructors, display methods, and virtual functions. For example, 
for ease of implementation, we chose to  use only public classes. Since "private" or "protected" 
classes were not used, we had no need for using the "friend" mechanism. Future enhancements 
include encapsulation of class definitions, moving much of the constructor and display functionality 
from the population program and query programs into the schema, and providing access methods 
for each class. Also because of the programmers' inexperience with C++, we did not implement 
application class libraries. 

There is room for significant work in crafting a user interface through which the user would 
invoke queries with a window-like system, pop-up menus, etc. Graphical representation of basis 
sets, energy levels, and molecular structure would be particularly helpful. See the discussion of 
tools in Section 8.2. 

8 Preliminary Evaluation of Object Store 

All in all, we had a very positive experience using this product, and were able to  complete a 
database prototype relatively painlessly in a short period of time. Minimal set up is required to  get 
up and running, and the basic tools supplied are reliable and easy to  learn. The DML interface is 
in our opinion a straightforward and sensible extension to C++, and we highly recommend it over 
the library interface. 

8.1 Installing ObjectStore 

Object Design supplies a fairly extensive set of tutorial programs that can be used, not only to learn 
ObjectStore, but also as a test of the product installation; we found these quite helpful in testing the 
installation. The Installation Guide/Release Notes and Tutorial give simple instructions to  users 
for getting started quickly, which is straightforward for the UNIX C++ programmer familiar with 
makefiles or for a programmer with some understanding of UNIX and C and a good understanding 
of another database system. Using Ob jectstore, even the query generator, is not (yet) for the 
nonprogrammer. 

8.2 Development Tools 

Our experience with ObjectStore development tools was quite positive. They were easy to  learn 
(with the possible exception of the debugger), reliable and robust. Some additional functionality 
would be helpful; for example, the schema designer and browser default automatically to  the library 
interface option. Because of significant differences in syntax and presentation between the DML 
and library interfaces, it would be very useful if the user could permanently specify the default to 
DML. The inability to set a default option ranges from a minor inconvenience in the case of the 
browser to  a major source of confusion for inexperienced users in the case of the schema designer. 



1. Database User Utilities. Ob jectstore is released with a UNIX-like set of utilities for database 
administration: e.g., "osls" to list ObjectStore databases. Those most important to  the 
beginning user are quite intuitive for any UNIX user. 

2. SchemaDesigner. This tool is easy to  learn for someone who has used either a "Macintosh- 
like" windows application or Smalltalk. The graphical interface works nicely for first cut 
definition of classes and relationships. However, going through the schema designer to  define 
attributes and classes seemed somewhat cumbersome and we chose instead to  use an ordinary 
text editor. The schema designer holds the user's schema in an ".sdn file, and generates C++ 
".hh" file upon request. Unfortunately, however, the schema designer reads only its ''.sdW file. 
Thus, once the programmer has modified the ".hh" file, Objectstore's schema designer tool is 
no longer of much use. ObjectStore is working on this problem, as well as on making schema 
information available to  programs. 

An easy way of printing a graphical schema would be nice. 

3. The Browser. This tool was also easy to  use and a real help in debugging our database popula- 
tion program. The user can very easily navigate through the database by clicking on pointer 
values in a displayed object. Database values are displayed in easy to  read formats. The 
browser displays both class structures and data values. One can also browse the ObjectStore 
generated compilation schema. 

A rudimentary interactive query processor is available within the browser. A user can easily 
specify boolean queries, e.g., retrieving chemist objects with (address == PNL).  Booleans 
can be combined, but no methods can be accessed through the query processor. 

Leaving the browser up during compilation and execution of programs was somewhat prob- 
lematical - even when the compile did not modify the schema. Closing the database from the 
browser during compilation was not sufficient to prevent the browser from getting confused, 
especially after schema modification. 

Options "Print Visible Panes" and "Print [a particular pane]" produce Xwindows data. An 
easier way of printing and dumping objects would be nice. 

4. The Debugger. Object Design inlcudes with ObjectStore version 3.2 of the GNU Source-Level 
Debugger (GDB), extended to  interface with the DML version of ObjectStore. Unfortunately, 
we were familiar only with DBX and there just wasn't time to  learn GDB. The ObjectStore 
user (as users of many other object-oriented database systems) must choose between using 
the DML and his or her favorite C++ compiler and toolchest. 

