
Computational Chemistry Database Prototype: Objectstore

Judith Bayard Cushing, David Maier, Meenakshi Rao

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 92-002

June 15,1991
January 23,1992 (revised)

Computational Chemistry Database Prototype: Object Store

Judith Bayard Cushing David Maier Meenakshi Rao

June 15, 1991
January 23, 1992 (revised)

Abstract

The Computational Chemistry Database Project (CCDB) is a joint effort of computer sci-
entists at The Oregon Graduate Institute and computational chemists and computer scientists
at Battelle Pacific Northwest Laboratory's (PNL) Molecular Sciences Research Center and Ap-
plied Physics Center. This report describes the database and browser prototypes implemented
on a Sun4 Sparcstation 2, using Object Design's Release 1.1 of ObjectStore, and includes an
evaluation of ObjectStore as a potential vehicle for object-oriented scientific application systems.

1 Introduction

This report recounts our experience implementing a prototype computational chemistry database
using Object Design's Release 1.1 of ObjectStore on a Sun4 Sparcstation 2. The purpose of this
work was to explore basic features of ObjectStore and to determine if the system is a candidate
for development of the full computational chemistry database. The prototype exercises what we
believe is the minimum functionality required for our final system. For more information about
the full information model, see "Database Support for Computational Chemistry" [CusSl]. The
prototype database was populated with twenty experiments, representing three computational in-
vestigations: ethylene, methane and water. Concomitant to this effort, and in order to compare
and contrast products, the same design was implemented in three other database systems: Encore,
Postgres and Gemstone. Three teams of two or three graduate students each completed the other
implementations.

In this report, we first briefly outline the Computational Chemistry Database Project (CCDB)
and the subset of the information model implemented in the prototype. We then go on to describe
ObjectStore and how we used ObjectStore in our project. We consider enhancements to the pro-
totype implementation and describe several aspects of the prototype which we would have done
differently if we had known then what we think we know now. Finally, based on this development
experience, we critique ObjectStore and evaluate the product as a whole with respect to Zdonik
and Maier's object-oriented threshold and reference models [ZM90]. Please bear in mind that this
critique of Objectstore-after only a few weeks of intensive use-is still somewhat premature. A
feature whose absence we lament here may be lurking at the turn of the next page in the Reference
Manual.

The ObjectStore schema as well as sample data and queries are included in the appendices. The
C++ program used to load the database, data used to populate the database, and query programs
are available from the authors upon request.

2 The Computational Chemistry Database Project

The Computational Chemistry Database Project is a joint effort of computer scientists at the
Oregon Graduate Institute (OGI) and computational chemists and computer scientists a t Battelle
Pacific Northwest Laboratory's (PNL) Molecular Sciences Research Center and Applied Physics
Center. Together with PNL computer scientists D. Michael DeVaney and James Thomas, we have
identified ab initio computational chemistry (i.e., chemistry from first principles) as an area of
initial research from which to explore the applicability of emerging database technology to high
performance scientific applications. Our primary domain scientist collaborator at PNL is Dr. David
Feller, an active researcher in computational chemistry and himself an author of the computational
chemistry program MELDF [DF86, FBD87, FD90, Fe1911.

Computational chemistry applications are both computation and data intensive, and have in
common with other computational science applications the need both for increasing the speed of
calculations and for storing and viewing large amounts of specialized information. In addition, the
"laboratory" in which a computational chemist works typically comprises different computation-
ally intensive programs as well as molecular visualization tools, each requiring differently formatted
input and producing differently formatted output. Most computational chemistry applications typ-
ically run on a number of different architectures a.nd operating syst,ems, with the chemist selecting a
target machine for a given experiment based on an estimate of the resources needed. Such a hetero-
geneous computing environment is common to other computational sciences. Our review of current
research indicates that computational chemistry is a good choice for exploring data management
problems facing scientific researchers in general [Be183, BP87, Be188, BW90, Bur89, Che90, Boago,
DozgO, FB90, GPKF90, HS86, LWS87, LPS90, Olk86b, Olk86a, PL88, SOW84, Gar89, Wat891.

3 Computational Chemistry Informat ion Model

In this section we briefly describe each entity in the subset of the "Computational Chemistry
Information Model" which we implemented in the prototype. (See Figure 1.) All entities with
the exceptions of laboratory apparatus and molecular template were implemented as persistent
C++ classes. However, the prototype database contains far fewer attributes than the full model,
in particular for computational results (especially molecular orbitals), molecule, basis set, level of
theory and code packages.

Described below are the computational chemistry entities each with its corresponding attributes,
as implemented in the prototype database. For the Objectstore C++ class definitions corresponding
to these entities, see Appendix B.

1. Chemist. A chemist performs one or more experiments and may be the author of one or
more basis sets.

(a) Name. The chemist's name, a structured text field, e.g., Last, First, MI.
(b) Address. The chemist's address, usually the laboratory where chemist works.

(c) Email Address. The chemist's electronic mail address.

2. Experiment. An experiment is either a laboratory experiment or a computational chemistry
experiment, and may be a collaborative effort of more than one chemist. An experiment pro-
duces one or more observable properties for a molecule. This relationship between experiment
and a set of observable properties can be modeled by a function which, given an experiment
and a property, returns a set of value-unit pairs. (See "observable property", item 10.)

Figure 1: Computational Chemistry Database: Information Model

(a) Name. A textual annotation, or run title, by which a chemist identifies the experiment.

