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Abstract 

In common with other computational science applications, computational chemistry appli- 
cations have the need both for increasing the speed of calculations and for storing and viewing 
large amounts of specialized information. This paper addresses the latter of these two needs: 
a review of current literature in scientific data management shows computational chemistry to 
be fairly typical among scientific applications in its use of flat files as opposed to database sys- 
tems. Good initial choices for certain input parameters would greatly improve the individual 
chemist's research efficacy and even the accuracy and performance of these computationally in- 
tensive experiments. Unfortunately, because of the high data management overhead, computer- 
readable results that could help in setting up future experiments are typically discarded once 
an experiment is complete. While the object-oriented paradigm appears adequate for model- 
ing the required computational chemistry information, specific database technology necessary 
for implementing the application may as yet be lacking. To test this hypothesis, I performed 
both a conceptual database design and a functional specification for a computational chemistry 
database browser. This report describes those specifications, and identifies some challenges and 
research opportunities suggested by the computational chemistry information model. 

1 Introduction 

Computational chemistry is one of the emerging computational sciences that bring toget her applied 
mathematicians and computer scientists with scientists from domains such as environmental science, 
biology, chemistry or physics. The computational sciences have in common a need for (1) increasing 
the speed and precision of computation so that operations not now practical can be performed, 
(2) promoting the sharing of scientific data, and (3) providing better support for the individual 
scientist's research activities, e.g., help in managing an increasingly high volume of data, providing 
visualization and analysis facilities, and promoting easily used computer program libraries. This 
report describes an effort to learn how computational chemists conceptualize and use scientific 
structures, preparatory to exploring how database technology can ameliorate the problems stated 
above. 

Computational chemistry applications, an area to which database technology has not to my 
knowledge been applied, share many of the critical characteristics of scientific data management 
identified by the 1990 NSF Workshop on Scientific Database Management (see Figure 1). Clear 
specifications of the required modeling and behavioral functionality for computational chemistry 
will help indicate if current development and research efforts in computer science address the needs 
of scientific data management in general. If scientific data management needs are not being met, 
then such studies as this one, spread over several scientific disciplines, could lead to data structures 
and data management capabilities and policies adequate for many sciences. 
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Figure 1: Scientific Database Issues as per 1990 NSF Workshop 

Computational chemistry applications, an area to  which database technology has not t o  my 
knowledge been applied, share many of the critical characteristics of scientific data management 
identified by the 1990 NSF Workshop on Scientific Database Management (see Figure 1). Clear 
specifications of the required modeling and behavioral functionality for computational chemistry 
will help indicate if current development and research efforts in computer science address the needs 
of scientific data management in general. If scientific data management needs are not being met, 
then such studies as this one, spread over several scientific disciplines, could lead to  data structures 
and data management capabilities and policies adequate for many sciences. 

This report covers the information modeling phase for an ab initiol computational chemistry 
database project. The objective of this work was to establish that conceptual structures from this 
application area stretch the object-oriented paradigm and suggest new object-oriented structures 
that might be generalized to  other scientific applications, perhaps t o  other heterogeneous distributed 
data intensive computing environments. In effect, I propose to  develop more useful information 
structures and programmatic interfaces for computational chemistry based on observational analy- 
ses of how scientists working in this field use existing programs and information structures. I have 
worked closely with computational chemist David Feller at the Applied Physics Center of Battelle 
Pacific Northwest Laboratories, observing and analyzing tasks performed both by chemists and 
programs. To the best of my knowledge, the data management requirements of this application 
area have not been described from the point of view of computer science. 

Sections 2 and 3 present related work, implementation alternatives for scientific databases, and 
a brief argument for using an object-oriented database for developing an exploratory prototype in 
this application area. Section 4 includes a functional description of tasks routinely performed by 
computational chemists and goes on to  outline the computational chemistry database project. Sec- 
tion 5 presents the information model in detail. Finally, Sections 6, 7, and 8 outline opportunities 
for future research offered by the study of colnputational chemistry data and show how the proposed 
research could contribute to the application area. in the longer term. The proposed database proto- 
type meets some immediate needs of chemists, coiilcidental to giving computer science researchers 
insight into data structures and data access patterns. 

Ab init io computational chemistry involves the computation of chemical properties from first principles alone. 