An applications generator like "ET++" [WGM89] would be particularly helpful in implementing 
a full blown database browser for users. Many of the CCDB objects such as basis sets and molecular 
structures should be represented graphically. 

8.3 Threshold Model 

We used Zdonik's and Maier's criteria for object-oriented databases [ZM90] to  evaluate Object- 
Store's capabilities. Our prototype application effort indicates that ObjectStore definitely meets 
the requirements of the ob ject-oriented threshold model: 

1. Database Functionality. 



ObjectStore provides essential database features including model and language (C++ struc- 
tures and added collections) and binary unattributed relationships. Persistence is provided 
via allocation and concurrency is supportted through user specified transactions, including 
rollback on transaction abort (which we witnessed in populating our database). The size of 
an ObjectStore database is not limited by the amount of main memory nor the address range 
of virtual memory. 

2. Object Identity. Every database object is assigned a unique object identity. Indeed, object 
identity can be preserved across distributed databases. 

3. Encapsulation. ObjectStore supports and enforces encapsulation through standard C++ fea- 
tures such as public, private, and friend. 

4. Complex State. An ObjectStore store object can contain references to  other ObjectStore 
objects, which in turn contain references to  still other Object Store objects. ObjectStore 
provides facilities for user-defined types, subtyping and inheritance, and unattributed binary 
relationships. 

8.4 Reference Model 

ObjectStore exhibits seven of the ten characteristics of Zdonik's and Maier's reference model. 

1. Structured representations for objects. C++ schemas constitute structured object represen- 
tation. 

2. Persistence by Reachability. Persistence in Ob jectstore is by storage class and is orthogonal 
to  type. Persistent objects are reachable through persistent variables, but may not point t o  
transient objects outside transaction boundaries. Ob jectstore apparently does not garbage 
collect, thus allowing unreachable objects to  remain in the database heap. 

3. Typing of objects and variables is done at both compile and run time. The C++ typecast 
operator is used for subtyping at run time. For example, for an experiment t o  "know" its 
type, one must supply a virtual function in the supertype with a corresponding function in 
the subtypes and use C++ typecasting. 

4. Three hierarchies. The C++ implementation hierarchy supported by ObjectStore subsumes 
a specification hierarchy on types and a hierarchy of representations and methods. It ap- 
pears t o  us that a classification hierarchy on explicit collections of objects would have to  
be implemented explicitly by a user; there is no triggering mechanism to support such an 
implement ation. 

5. Polymorphism. C++ (and hence ObjectStore) supports polymorphism through dispatching. 
For example, a given class and some of its subclasses may each have display functions "dis- 
play". Display is thus part of the protocol of every subclass of the class. Which display 
function is invoked on a given call to  display depends on the type of the actual object to 
be displayed. In addition, ObjectStore supports parameterized types, virtual functions for 
persistent as well as transient objects, and function overloading. 

6. Collections. ObjectStore supports sets, bags and lists. Furthermore, a user can specify for 
any given collection a physical representation policy, e.g., B-trees or arrays. 



7. Name spaces. Persistent objects are accessible either directly through persistent variables or 
by navigation from another persistent object accessed through a persistent variable. Persistent 
variables, known in ObjectStore as "root variables" are declared as such and associated with 
a database by using the keyword "persistent", 

8. Queries and indices. ObjectStore supplies a query facility through "foreach" iterators, an 
extension of C++. A query represented using a bracket notation is an alternative optimizable 
by creating an index. For example, where osSet<person*> &people, the set of teenagers 
in a person database can be determined in two alternative ways, the latter of which is an 
optimizable shorthand method of the former. 

os,Set<person*> &teenager; 
f oreach(person *p, people) 

if (p->age >= 13 && p->age <= 19) teenager I= p; 

Object Store's clustering facility provides an additional opportunity for enhancing the move- 
ment of data from disk to memory. New persistent objects ca.n be placed explicitly in the 
same segment as existing persistent objects. The user can programmatically specify whether 
data is transerred to the cleint cache a page at a time or a segment at  a time. 