(b) Citation. An unformatted text field (may be null) describing the source of data for this
experiment.

(c) Date begun. Initially, only the date that the experiment was actually begun is included
in the database. Eventually, this should be a full time stamp so that experiments begun
on the same day can be ordered.

(d) Date completed. Again, date completed will eventually be a full time stamp. This field
may be null if the experiment is ongoing.

(e) Site. Site where the experiment was performed. This may be different from the per-
forming chemist's address.

3. Labora tory Exper iment . A laboratory experiment measures one or more observable prop-
erties and is conducted on a laboratory apparatus.

4. Labora tory Appara tus . A laboratory apparatus is an instrument on which a laboratory
experiment is conducted. Eventually, this entity should include additional information about
the apparatus that will contribute to the proper interpretation of the experiment, e.g., calli-
bration.

(a) Instrument. Instrument used to conduct the experiment, e.g., "mass spectrometer".

5. Computa t iona l Chemis t ry Exper iment . A computational chemistry experiment is run
on some code package, using some basis set, and is taken to an appropriate level of theory.

With a large enough basis set and high enough level of theory, molecular properties could
be deduced exactly; of course, such a calculation might take months or years, or even be
intractible given current computing machinery.

A computational chemistry experiment deduces one or more observable properties, and is
confirmed by one or more observable properties (measured by some laboratory experiment).
This relationship between a computational chemistry experiment and a set of observable
properties can be modeled by a function which, given a computational experiment and a
property, returns a laboratory experiment.

(a) Computational Environment Description.

i. Computer. The platform on which the experiment run, e.g., Cray2, Sun$.
ii. Operating System. The operating system (and version thereof) under which the

experiment was run.
iii. Code version. The version of the Code Package used to run this experiment. This

version number may differ from the current code package version. See item 7b below.
iv. CPU time. Processing time, in milliseconds, used by this experiment.
v. Elapsed time. Wall clock time, in minutes, elapsed during the time the experiment

was running.

(b) Results. The results of a computational chemistry experiment are, in effect, the location
of the electrons surrounding the molecule in question, a t the molecule's "most stable"
configuration, i.e., a t the lowest energy.

i. Escf. "Self-consistent field energy", a floating point number.
ii. Esdci. "Singles and doubles, configuration interaction energy", a floating point

number.

6. Molecule. A molecule is the subject of one or more experiments.

(a) Name. Molecule name, a text field, such as "water", or "ethylene".

(b) Chemical Formula. Molecular formula, a text field, e.g., HzO, or C2H4.
(c) Structure. The location of the atoms in the molecule given as Cartesian coordinates

(x , y, z) in angstroms, the atomic mass and charge, for each atom in the molecule.

7. C o d e Package. A code package is a computational chemistry application program or pro-
grams on which a computational chemistry experiment is run.

(a) Name. Name of the code package, e.g., "Gaussian", "GAMESS".

(b) Version. The database will always return, unless otherwise specified, the object repre-
senting the version of the code package in current use. Code package versions on which
particular experiments were run are also stored in the database. (See item 5(a)iii.)
There will be one code package instance per software publisher's version, per platform
type, per compiler used to compile that version. Additional meta information required
for interpretation of experimental results will be stored in the full project database.

i. Code Version Name. Name given to the version by the publisher.
ii. Available On. Platform on which this version runs.

iii. Compiler Version. Language, version and release of the compiler used to compile
the code.

iv. Available Date. Date this version of the code became available. May be null if not
yet available.

v. Archived Date. Date this version of the code was archived. May be null.

8. Basis Se t . The selection of the basis set is critical not only to how efficiently a computational
experiment will run, but also to its correctness. Eventually, the CCDB database will proba-
bly interface with a basis set library, which will contain more detailed information on basis
sets. Much more detailed information than is given below is required by most computational
chemistry programs and (in any case) for experimental comparability.

(a) Name. e.g., STO-3G, Dunning DZP, 4-31G, 6-311G, 4-31G*.

9. Level of Theory . The levelof theory is an input parameter that specifies the degree of
specificity and accuracy to which an experiment should be taken.

(a) Name. e.g., MP2, MP3.

10. Observable P rope r ty . An observable property is basically a property-unit-value triple,
represented as two text fields (for the name of the property described and the units in which
its value is give) and one floating point number (representing the value of the property). The
database includes, but is not limited to, the following properties: hydrophobicity, polarizabil-
it y, hyper-polarizabilit y, and anisotropicit y.

4 CCDB Sample Queries and Delete Operations

In this section we briefly specify the queries and operations which we chose t o implement in the
prototype. The queries described below should each retrieve a set of experiments, t o be displayed
using either a terse or verbose format, as specified. A terse display should present only identifying
data for the set of experiments, preferably one experiment per line in a tabular form, e.g., performing
chemist(s), molecule (name and formula), code (na.me), basis set (name), and level of theory (name).
A verbose display should present all data about that experiment including results.

The six prototype queries are:

1. Display experiments . This query prepares a terse-display of experiment(s) performed by
a given chemist, identified by name.

2. Display exper iments ordered b y date . This query prepares a terse-display of all exper-
iments, but also includes the date each experiment was initiated. The display is ordered by
date in most-recent-first order.

3. Display exper iments for a given molecule. This query prepares a terse-display of the
experiments for a given molecule. An optional extension would allow the user t o limit the
search to specified observable properties, or to laboratory or computational experiments only.