2 Related Work 

The Invitational NSF Workshop on Scientific Database Management held in March of 1990 brought 
together about forty computer scientists and domain scientists to  address data management prob- 
lems facing scientific researchers. The workshop report corroborates other work in the scientific 
database area: many scientists still, by and large, manage their information through programs 
reading and writing flat files. Almost every scientific domain has an extensive software investment 
in programs (usually FORTRAN) that use flat files and that have evolved over a number of years. 
While database management systems would ultimately improve the reliability, availability, con- 
currency levels, and programmability of scientific applications (just as for any application area), 
scientists now attempting to use databases find that current technology does not match their needs. 
Even if current technology were adequate, changing from flat file access to  database access would 
involve retraining highly skilled programmers and extensive conversion of existing programs and 
files t o  database representations [FJPSOa, FJP9Obl. 

Molecular scientists have been among the first to  use private and public databases, perhaps 
because this data is (at least on the surface) easily represented as ASCII character strings [Bur89, 
BoaSO, FBSO]. While the past four years have seen "only" a 7-fold increase in the number of 
nucleotides in the centralized DNA databases (from 3 million to 21 million), and the data is ac- 
cumulating at  "only" 7 million nucleotides per year, automated sequencing methods promise t o  
increase this rate by an order of magnitude [Wat89]. Of particular interest are the Human Genome 
project [LPSSO] and three protein structure databases Compo-OWL [BWSO], BIPED [Gar89], and 
P/FDM [GPKFSO], each of which attempts to use different methods to  represent similar structures. 
Other work in protein sequencing [FB90, HS86, LWS87, PL88] gives insight into the interplay be- 
tween parallel algorithms and innovative data structures. 

Most work by computer scientists concerning scientific databases can be classified as (1) general 
characterizations of scientific databases [Olk86b, Olk86a, SOW841, (2) studies of scientific data 
structures [Be183, BP87, Be1881, and (3) specifications of future data-intensive scientific application 
systems, such as the Earth Observing System [CheSO, DozSO]. Other database research areas, such 
as geographical information systems [WK90], temporal data structures [GSSO, SS881, and statistical 
databases [Gho88, RSSOa, RR90, KR881 exhibit important similarities to  scientific databases. 

Within the mainstream of database research, special attention should be paid to  innovative 
work in two areas. ( I )  Both semantic and object-oriented data modeling techniques are important 
to scientific data management because of the importance of representing complex scientific objects 
and their associated behavior independently of any physical schema [BS85, MD90, AG89, BBMA89, 
Mai891. (2) Research on personal databases and laboratory notebooks is relevant because of the in- 
terplay between an individual scientist's private databases and laboratory-wide or public databases 
[LM84, Wei89, BB871. 

Scientific applications of interest to  the research outlined in this paper fall into three categories: 
computationally intense programs, scientific visualization systems, and data interchange programs. 
(1) A basic understanding of commercially available and public domain programs by domain scien- 
tists is relevant to  scientific data management research because commonly used programs define the 
relevant data modeling entities of interest and will constitute the ultimate clients for a data repos- 
itory. Commonly used programs that perform nb initio chemistry computations include Gaussian 
(which includes a data browser capability) [Gau89], GAMESS [GAMSO], HONDO [DupSO], and 
MELDF [F+91]. (2) Scientific visualization tools are also likely clients for scientific data reposito- 
ries; many chemists use graphical molecular display and editing packages such as Tektronix' CAChe 
[CACSO] and Chem3D [Che89] to prepare molecular structures input to  computational programs. 



Specialized toolkits such as Daylight Tools [DAY911 and AVS Chemistry subsystems [Vango] that 
allow visual rendering of molecular structures are available to the developer of application programs 
in this area. (3) A scientific data repository system should be prepared to  accept data from and 
generate data for data exchange formats commonly used in the respective scientific domains. Like 
all scientists, computational chemists typically share both programs and data. Data interchange 
efforts strive to make data prepared for interchange "self describing" and thus readable by hetero- 
geneous systems. The NetCDF project, aimed at atmospheric data, is an example of just such an 
effort [Fu19 11. 