9. Relationships. Named relationships (including inverse relationships and some integrity check- 
ing) are nicely supported via extensions to the C++ or a library interface. As of this point 
in time, only unattributed binary relationships are supported. 

10. Versions. Through its configuration and workspace classes, Ob jectstore provides for accessing 
versions of an object's state and for assembling configurations of consistent versions of objects. 
We did not explore this capability. 

8.5 Final Observations about ObjectStore 

Those familiar with relational systems might well remark that this system, probably like all object- 
oriented systems, is as yet somewhat immature: 

1. The DML interface is, in our opinion, much cleaner and easier to use than the library interface. 
However, examples of advanced features included in the new 1.1 User's Guide seem slightly 
biased towards the library interface, as do some tools such as the Browser and Schema De- 
signer that default only to the library interface option. Will ObjectStore continue to support 
both a DML and a Library interface? 

2. The ObjectStore compiler (actually a C++ preprocessor), necessary for the DML interface, 
delivers some unhelpful error messages, e.g., "syntax error". 

3. Loading our relatively small database seemed slow and there was a noticeable startup for 
queries. In fairness we note that for ease of implementation we declared the extent of every 
object type as a persistent root variable and did no performance optimization whatsoever. 
Once objects were in memory, i.e., after warmstart, access seemed extremely fast. 

4. There is no support for generating a user interface, nor is an extensive class library supplied. 
Only the (rudimentary) C++ string classes are available. 
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A Sample Data Used to  Populate the Database 

Chemist #l 
name Dave Fel ler  
address PNL 
email f ellerapnl 
$ //ends Chemist #1 

name Ethylene DZP Test Case with no compression of integrals 
c i ta t ion  PNL Basis Set Library 
dateBegun 12/12/90 
datecompleted 12/12/90 
s i t e  PNL 
cpu 45.44 sec 
cpuElapsed 49.00 sec 
escf -78.0505295623 
esdci -78.3281048 
hasAsSub j ec t 
Molecule #I 
name ethylene 
formula C2H4 
structure 

atom C 
mass 12.01115 
charge 6.0 
x 1.25666814 
y 0.0 
z 0.0 
$ 
+ 
atom C 
mass 12.01115 
charge 6.0 
x -1.25666814 
y 0.0 
z 0.0 
$ 
+ 
atom H 
mass 1.00797 
charge 1.0 
x 2.32513368 
y 1.72999314 
z 0.0 
$ 

atom H 
nass 1.00797 
charge 1.0 
x -2.32513368 
y 1.72999314 
z 0.0 
$ 



atom H 
mass 1.00797 
charge 1.0 
x 2.32513368 

atom H 
mass 1.00797 
charge 1.0 
x -2.32513368 

$ //ends Atom 
$ //ends s t ruc tu re  
$ //ends Molecule #1 
codepackage 
CodePackage #I 
name KELDF 

computer Sun4 
language Fortran 1.2 
dateAvailable 1/1/90 
dateArchived 0/0/00 
$ //ends CodePackage #1 
basisset  

name Dunning DZP 
authoredBy 
+ 
Chemist 112 
name Jim Dunning 
address PNL 
e a a i l  dunningapnl 
$ //ends Chemist #2 

$ //ends bas i s se t  
1evelOfTheory 
LevelOfTheory #1 
name HP2 
$ //ends 1evelOfTheory #l 
produces 
+ 
Property # l  
property po la r i zab i l i ty  
un i t  A**3 
value 2.2 
$ //ends Property #1 
$ //ends Property # l  
isConf irmedBy 
+ 
LabExperiment #I  
performedBy 
+ 
Chemist #3 
name Belkis I ze r  



address Cornell 
email izerQcornel1 
$ //ends Chemist #3 
$ //ends performedBy 
name ethylene polarizability 
citation Campbell, Chemical Systems 
dateBegun 0/0/00 
datecompleted 2/5/69 
site Istanbul, Turkey 
instrument parallel plate condensor 
produces 
+ 
Property #2 
property polarizability 
unit A**3 
value 2.1 
$ //ends Property t2 
$ //ends Property t2 
$ //ends produces 
$ //ends 1abExperiment #I 
$ //ends isConf irmedBy 
$ //ends produces 
$ //ends ComputationalExperiment #l 