4. Create a collection of experiments . This query is in effect a manual selection facility
allowing the user to browse a set of experiments, from which a new collection of experiments
is created. After displaying in verbose form each experiment in a given set, it allows the user
to indicate whether that experiment should be included in the new collection. Once each
member of the old set is displayed, the user can name the new collection.

5. Delete a n exper iment from t h e database. When deleting an experiment from the
database, all fields in other objects that refer to it must be set to null. "Orphaned objects"
should also be deleted, for example, in the case where a particular observable property is
referred to by just one computational experiment, and that experiment is deleted. If the
database system does not maintain referential integrity and provide garbage collection for
unreachable objects, the application should do so.

6. Delete a basis set f rom the database. Referential integrity should be preserved, as above.

5 Object Design's ObjectStore

ObjectStore [Obj] implements a client-server database model, providing persistence by storage class
either through its DMLIDDL extensions to C++ or through a C++ library interface. An Object-
Store database can be distributed onto several workstations. Three processes must be running
to support an application: "ossvr" (one ObjectStore database server for each workstation client);
"osdirman" (at least one directory manager per site to maintain the Objectstore namespace); in ad-
dition, one ObjectStore cache manager is required for each workstation on which client applications
run.

Objects are declared persistent through the use of ObjectStore's parameterization of the C++
"new" command. Navigation in the database to persistent objects is performed by starting at
a persistent variable (known in ObjectStore as a "root" variable). Because objects are declared
persistent via allocation, persistence is orthogonal to type. This important characteristic of Ob-
jectstore means that the in-memory structure of persistent objects can be the same as that for
nonpersistent objects and, hence, allows the use of existing C or C++ code with ObjectStore. The
developer can choose to use ObjectStore's extensions to C++ (the Data Manipulation Language
or DML), implemented via a C++ preprocessor (itself a preprocessor to C) or a library interface
(with which developers can use their preferred C++ compiler).

In addition to the C++ preprocessor and libraries, ObjectStore supplies database utilities and
development tools, including a graphical schema designer, a database browser (that can be used
to navigate from persistent variables to persistent objects and includes a basic interactive query
facility), and an interface to the GNU debugger.

6 Project Development

The initial prototype development effort spanned about four weeks. Two programmers, working
about three-quarters time, started from an ObjectStore independent C++ program designed to
load the data into C++ in-memory structures. At the onset of the project, neither had significant
experience programming in C++, and one had a cursory knowledge of ObjectStore. We successfully
populated the database with all 20 experiments and implemented the specified queries.

6.1 Developing the Schema

We used ObjectStore's Schema Designer to generate a simple schema with classes and relationships
between classes. To add attributes and methods, and for all schema modifications, we simply edited
the C++ ".hh" file.

6.2 Populating the Database

We opted to automatically load the database using C++ iostream libraries, converting to an Ob-
jectstore program a C++ program we wrote to read a highly modified version of the input data.
This approach helped us isolate ObjectStore issues from those of C++ and nicely illustrated the
functionality ObjectStore provides over C++. Automatically loading the database from data files
required tedious by-hand modifications to the input data as well as a high front-end programming
effort. However, once working, the automatic load made it easy to modify the schema, refine the
input datasets, and reload the database.

An enhancement to the system on which we are currently working is an interactive object en-
try and modification routine to generate test data and to fix minor data errors without explicitly
deleting and reloading an entire computational experiment or set of experiments. As the prototype
now stands, we must delete and reload by hand every object related to a given chemist's computa-
tional experiments simply to change the email address of that chemist. Providing a better object
entry and modification facility for a given application involves writing specific methods to change
object properties and is programming intensive. A welcome addition to ObjectStore would be a
rudimentary object editor as an extension to the browser.

The somewhat troublesome issue of value identity vs. object identity arose in checking for
and excluding duplicate objects, When loading the database, we decided not to create a new
chemist, lab experiment, property, basis set, code package, level of theory or observable property
if an object with "equal values" already existed in the database. Atom objects were duplicated if
included in different molecules. In order to determine if a referred to object was "equal in valuen
to an object already existing in the database, we used a primary-key-like attribute (serial number).
This artificially generated attribute is not a viable long term solution.

ObjectStore7s set collection facility makes it easy to check for (shallow) object identity, but to
check for value identity, each attribute in the new object must be checked against each attribute
in the existing persistent object. However, even this is probably too stringent a requirement. A
chemist who moves from PNL to LNL is still the same chemist. Even more to the point: "Dave
Feller" is (probably) the same chemist as "David Feller". Something akin to the upfront relational
discipline of defining unique primary keys as tuple identifiers cannot be avoided in object-oriented
systems, and carries some design and implementation cost.

6.3 Using the Browser to Verify the Database

We used the ObjectStore browser extensively in our development work, and found it extremely
helpful. Indeed, the browser worked so well, we never felt compelled to learn the GNU debugger.

6.4 Query Implementation

Implementing the prototype queries using the DML interface in ObjectStore was straightforward.
ObjectStore enforces referential integrity constraints as long as named inverse relationships are
defined in the schema. The six database operations described in Section 4 are categorized below
into those which (1) display experiments, (2) create a new collection, and (3) delete experiments:

1. Displaying experiments by chemist, date and molecule. These queries were implemented using
ObjectStore's set iterator "foreach". ObjectStore provides support for ordering a display by
date through a general sorting capability. Ranking functions are supplied for basic types, and
users can write rank functions for user-defined types. The order of the set iterator "foreach"

can be controlled using the "index path" option, and either ascending or descending order
can be specified.