3 Paradigm Choices for Scientific Databases 

The relational model, developed by Codd and based on set-theoretic notions, organizes data into 
flat relations called tables [Cod88]. Relationships between tuples (or rows of tables) within two or 
more relations are represented via shared attribute values. Relationships are typically materialized 
via joins. Even though typical scientific data management transactions require many more joins 
than typical business transactions, relational database systems do offer two distinct advantages 
over object-oriented database systems: (1) The relational model is well-understood, well-grounded 
in theory, and well-documented. (2) Mainstream relational systems are robust. Unfortunately, 
however, the relational model seems inadequate for directly representing and implementing some 
important structures and functionalities required for scientific applications, such as ordered se- 
quences and temporal relationships. Supporting large complex transactions, representing spatial 
information, and maintaining complicated ancillary information (also known as "metadata") are dif- 
ficult to provide in an application that runs on top of a relational system [FJPSOa, FJPgOb, MS901. 
Several DNA research centers are attempting to reap the advantages of the relational model and 
overcome its deficiencies by using a relational system for a data repository with a more flexi- 
ble object-oriented system as the interface to application programs. In addition to  the obvious 
disadvantages of maintaining two database designs and two databases, this approach risks losing 
information when moving data from the object-oriented database back to the relational [Pecgl]. 

Protein sequence databases, used to predict and compare protein structures, can be stored in 
relational systems, but for performance reasons implementers often introduce considerable data 
redundancy (with fewer tables come fewer joins), thus undermining the strict relational approach. 
Queries not anticipated at the database design stage and basic behavioral functionality both present 
difficulties. For example, because of the difficulty of combining complex calculation with retrieval, 
the Biped database implemented in Oracle is used simply to store and retrieve protein sequences. 
In a separate step, programs read the textual output of Biped's Oracle queries, perform com- 
plex calculations, and only then display superimposed motifs [Gar89, GPKF901. For examples of 
shortcomings of the relational paradigm specifically with respect to computational chemistry, see 
Section 6.1. 

While many scientific database researchers believe that relational systems as now implemented 
are inadequate to the task at hand, they feel that the following options are still too immature or too 
expensive to use for major implementation efforts [FJPSOa, FJPSOb, Pec91, SOW841: special pur- 
pose data management facilities [B W90], extended relational IJag89, RSSOb, H+90], extensible tool 
kits [C+90], logic databases [GPKFSO], and object-oriented databases [AMKPSO, GH91, ZM901. 



4 The Computational Chemistry Database Project 

To explore the applicability of object-oriented database management systems for managing scien- 
tific data, computer scientists from the Scientific Database Laboratory at the Oregon Graduate 
Institute and computational chemists and computer scientists at the Molecular Sciences Research 
Center (MSRC) and Applied Physics Center (APC) at Battelle Pacific Northwest Laboratory (PNL) 
in Hanford, Washington, have developed an initial working relationship. A b  initio computational 
chemistry has been identified as a specific initial research area within which to explore the applica- 
bility of emerging database technology to high performance scientific applications. David Feller, an 
active researcher in computational chemistry and a co-author of the computational chemistry pro- 
gram MELDF, is the primary domain scientist collaborator at PNL[DF86, FHD87, FD90, F+91]. 
After evaluating several object-oriented database systems for use in this application area, I intend 
eventually to generalize results to other scientific domain areas. 

4.1 Computational Chemistry 

The emergence of quantum theory during this century is still changing the ways in which chemists 
work. As early as 1929, it was clear that quantum chemistry calculations could predict molecular 
properties and structure, but most scientists believed that adequately precise calculations would be 
impossible. By the 1950's) approximate methods had been developed, but most scientists felt even 
these would be impractical for molecules of any size or complexity. Until recently, ab initio methods 
have been of interest primarily to theoretical chemists: only semi-empirical methods, considerably 
less accurate, could be used for molecules larger than 50-100 atoms. Rapid increases in computing 
power, however, will soon make ab initio methods applicable to much larger molecules, including 
those of interest to molecular biologists [Sa187, Cam70, Lev83, PB701. 

The computational chemist's laboratory is his or her computer, where numerical experiments 
based on quantum theoretical models compute chemical properties, i.e., structure, dynamics and 
molecular properties, for a molecule under investigation. A b  initio molecular orbital methods apply 
quantum mechanical techniques to molecular structure and energetics, solving the Schoedinger 
equation to various levels of approximation. Most chemists construct each experiment in an iterative 
manner and use more than one library of programs, since each offers slightly different capabilities. 
The chemist will rerun the programs several times, adjusting various parameters and tuning the 
programs for each molecule studied [Fe19 11. 