B Class Definitions: Object Store Schema 
/* Computational Chemistry Objectstore Prototype 

Uay, 1991 

* Schema header file for ossd file 'prj ' . 
* Produced by ossd on Tue May 7 17:42:40 1991 
* 
* Classes and their forward declarations are written 
* in base class to derived class order, as is necessary 
* for compilation. 
* / 

struct Date C 
short mm, dd, yyyy; 
Date0 : mm(O), dd(O), yyyy(0) 
friend istreamk operator>>(istream& s, Date &d); 

3 : 

istream& operator>>(istreamP s. Date &d) 
C 
char c; 
return s >> d.mm >> c >> d.dd >> c >> d.yyyy; 
3 

tdef ine LAB 1 
#define COUP 2 

typedef char* String; 

extern database *db; 

class Chemist; 
class Experiment; 
class LabExperiment; 
class CompExperiment; 
class Property; 
class BasisSet ; 
class LevelofTheory; 
class Codepackage ; 
class Molecule; 
class Atom; 
class PersonalCE; 

static char buffer [lo241 ; 

class Chemist C 
/* A chemist performs experiments. */ 
public : 
persistent<db> 0s-Set<Chemist*> extent; 
0s-Set<Experiment*> performs inverse-member isPerformedBy; 
0s-Set<BasisSet*> authors inverse-member isAuthoredBy; 
int id; 
char* name: 



char* address; 
char* email; 
Chemist (int Chemist-id) C 

id = Chemist-id; 
extent.insert(this1; 

I 
-Chemist 1 

extent .remove(this) ; 
1 
3 ;  

class Experiment i 
/* An experiment is either computational or laboratory. */ 
public: 
0s-Set<Chemist*> isPerformedBy inverse-member performs; 
0s-Set<Property*> produces inverse-member isProducedBy; 
Molecule* hasAsSubject inverse-member isSubject0f; 
int id indexable; 
char* name; 
char* citation; 
Date begun indexable; 
Date completed; 
char* site; 
virtual int UhatAmIO = 0; 
Experiment (int Experiment-id) C 

id = Experiment-id; 
1 
1 ; 

class LabExperiment : public Experiment i 
/* A LabExperiment confirms a computational experiment. */ 
public : 
persistent<db> 0s-Set<LabExperiment*> extent; 
char* instrument; 
0s-Set<CompExperiment*> confirms inverse-member isConfirmedBy; 
virtual int UhatAmIO C 

return LAB; 
1 

LabExperiment (int id) : Experiment(id1 C 
extent. insert (this) ; 
1 

-LabExperiment~)Cextent.remove(this);) 

1; 

class CompExperiment : public Experiment ( 
/* A Computational Experiment uses a Code Package and Basis Set to some Level of Theory. */ 
public : 
persistent<db> 0s-Set<CompExperiment*> extent; 
Basisset* usesBS ; 
LevelofTheory* isTakenTo ; 
Codepackage* usesCP ; 
LabExperiment* isConfirmedBy inverse-member confirms; 
int id; 
float cpuTime; 
float elapsedTime; 



float escf ; 
float esdci; 
virtual int WhatAmIO { 

return COUP; 
3 

CompExperiment (int s) 
: Experiment(s) { 

id=s ; 
extent.insert(this); 
3  
-CompExperiment 0 { 

extent .remove (this) ; 
3  

3; 

class Property { 
/* A property is a property/unit/value triple. */ 
public : 
persistent<db> 0s-Set<Property*> extent; 
Experiment* isProducedBy inverse-member produces; 
int id; 
char* name ; 
char* unit ; 
float value; 
Property (int s) 

id% ; 
extent.insert(this1; 
3 

"Property 0 I 
extent .remove (this) ; 
3  
3 ;  

class BasisSet C 
/* A basis set is used in a computational experiment. */  

persistent<db> 0s-Set<BasisSet*> extent; 
0s-Set<Chemist*> isAuthoredBy inverse-member authors; 
int id; 
char* name; 
BasisSet (int i) { 

name = 0; 
id=i ; 
extent. insert (this) ; 
> 

-Basisset 0 < 
delete name; 