An ObjectStore alternative to using the "foreach" set iterators is to specify a query declara-
tively using the "bracket-notation". (See item 8 in Section 8.4.)

2. Creating a collection of experiments. Viable options in Ob jectstore for creating a new col-
lection of objects with a dynamically specified, user-defined name include:

(a) Create a persistent class to act as a kind of umbrella class. This class includes as in-
stances the set of user-supplied names and pointers to the new, user-defined, persistent
collections. For example, define an umbrella class named "personal experiments"; each
instance of "personal experiments" is a set of experiments. Suppose a chemist is in-
terested in comparing computational experiments performed on ethane that use basis
sets authored by Dunning. The query would create a new instance of "personal experi-
ments", with a user supplied name, e.g., "ethane experiments using Dunning basis sets".
Into this set, the query would place pointers to the persistent experiments of interest,
as specified by the user.

(b) Use the user-supplied name as a persistent variable containing a pointer to the new
collect ion.

(c) Create a new and separate database for the specified set of experiments, copying into
the new database all the referenced objects.

(d) Same as option 2c above, but use the ObjectStore cross-database reference mechanism
so that objects referred to need not be copied.

Option 2a was chosen to implement the creation of a new collection. We preferred option 2a
to option 2b because option 2a isolates user-generated persistent variables to the "user's
experiment set" class, while option 2b clutters the database with user-defined names and
complicates the maintenance of referential integrity. We chose option 2a over option 2c
because it is more space efficient and does not require duplicating objects, even though it
does not provide the capability of creating a separate database that could be shipped to a
different site, as option 2c would. We did not take time to pursue option 2d, cross-database
references.

An enhancement to our implementation of this query would be to allow the user to add,
modify, or delete experiments from his or her personal set of experiments without affecting
experiments in the public database.

3. Deleting experiments and basis sets from the database.

Because the Computational Chemistry Information Model did not specify a named relation-
ship from basis set back to chemist (and we did not implement this inverse relationship),
ObjectStore does not provide integrity checking when a basis set is deleted. Deleting a basis
set thus causes "invalid persistent pointers" in the chemist and computational experiment
objects.

Short of including the inverse relationship pointers, or programmatically disallowing the dele-
tion of a basis set referred to by an experiment, one could maintain referential intergrity by
creating a new attribute for basis set: inactive status. A "delete basis set" query on a basis set
that refers to a computational experiment would render that basis set inactive. A "list basis

set" query would not list inactive basis sets, but a query of coinputational experiments will
indicate that the associated basis set is inactive. We much prefer the overhead of maintaining
inverse relationships to this alternative.

7 Lessons Learned and Future System Enhancements

Because we were relatively inexperienced C++ programmers and time was short, we did not take
full advantage of encapsulation, constructors, display methods, and virtual functions. For example,
for ease of implementation, we chose to use only public classes. Since "private" or "protected"
classes were not used, we had no need for using the "friend" mechanism. Future enhancements
include encapsulation of class definitions, moving much of the constructor and display functionality
from the population program and query programs into the schema, and providing access methods
for each class. Also because of the programmers' inexperience with C++, we did not implement
application class libraries.

There is room for significant work in crafting a user interface through which the user would
invoke queries with a window-like system, pop-up menus, etc. Graphical representation of basis
sets, energy levels, and molecular structure would be particularly helpful. See the discussion of
tools in Section 8.2.

8 Preliminary Evaluation of Object Store

All in all, we had a very positive experience using this product, and were able to complete a
database prototype relatively painlessly in a short period of time. Minimal set up is required to get
up and running, and the basic tools supplied are reliable and easy to learn. The DML interface is
in our opinion a straightforward and sensible extension to C++, and we highly recommend it over
the library interface.

8.1 Installing ObjectStore

Object Design supplies a fairly extensive set of tutorial programs that can be used, not only to learn
ObjectStore, but also as a test of the product installation; we found these quite helpful in testing the
installation. The Installation Guide/Release Notes and Tutorial give simple instructions to users
for getting started quickly, which is straightforward for the UNIX C++ programmer familiar with
makefiles or for a programmer with some understanding of UNIX and C and a good understanding
of another database system. Using Ob jectstore, even the query generator, is not (yet) for the
nonprogrammer.

8.2 Development Tools

Our experience with ObjectStore development tools was quite positive. They were easy to learn
(with the possible exception of the debugger), reliable and robust. Some additional functionality
would be helpful; for example, the schema designer and browser default automatically to the library
interface option. Because of significant differences in syntax and presentation between the DML
and library interfaces, it would be very useful if the user could permanently specify the default to
DML. The inability to set a default option ranges from a minor inconvenience in the case of the
browser to a major source of confusion for inexperienced users in the case of the schema designer.

1. Database User Utilities. Ob jectstore is released with a UNIX-like set of utilities for database
administration: e.g., "osls" to list ObjectStore databases. Those most important to the
beginning user are quite intuitive for any UNIX user.

2. SchemaDesigner. This tool is easy to learn for someone who has used either a "Macintosh-
like" windows application or Smalltalk. The graphical interface works nicely for first cut
definition of classes and relationships. However, going through the schema designer to define
attributes and classes seemed somewhat cumbersome and we chose instead to use an ordinary
text editor. The schema designer holds the user's schema in an ".sdn file, and generates C++
".hh" file upon request. Unfortunately, however, the schema designer reads only its ''.sdW file.
Thus, once the programmer has modified the ".hh" file, Objectstore's schema designer tool is
no longer of much use. ObjectStore is working on this problem, as well as on making schema
information available to programs.