An investigation is over when the chemist has completed a run that adequately models the 
molecule in question. An admitted problem with the current methodology is that little or no 
information associating parameters with molecules is captured from the experimental process in 
a way directly applicable to later experiments with other molecules. In addition, the chemist's 
work on even relatively small molecules (many fewer than 50 atoms) is hampered by the amount 
of information he or she can store, search, and manage effectively. Being able to run experiments 
on molecules significantly larger than 50-100 atoms (as is expected in the next five years) will 
exacerbate these data management problems. 

4.2 User Scenario for a Computational Data Browser 

In this section, I describe a typical scenario for the use of the computational database and its 
browser which are central architectural components of the chemist's workbench. (See Figure 2.) 

1. Using a molecular structure editor (and templates of similar molecules from the database), 
the chemist will graphically define the subject molecule within a "private" database (aka a 



Figure 2: Computational Chemistry Data Browser Architecture 

Personal Laboratory Notebook). The chemist may also perform simple structure optimiza- 
tions. During the course of the investigation this geometry will likely be radically changed. 
The chemist will usually save only the final, optimized structure for a molecule. Sometimes 
a sequence of structures, for example those associated with a chemical reaction, may be of 
interest. 
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2. The chemist may consult the database for computational and laboratory experiments on 
molecules of similar structure and properties. Selected experiments may then be loaded into 
the personal database. Because the chemist may not be familiar with all of the computational 
programs or apparatus on which the selected experiments were run, associated data must be 
available to  help interpret input parameters and results. Since data may be physically stored 
in the database, archived at the site, or resident at another location, the chemist must be 
presented with a consistent view of data irrespective of its physical location or the format or 
machine on which it was generated or is stored. 

3. While consulting the public database, the chemist may determine that important information 
from the literature ("property data" [SO W84, DubSl]) is missing. The chemist should be able 
t o  add such information to  the public database, assuming of course some quality assurance 
measures. 
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4. Using the molecular properties in which the chemist is interested and the experiments re- 
trieved above, the browser then assists the chemist in choosing an appropriate set of pa- 
rameters, a highly specialized and critical activity. Since at least some of the computational 
chemistry programs likely to  be encountered by a scientist wishing to  perform calculations will 
be little more than research devices, it may be difficult for a "benchn chemist2 to  properly 
prepare input, due to  the combination of mathematical sophistication and research orien- 
tation of the codes. The consequences of a mistake may be a failed run, a much-too-long 
run or, what is undoubtedly worst, a run that produces seemingly plausible results that are 
inherently incorrect. 

2The term LLbench chemistn refers to an experimentalist (i.e., nontheoretician) involved in synthetic work or 
spectroscopic analysis. 
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The database will hold input templates for each computational program, as well as methods 
for converting to  formats appropriate to a particular parameter from the internal formats. 
Using templates and information gleaned from previous "like" experiments, the browser will 
assist the chemist in determining an appropriate first cut set of parameters to use, as well as 
a target machine on which to  run the the experiment. 

5. Using the first cut set of parameters and a set of codes that meet the chemist's needs, an 
available target machine on which to run the experiments is selected. The chemist is given 
an estimate of how long the computational experiment will run and (if relevant) how much 
it will cost. As a result of this information, the chemist may further optimize the molecular 
structure or modify parameters before asking the system to schedule and run the experiment. 
Once the experiment is run, results are placed in the chemist's personal database. 

6. The above process may be repeated many times before the chemist is satisfied with the 
results. The computational experiment may be run on several sets of codes, and the results 
compared with each other and with those of previous experiments. A browser interface to  
analysis packages such as "S" [BCWSS] would be ideal, but even the side by side viewing 
of different computational experiments would be helpful. The database system must provide 
the capability of capturing results from different programs in comparable form viewing and 
analysis. 

7. Once the chemist has successfully completed an investigation and published the results, data 
may be added to  the public database or sent to colleagues at outside laboratories. 