class PersonalCE 1 
/* Users can define their ovn sets of Comp Exp */ 
public : 
persistent<db> 0s-Set<PersonalCE*> extent; 



char* name ; 
0s-Set<CompExperiment*> my-set; 
PersonalCE (char* s) { 
name- neu(db) char [strlen(s)+l] ; 
strcpy(name,s) ; 
extent.insert(this); 
3 
'PersonalCE 0 Cextent.remove(this);3 
3; 

class LevelofTheory ( 
/* A computational chemistry experiment is taken to a level of theory. */ 
public : 
persistent<db> 0s-Set<LevelofTheory*) extent; 
int id; 
char* name; 
LevelofTheory (int i)i 

idpi ; 
extent. insert (this) ; 
> 

-LevelofTheory 0 Cextent.remove(this);) 
3 ; 

class CodePackage { 
/* A code package is used by a computational experiment. */ 
publ ic : 
persistent<db> 0s-Set<CodePackage*> extent; 
int id; 
char* name ; 
char* codeVersion; 
char* computer; 
char* compilerVersion; 
Date dateAvailable; 
Date dateArchived; 
CodePackage (int n) C 

id = n; 
extent.insert(this); 
3 

'CodePackage() Cextent.remove(this);) 
3 ; 

class Molecule 1 
/* A molecule is the subject of an experiment. */  
publ ic : 
persistent<db> 0s-Set<Molecule*> extent; 
0s-SetCAtom*> hasAtoms ; 
0s-Set<Experiment*> issubjectof inverse-member hasAsSubject; 
int id; 
char* name; 
char* formula; 
Molecule (int i)C 

id=i ; 
extent. insert (this) ; 
1 

-Molecule (1 Cextent.remove(this);) 



class  Atom C 
/*  An atom is a component of a molecule. */ 
public: 

char* name; 
f loat  mass; 
f loat  charge; 
f loat  x; 
f loat  y; 
f loat  z ;  
Atom (char* str){  

name= new(db) char [strlen(str)+ll;  
strcpy (name ,str)  ; 
1 

-Atom {I 
1; 



C Sample Query Program 

/* Computational Chemistry Objectstore Prototype 
Hay, 1991 

Queryl: Terse display all experiments performed by a given chemist 

dexp /ccdb/dbl "Dave Felleru 
The datbase name & chemist name are passed via parameters. 

*/ 

database *db = 0 ; 
main(int nargs, char **argv) 
C 
char name C301; 
char basisname C201; 

printf ("Terse-display experiments performed by: %s\n\nll, argv C21) ; 
do-transact ion0 C 
0s-Set<CompExperiment*> all-CompExp; 
0s-Set<Chemist*> all-chem; 
Chemist * chem ; 
CompExperiment* compex; 
all-CompExp = CompExperiment::extent[:l:]; 
foreach (compex, all-CompExp) 
{foreach (chem, compex->isPerformedBy) 

{if ( ! strcmp(chem->name , argvC21) ) 
{// terse display the experiment 

strcpy (name, compex->name) ; 
name C301 = '\0 ' ; 
printf (1~%32s%6s%8s%15s%8s\n", 

name, 
compex->hasAsSubject->formula, 



D Sample Query Output 

Terse-display experiments performed by: Dave Feller 

EXPERIMENT NAME MOL. CODE BASIS SET 

Methane Test Case with no comp 
Ethylene (vary Basis Set) 
Methane (vary level of theory) 
Ethylene DZP Test Case 

Methane (vary basis set) 
Ethylene (vary Basis Set) 
Ethylene (vary Basis Set) 
Ethylene (optimize structure) 
Methane Test Case (vary Basis 

Ethylene (vary LOT to MP3) 
Ethylene (optimize structure) 
Ethylene (vary LOT) DZP Test C 

MELDF 
HELDF 
MELDF 
MELDF 
MELDF 
MELDF 
MELDF 
MELDF 
MELDF 
MELDF 
MELDF 
MELDF 

Dunning DZP 
DZP 

Dunning DZP 
Dunning DZP 

4-31G 
STD-SET 
4-31G 

Dunning DZP 
3-21G 

Dunning DZP 
Dunning DZP 
Dunning DZP 

LEVEL 
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