An easy way of printing a graphical schema would be nice.

3. The Browser. This tool was also easy to use and a real help in debugging our database popula-
tion program. The user can very easily navigate through the database by clicking on pointer
values in a displayed object. Database values are displayed in easy to read formats. The
browser displays both class structures and data values. One can also browse the ObjectStore
generated compilation schema.

A rudimentary interactive query processor is available within the browser. A user can easily
specify boolean queries, e.g., retrieving chemist objects with (address == PNL). Booleans
can be combined, but no methods can be accessed through the query processor.

Leaving the browser up during compilation and execution of programs was somewhat prob-
lematical - even when the compile did not modify the schema. Closing the database from the
browser during compilation was not sufficient to prevent the browser from getting confused,
especially after schema modification.

Options "Print Visible Panes" and "Print [a particular pane]" produce Xwindows data. An
easier way of printing and dumping objects would be nice.

4. The Debugger. Object Design inlcudes with ObjectStore version 3.2 of the GNU Source-Level
Debugger (GDB), extended to interface with the DML version of ObjectStore. Unfortunately,
we were familiar only with DBX and there just wasn't time to learn GDB. The ObjectStore
user (as users of many other object-oriented database systems) must choose between using
the DML and his or her favorite C++ compiler and toolchest.

An applications generator like "ET++" [WGM89] would be particularly helpful in implementing
a full blown database browser for users. Many of the CCDB objects such as basis sets and molecular
structures should be represented graphically.

8.3 Threshold Model

We used Zdonik's and Maier's criteria for object-oriented databases [ZM90] to evaluate Object-
Store's capabilities. Our prototype application effort indicates that ObjectStore definitely meets
the requirements of the ob ject-oriented threshold model:

1. Database Functionality.

ObjectStore provides essential database features including model and language (C++ struc-
tures and added collections) and binary unattributed relationships. Persistence is provided
via allocation and concurrency is supportted through user specified transactions, including
rollback on transaction abort (which we witnessed in populating our database). The size of
an ObjectStore database is not limited by the amount of main memory nor the address range
of virtual memory.

2. Object Identity. Every database object is assigned a unique object identity. Indeed, object
identity can be preserved across distributed databases.

3. Encapsulation. ObjectStore supports and enforces encapsulation through standard C++ fea-
tures such as public, private, and friend.

4. Complex State. An ObjectStore store object can contain references to other ObjectStore
objects, which in turn contain references to still other Object Store objects. ObjectStore
provides facilities for user-defined types, subtyping and inheritance, and unattributed binary
relationships.

8.4 Reference Model

ObjectStore exhibits seven of the ten characteristics of Zdonik's and Maier's reference model.

1. Structured representations for objects. C++ schemas constitute structured object represen-
tation.

2. Persistence by Reachability. Persistence in Ob jectstore is by storage class and is orthogonal
to type. Persistent objects are reachable through persistent variables, but may not point t o
transient objects outside transaction boundaries. Ob jectstore apparently does not garbage
collect, thus allowing unreachable objects to remain in the database heap.

3. Typing of objects and variables is done at both compile and run time. The C++ typecast
operator is used for subtyping at run time. For example, for an experiment t o "know" its
type, one must supply a virtual function in the supertype with a corresponding function in
the subtypes and use C++ typecasting.

4. Three hierarchies. The C++ implementation hierarchy supported by ObjectStore subsumes
a specification hierarchy on types and a hierarchy of representations and methods. It ap-
pears t o us that a classification hierarchy on explicit collections of objects would have to
be implemented explicitly by a user; there is no triggering mechanism to support such an
implement ation.

5. Polymorphism. C++ (and hence ObjectStore) supports polymorphism through dispatching.
For example, a given class and some of its subclasses may each have display functions "dis-
play". Display is thus part of the protocol of every subclass of the class. Which display
function is invoked on a given call to display depends on the type of the actual object to
be displayed. In addition, ObjectStore supports parameterized types, virtual functions for
persistent as well as transient objects, and function overloading.

6. Collections. ObjectStore supports sets, bags and lists. Furthermore, a user can specify for
any given collection a physical representation policy, e.g., B-trees or arrays.

7. Name spaces. Persistent objects are accessible either directly through persistent variables or
by navigation from another persistent object accessed through a persistent variable. Persistent
variables, known in ObjectStore as "root variables" are declared as such and associated with
a database by using the keyword "persistent",

8. Queries and indices. ObjectStore supplies a query facility through "foreach" iterators, an
extension of C++. A query represented using a bracket notation is an alternative optimizable
by creating an index. For example, where osSet<person*> &people, the set of teenagers
in a person database can be determined in two alternative ways, the latter of which is an
optimizable shorthand method of the former.

os,Set<person*> &teenager;
f oreach(person *p, people)

if (p->age >= 13 && p->age <= 19) teenager I= p;

Object Store's clustering facility provides an additional opportunity for enhancing the move-
ment of data from disk to memory. New persistent objects ca.n be placed explicitly in the
same segment as existing persistent objects. The user can programmatically specify whether
data is transerred to the cleint cache a page at a time or a segment at a time.

9. Relationships. Named relationships (including inverse relationships and some integrity check-
ing) are nicely supported via extensions to the C++ or a library interface. As of this point
in time, only unattributed binary relationships are supported.

10. Versions. Through its configuration and workspace classes, Ob jectstore provides for accessing
versions of an object's state and for assembling configurations of consistent versions of objects.
We did not explore this capability.