A successful computational chemistry experiment results in long term storage of only about 
two megabytes of data, but may be preceded by as many as hundreds of "unsuccessful" runs, each 
resulting in the short term storage of about two megabytes. The personal database, a kind of 
"laboratory notebook", is proposed to hold this work in progress. In addition, a run can generate 
up to  5 or 10 gigabytes of intermediate data, written temporarily to disk, and used in the solution 
of the problem or restarting an interrupted run. A laboratory such as Battelle's Environmental and 
Molecular Research Laboratory at  Hanford now generates per year about 1.2 gigabytes of data that 
are candidates for permanent archiving. This laboratory-wide scientific reference material should 
be accessible by casual and off site users, and will likely be archived or compressed. In addition, 
data from other chemistry laboratories will be imported to this repository. 

4.3 Computational Chemistry Data Browser 

The initial project is to  provide a database and browser for the chemist who uses ab initio tech- 
niques. While no current database system adequately addresses all anticipated needs, existing 
database technology could effectively enhance the chemist's computing environment and give com- 
puter scientists important insight into additional database functionality that may be needed. A 
prototype database browser will enable chemists at PNL to query data for both ongoing and 
archived experiments. Presently, once work on a particular molecule has been completed these 
data are for all practical purposes discarded, primarily because maintaining all the data for each 
experiment represents too great a data management overhead for the researcher. Data management 
barriers also hinder comparison of runs even within the same investigation. 

A prototype data browser should offer the following immediate benefits to  the chemist: (1) repos- 
itory for computational chemistry experiment data (until the data can be archived), (2) repository 
for computational chemistry experiment metadata (for browsing archived data and online data), 
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Figure 3: Computational Chemistry Data Model 

and (3) help in the selection and development of parameters for computational chemistry pro- 
grams. Support for chemists performing computational chemistry experiments involves: setting 
up a personal database corresponding to the current set of experiments; side-by-side viewing of 
parameters and results for a number of runs, or of the current experiment and those in the main 
repository; comparison and analysis of computational results with those of laboratory experiments; 
and assistance in archiving successful results in the main repository. 

For the reasons given in Section 3 above, current relational database systems seem unsuitable 
for this application class. Object-oriented database technology shows promise for handling the data 
types and queries for supporting these computational experiments. The requirements analysis of 
the chemist's information needs are here presented independently of any particular object-oriented 
database management system. From this information model specific (physical) database schema 
can be developed. Once it has been determined whether the object-oriented database paradigm 
fits the application in general, a chief research objective will be to  determine any inadequacies of 
the paradigm and to  design extensions as needed. 

5 Computational Chemistry Database Information Model 

Figure 3 mirrors my current overall understanding of the information model for computational 
chemistry experimentation, The model is expanded and elaborated in sections that follow. 



5.1 Chemists and Experiments 

The model includes simple identifying information about chemists whose experiments or basis sets 
are included in the database so that users can contact a chemist about his or her work. 

Experiments are arranged in an is-a hierarchy. An experiment, perhaps a collaborative effort of 
more than one chemist, is either a laboratory experiment or a computational chemistry experiment. 
Experiment attributes include simple identifying information such as name, e.g., a run title or a 
textual annotation, date-begun, date-completed, and meta-information such as a citation for the 
data used as source of the experiment. Experiments will be accessed through links with root entities 
chemist or molecule. 

5.2 Computational Experiments 

A chemist performs a computational chemistry experiment on a given molecule using a program 
package, specifying as many as 200 parameters, including initial estimations of molecular structure, 
basis set and level of theory. Selection of input. parameters is critical not only to  how rapidly the 
numerical experiment will run, but also to the accuracy of the results. The syntax of parameters 
varies from program to program and sometimes from one version of the programs to  the next. 

Computational chemistry experiments can require, as input, somewhere between 50 and 200 
"numbers" and produce, as output, several thousand additional "numbers". Between the input 
and output may lie several trillion other "numbers" needed to  solve the mathematical equations. 
Among the "numbers" that appear in the output are some that correspond to  physically observable 
properties of a molecule, and some that are simply artifacts of the equations that were solved. The 
most important output value is the total energy of the molecule. This energy can be determined 
by a variety of different techniques, e.g., Hartree-Fock self consistent field theory or configuration 
interaction theory. An example of an artifact of solving the equation is the set of molecular orbitals, 
an array of numbers whose size varies approximately with the square of the number of atoms in 
the molecule. Although molecular orbitals cannot be physically observed, they can be combined 
with input parameters to  produce a map of the electron density about a molecule and, as such, 
have meaning beyond the particular program that produced them [Fe191]. 