8.5 Final Observations about ObjectStore

Those familiar with relational systems might well remark that this system, probably like all object-
oriented systems, is as yet somewhat immature:

1. The DML interface is, in our opinion, much cleaner and easier to use than the library interface.
However, examples of advanced features included in the new 1.1 User's Guide seem slightly
biased towards the library interface, as do some tools such as the Browser and Schema De-
signer that default only to the library interface option. Will ObjectStore continue to support
both a DML and a Library interface?

2. The ObjectStore compiler (actually a C++ preprocessor), necessary for the DML interface,
delivers some unhelpful error messages, e.g., "syntax error".

3. Loading our relatively small database seemed slow and there was a noticeable startup for
queries. In fairness we note that for ease of implementation we declared the extent of every
object type as a persistent root variable and did no performance optimization whatsoever.
Once objects were in memory, i.e., after warmstart, access seemed extremely fast.

4. There is no support for generating a user interface, nor is an extensive class library supplied.
Only the (rudimentary) C++ string classes are available.

9 Acknowledgements

This work is supported financially by grants from the Oregon Advanced Computing Institute
(OACIS), Battelle Pacific Northwest Laboratory's Molecular Sciences Research Center and Ap-
plied Physics Center, and NSF Grant IRI-9117008. Grants from Object Design, Inc., and Servio
Corporation generously supplied the database systems for the Object Store and the Gemstone pro-
totypes respectively.

The authors would also like to thank the developers of Postgres and Encore for making their
software available in the public domain. Robert Kelley of Sequent Computers contributed the
original C++ program used as a basis for the Objectstore database loading program.

A Sample Data Used to Populate the Database

Chemist #l
name Dave Fel ler
address PNL
email f ellerapnl
$ //ends Chemist #1

name Ethylene DZP Test Case with no compression of integrals
c i ta t ion PNL Basis Set Library
dateBegun 12/12/90
datecompleted 12/12/90
s i t e PNL
cpu 45.44 sec
cpuElapsed 49.00 sec
escf -78.0505295623
esdci -78.3281048
hasAsSub j ec t
Molecule #I
name ethylene
formula C2H4
structure

atom C
mass 12.01115
charge 6.0
x 1.25666814
y 0.0
z 0.0
$
+
atom C
mass 12.01115
charge 6.0
x -1.25666814
y 0.0
z 0.0
$
+
atom H
mass 1.00797
charge 1.0
x 2.32513368
y 1.72999314
z 0.0
$

atom H
nass 1.00797
charge 1.0
x -2.32513368
y 1.72999314
z 0.0
$

atom H
mass 1.00797
charge 1.0
x 2.32513368

atom H
mass 1.00797
charge 1.0
x -2.32513368

$ //ends Atom
$ //ends s t ruc tu re
$ //ends Molecule #1
codepackage
CodePackage #I
name KELDF

computer Sun4
language Fortran 1.2
dateAvailable 1/1/90
dateArchived 0/0/00
$ //ends CodePackage #1
basisset

name Dunning DZP
authoredBy
+
Chemist 112
name Jim Dunning
address PNL
e a a i l dunningapnl
$ //ends Chemist #2

$ //ends bas i s se t
1evelOfTheory
LevelOfTheory #1
name HP2
$ //ends 1evelOfTheory #l
produces
+
Property # l
property po la r i zab i l i ty
un i t A**3
value 2.2
$ //ends Property #1
$ //ends Property # l
isConf irmedBy
+
LabExperiment #I
performedBy
+
Chemist #3
name Belkis I ze r

address Cornell
email izerQcornel1
$ //ends Chemist #3
$ //ends performedBy
name ethylene polarizability
citation Campbell, Chemical Systems
dateBegun 0/0/00
datecompleted 2/5/69
site Istanbul, Turkey
instrument parallel plate condensor
produces
+
Property #2
property polarizability
unit A**3
value 2.1
$ //ends Property t2
$ //ends Property t2
$ //ends produces
$ //ends 1abExperiment #I
$ //ends isConf irmedBy
$ //ends produces
$ //ends ComputationalExperiment #l

B Class Definitions: Object Store Schema
/* Computational Chemistry Objectstore Prototype

Uay, 1991

* Schema header file for ossd file 'prj ' .
* Produced by ossd on Tue May 7 17:42:40 1991
*
* Classes and their forward declarations are written
* in base class to derived class order, as is necessary
* for compilation.
* /

struct Date C
short mm, dd, yyyy;
Date0 : mm(O), dd(O), yyyy(0)
friend istreamk operator>>(istream& s, Date &d);

3 :

istream& operator>>(istreamP s. Date &d)
C
char c;
return s >> d.mm >> c >> d.dd >> c >> d.yyyy;
3

tdef ine LAB 1
#define COUP 2

typedef char* String;

extern database *db;

class Chemist;
class Experiment;
class LabExperiment;
class CompExperiment;
class Property;
class BasisSet ;
class LevelofTheory;
class Codepackage ;
class Molecule;
class Atom;
class PersonalCE;

static char buffer [lo241 ;

class Chemist C
/* A chemist performs experiments. */
public :
persistent<db> 0s-Set<Chemist*> extent;
0s-Set<Experiment*> performs inverse-member isPerformedBy;
0s-Set<BasisSet*> authors inverse-member isAuthoredBy;
int id;
char* name:

char* address;
char* email;
Chemist (int Chemist-id) C

id = Chemist-id;
extent.insert(this1;