Molecular properties are generated directly from the detailed molecular structure derived in 
an experiment. An experiment is "successful" if these computed properties agree with properties 
measured in laboratory experiments, e.g., by x-ray crystallographic methods. 

Chemists study many kinds of combinations of the atoms making up a molecule. A "suite of 
experiment" is an aggregation of computational experiments that reflects such combinations. For 
example, in studying transition states from hydrogen and oxygen to  water, four computational 
experiments might be grouped together into a suite of experiments (see Figure 4): Two initial 
experiments model the stable states of hydrogen and oxygen molecules. An intermediate experiment 
models the unstable state of these elements at the energy level required for the transition. A fourth 
experiment models the final and stamble state of the water molecule. This suite of computational 
experiments predicts molecular properties of the hydrogen and oxygen atoms at  the points where the 
energy values, computed and stored as "results" of the computational experiment, are minimal (at 
the stable states), and maximal (at the unstable state). Energy curves, however, are not typically 
smooth as depicted in Figure 4; an improper or careless determination of molecular structure or 
other parameter can cause the computation to converge only to a local minima or local maxima. 

A series of computational experiments can also be grouped into an "investigation", as follows: 
In the course of computationally determining a molecule's structure, a chemist performs several 
experiments on that molecule; only a few (perhaps one or even none) will ultimately be archived. 
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Figure 4: Transition of hydrogen and oxygen to  water. 

Until deemed "successful", such experiments should be marked as private and available only to  
the performing chemist(s). In the course of such an investigation, the chemist uses results of 
intermediate experiments to  identify trends, isolate local minima, and then iteratively tune input 
parameters. Storing inputs and results of different iterations of an investigation supports the 
ongoing experimental process. (For a discussion of how the model supports the startup of an 
investigation, i.e., the selection of initial parameters, see Section 5.7 below.) 

Viewing results of two or more runs side by side would constitute an improvement over the 
existing practice. Translucent display of molecular orbitals over the original or optimized molecular 
structure would further aid the chemist in the investigation. 

Another measure of the accuracy of the computational experiment is the amount of numerical 
error. Stability analysis techniques are generally too difficult for a theoretical or bench chemist 
to  apply to  a particular set of experiments, although authors of commercially available programs 
usually perform a general stability analysis for the method. If the experiment object contained some 
measure of the cumulative error introduced by each state of the calculation, an associated browser 
could upon request perform a rudimentary st ability analysis. Stability analyses from different runs 
could then be ,compared and contrasted statistically. 

5.3 Laboratory Experiments 

A laboratory experiment is conducted in a "traditional" chemistry laboratory usually by a bench 
chemist, using laboratory apparatus such as a mass spectrometer or a cloud chamber, and producing 
a value or values for a specific observable property. 

Laboratory experiments are relevant to computational experiments in a t  least two ways: (1) A 
computational chemist typically validates a computational chemistry experiment by comparing the 
calculated molecular properties to properties physically observed through one or more laboratory 
experiments, usually performed by another chemist, perhaps at another site. Whether a laboratory 
experiment "agrees with" a computational experiment is typically a matter of judgement, not 
formal analysis. (2) On occasion a laboratory experiment may yield a property value that does 
not seem to agree with accepted theory. The bench chemist might then set up a computational 
experiment to  explore the apparently anomalous laboratory result. 

5.4 Molecules 

A molecule is the subject of one or more laboratory and computational chemistry experiments, and 
can be identified by name or chemical formula or through its corresponding experiment. Molecule 
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Figure 5: Molecular Structure Representations. 

name and chemical formula are examples of information that is extraneous to the computational 
experiment per se but is included for the chemist's use when retrieving data on molecules. Some 
attributes of the molecule (e.g., name, chemical formula, atomic weight) are functions of the atoms 
or isotopes comprising the molecule, and, as such, are also independent of a particular experi- 
ment. Other attributes, in particular molecular structure, are highly dependent on a particular 
experiment. 

For a computational experiment molecular structure is the only necessary information regarding 
a molecule. Molecular structure, the location of the atoms in the molecule, identifies the molecule to 
the application program. Different programs require different representations; sometimes the same 
program may even require different representations depending on the function to be calculated. 
Molecular structures are represented in three basic formats: 

1. Structure. Three-dimensional Cartesian coordinates, atomic mass and charge are specified 
for each atom in the molecule. 