I
-Chemist 1

extent .remove(this) ;
1
3 ;

class Experiment i
/* An experiment is either computational or laboratory. */
public:
0s-Set<Chemist*> isPerformedBy inverse-member performs;
0s-Set<Property*> produces inverse-member isProducedBy;
Molecule* hasAsSubject inverse-member isSubject0f;
int id indexable;
char* name;
char* citation;
Date begun indexable;
Date completed;
char* site;
virtual int UhatAmIO = 0;
Experiment (int Experiment-id) C

id = Experiment-id;
1
1 ;

class LabExperiment : public Experiment i
/* A LabExperiment confirms a computational experiment. */
public :
persistent<db> 0s-Set<LabExperiment*> extent;
char* instrument;
0s-Set<CompExperiment*> confirms inverse-member isConfirmedBy;
virtual int UhatAmIO C

return LAB;
1

LabExperiment (int id) : Experiment(id1 C
extent. insert (this) ;
1

-LabExperiment~)Cextent.remove(this);)

1;

class CompExperiment : public Experiment (
/* A Computational Experiment uses a Code Package and Basis Set to some Level of Theory. */
public :
persistent<db> 0s-Set<CompExperiment*> extent;
Basisset* usesBS ;
LevelofTheory* isTakenTo ;
Codepackage* usesCP ;
LabExperiment* isConfirmedBy inverse-member confirms;
int id;
float cpuTime;
float elapsedTime;

float escf ;
float esdci;
virtual int WhatAmIO {

return COUP;
3

CompExperiment (int s)
: Experiment(s) {

id=s ;
extent.insert(this);
3
-CompExperiment 0 {

extent .remove (this) ;
3

3;

class Property {
/* A property is a property/unit/value triple. */
public :
persistent<db> 0s-Set<Property*> extent;
Experiment* isProducedBy inverse-member produces;
int id;
char* name ;
char* unit ;
float value;
Property (int s)

id% ;
extent.insert(this1;
3

"Property 0 I
extent .remove (this) ;
3
3 ;

class BasisSet C
/* A basis set is used in a computational experiment. */

persistent<db> 0s-Set<BasisSet*> extent;
0s-Set<Chemist*> isAuthoredBy inverse-member authors;
int id;
char* name;
BasisSet (int i) {

name = 0;
id=i ;
extent. insert (this) ;
>

-Basisset 0 <
delete name;

class PersonalCE 1
/* Users can define their ovn sets of Comp Exp */
public :
persistent<db> 0s-Set<PersonalCE*> extent;

char* name ;
0s-Set<CompExperiment*> my-set;
PersonalCE (char* s) {
name- neu(db) char [strlen(s)+l] ;
strcpy(name,s) ;
extent.insert(this);
3
'PersonalCE 0 Cextent.remove(this);3
3;

class LevelofTheory (
/* A computational chemistry experiment is taken to a level of theory. */
public :
persistent<db> 0s-Set<LevelofTheory*) extent;
int id;
char* name;
LevelofTheory (int i)i

idpi ;
extent. insert (this) ;
>

-LevelofTheory 0 Cextent.remove(this);)
3 ;

class CodePackage {
/* A code package is used by a computational experiment. */
publ ic :
persistent<db> 0s-Set<CodePackage*> extent;
int id;
char* name ;
char* codeVersion;
char* computer;
char* compilerVersion;
Date dateAvailable;
Date dateArchived;
CodePackage (int n) C

id = n;
extent.insert(this);
3

'CodePackage() Cextent.remove(this);)
3 ;

class Molecule 1
/* A molecule is the subject of an experiment. */
publ ic :
persistent<db> 0s-Set<Molecule*> extent;
0s-SetCAtom*> hasAtoms ;
0s-Set<Experiment*> issubjectof inverse-member hasAsSubject;
int id;
char* name;
char* formula;
Molecule (int i)C

id=i ;
extent. insert (this) ;
1

-Molecule (1 Cextent.remove(this);)

class Atom C
/* An atom is a component of a molecule. */
public:

char* name;
f loat mass;
f loat charge;
f loat x;
f loat y;
f loat z ;
Atom (char* str){

name= new(db) char [strlen(str)+ll;
strcpy (name ,str) ;
1

-Atom {I
1;

C Sample Query Program

/* Computational Chemistry Objectstore Prototype
Hay, 1991

Queryl: Terse display all experiments performed by a given chemist

dexp /ccdb/dbl "Dave Felleru
The datbase name & chemist name are passed via parameters.

*/

database *db = 0 ;
main(int nargs, char **argv)
C
char name C301;
char basisname C201;

printf ("Terse-display experiments performed by: %s\n\nll, argv C21) ;
do-transact ion0 C
0s-Set<CompExperiment*> all-CompExp;
0s-Set<Chemist*> all-chem;
Chemist * chem ;
CompExperiment* compex;
all-CompExp = CompExperiment::extent[:l:];
foreach (compex, all-CompExp)
{foreach (chem, compex->isPerformedBy)

{if (! strcmp(chem->name , argvC21))
{// terse display the experiment

strcpy (name, compex->name) ;
name C301 = '\0 ' ;
printf (1~%32s%6s%8s%15s%8s\n",

name,
compex->hasAsSubject->formula,

D Sample Query Output

Terse-display experiments performed by: Dave Feller

EXPERIMENT NAME MOL. CODE BASIS SET

Methane Test Case with no comp
Ethylene (vary Basis Set)
Methane (vary level of theory)
Ethylene DZP Test Case

Methane (vary basis set)
Ethylene (vary Basis Set)
Ethylene (vary Basis Set)
Ethylene (optimize structure)
Methane Test Case (vary Basis

Ethylene (vary LOT to MP3)
Ethylene (optimize structure)
Ethylene (vary LOT) DZP Test C

MELDF
HELDF
MELDF
MELDF
MELDF
MELDF
MELDF
MELDF
MELDF
MELDF
MELDF
MELDF

Dunning DZP
DZP

Dunning DZP
Dunning DZP

4-31G
STD-SET
4-31G

Dunning DZP
3-21G

Dunning DZP
Dunning DZP
Dunning DZP

LEVEL

References
[Be1831 J. L. Bell. Data Structures for Scientific Simulation Programs. PhD thesis, University of Colorado,

Boulder, CO, 1983.

[Be1881 J. L. Bell. A specialized data management system for parallel execution of particle physics codes. In
Proceedings ACM SIGMOD, volume 18, pages 277-285. ACM, ACM Press, June 1988.

[Boago] Computer Science and Technology Board. Computing and Molecular Biology: Mapping and Interpreting
Biological Information, a CSTB Workshop. NRC, Washington, DC, 1990.

[BP87] J . L. Bell and G. S. Patterson, Jr. Data organization in large numerical computations. The Journal of
Supercomputing, 1: 105-136, 1987.

[Bur891 C. Burks. Genbank: Current status and future directions. Technical Report LA-UR-89-1154, Los Alamos
National Laboratory, Los Alamos, NM, April 1989.

[BW90] A. J . Bleasby and J. C. Wootton. Construction of validated, non-redundant composite protein sequence
databases. Protein Engineering, 3(3):153-159, 1990.

[ChegO] R. M. Chervin. High performance computing and the grand challenge of climate modeling. Computers
in Physics, pages 234-238, May/June 1990.

[Cus91] Judith Bayard Cushing. Database support for computational chemistry. Technical report, The Oregon
Graduate Institute, Beaverton, OR, 1991.

[DF86] E. R. Davidson and D. Feller. Basis set selection for molecular calculations. Chemical Review, 86:681-696,
1986.

[Doz9O] J . Dozier. Looking ahead to EOS: The earth observing system. Computers in Physics, pages 248-259,
May/June 1990.

[FB90] J . W. Fickett and C. Burks. Development of a database for nucleotide sequences. In M. S. Waterman,
editor, Mathematical Methods for DNA Sequences, pages 1-35. CRC Press, 1990.

[FBD87] D. Feller, C. M. Boyle, and E. R. Davidson. One-electron properties of several small molecules using near
Hartree-Fock limit basis sets. Journal of Chemical Physics, 86(6):3424, 1987.

[FD90] D. Feller and E. R. Davidson. Basis sets for ab initio molecular orbital calculations and intermolecular
interactions. In K. B. Lipkowitz and D. B. Boyd, editors, Reviews in Computational Chemistry, pages
1-43. VCH, New York, 1990.

[Fe191] D. Feller. MELDFX User's Guide. Molecular Science Research Center, Battelle Pacific Northwest Labo-
ratories, Richland, WA, April 1991.

[Gar891 J. M. Thornton and S. P. Gardner. Protein motifs and database searching. TIBS, 14:300-304, July 1989.

[GPKFSO] P. M. D. Gray, N. W. Paton, G. J. L. Kemp, and J. E. Fothergill. An object-oriented database for protein
structure analysis. Protein Engineering, 3(4):235-243, 1990.

[HS86] W. D. Hillis and G. Steele, Jr. Data parallel algorithms. CA CM, 29(13):1170-1183, December 1986.

[LPS9O] S. Letovsky, R. Pecherer, and A. Shoshani. Scientific data management for human genome applications.
In Z. Meral Ozsoyoglu, editor, Data Engineering (Special Issue on SSDBMS), volume 13, page 51, Wash-
ington, DC, September 1990. IEEE Computer Society.

[LWS87] R. H. Lathrop, T. A. Webster, and T. F. Smith. ARIADNE: Pattern-directed inference and hierarchical
abstraction in protein structure recognition. CACM, Vol 30, No 11:909-921, November 1987.

[Obj] Object Design, Burlington, MA. Objectstore.

[Olk86a] F. Olken. Physical database support for scientific and statistical database management. Technical Report
LBL-19940 (rev2), Lawrence Berkeley Laboratories, Berkeley, CA, May 1986.

[Olk86b] F. Olkeu. Scientific and statistical data management research at LBL. Technical Report LBL-21623,
Lawrence Berkeley Laboratories, Berkeley, CA, June 1986.

[PL88] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Proc. Nabl. Acad.
Sci. (U.S.), 85:2444-2448, April 1988.

[SOW841 A. Shoshani, F. Olken, and H. K. T. Wong. Characteristics of scientific databases. Proceedings of the
Tenth International Conference on VLDB, pages 147-159, August 1984.

[Wat89] M. Waterman. Foreword. Bulletin of Mathematical Biology, 51(1):1-4, 1989.

[WGM89] A. Weinand, E. Gamma, and R. Marty. Design and implementation of et++, a seamless object-oriented
application framework. Structured Programming, 2:l-25, 1989.

[ZM90] S. B. Zdonik and D. Maier, editors. Readings in Object-oriented Database Systems. Morgan Kauffman,
San Mateo, CA, 1990.