2. Partial structure with symmetries. Here, only the locations of symmetry-unique atoms of the 
structure are specified; others are calculated using symmetry rules. 

3. Internal coordinates, sometimes called "optimized structure". The molecular geometry is 
specified using bond lengths and angles instead of Cartesian coordinates. A well-optimized 
structure can significantly increase the speed and accuracy of an experiment. There is no 
unique set of internal coordinates corresponding to a given set of Cartesian coordinates, but 
by conforming to any one of a number of conventions which fix the positions of the first few 
atoms in the molecule with respect to a fixed Cartesian axis system, it is possible to define 
the remainder of the molecule in terms of a variety of internal coordinates [Felgl]. 

A single comutational experiment typically uses only one of the structure representations listed 
above, but a chemist performing a suite of experiments for different chemical states of the "same" 
molecule will create several instances of that molecule, each potentially with a different molecular 
structure. There is no reliable algorithm for converting partial structure or Cartesian coordinates 
to  optimized structure (internal coordinates), but with extreme care ab initio programs can be used 
to optimize structures for use in (other) ab initio programs. (See Figure 5.) For further discussion 
of this issue, see Section 5.8. 

The meaning of "molecule" differs depending on context, and often varies with respect to the 
stage of a particular computational experiment. A suite of computational experiments looking 



at different states of a molecule must have as subject several spatial variants of that molecule, 
though always for the same collection or "bag of atoms". Each distinct view of the same molecule 
necessitates a different conceptual representation of the same physical information: A spatial variant 
of a molecule is one of several molecular structures in which the atoms of a molecule arrange 
themselves when in different chemical states. A "bag of atoms" is a collection of atoms and 
isotopes that carries atom- and isotope-specific information, grouped together by virtue of being 
the constituent parts of the subject of a suite of experiments. An atom associates a given atomic 
symbol with a certain nuclear charge. Atomic mass is taken from an instance of isotope of the atom 
in question. 

5.5 Molecular Template 

To browse the database for candidate basis sets, a chemist will want to examine experiments run on 
similar molecules. A molecular template is a way of characterizing a list of similar molecules, or a 
"molecular family", and defines ordered aggregations of molecules. A given molecule can of course 
match a number of templates and thus belong to a number of families. A molecular template is a 
structure much like a molecule that can be rendered either graphically or textually and be matched 
against molecular structures in the database. A chemist will usually choose to view an instance of 
a template graphically, in color, rather than textually, as "C,H,". 

5.6 Program Package 

Each computational experiment is run on a versioned instance of program package. A version of 
program package refers to a release of the program package, compiled by a particular version and 
release of a compiler, on and for particular platforms. Program packages are thus represented as 
a version hierarchy of program package, release, architectural platform, and compiler version. For 
example, a computational experiment might utilize the GAMESS package, release 2.0, compiled 
under version 3.21 of the Sun 3 FORTRAN 77 compiler. Important meta-information is stored at 
each level, for example, basic formatting and functional capability of the program package at the 
highest level, changes in format at  the release level, and performance characteristics at  the compiler 
version and platform level. (See Figure 6.) 

5.7 Basis Sets and Levels of Theory 

A basis set is a set of real functions in three-dimensional space. Basis sets are in effect artifacts 
of solving the Schroedinger equation, and might have no correspondence to the symmetries in 
the geometry of a molecule. Basis sets are used in describing the electron density about the 
molecule. Although the solution of the Schroedinger equation does not explicitly require their 
use, the overwhelming majority of quantum chemistry techniques are formulated assuming that a 
suitable basis set is available [Felgl]. 

A large number of basis sets are in popular use, and these can be categorized according to the 
families of molecules for which they "worl<". Determining which basis set to use is an extremely 
complicated process, even for theoretical chemists. For a new investigation, it is possible that no 
known basis set is appropriate and the chemist will need to develop his or her own. 

The level of theory corresponds to the degree of accuracy with which the motion of the electrons 
around a molecule will be described. Higher levels of theory usually result in better agreement 
with experiment, but can cost much more in terms of computer time. Computational chemistry 
experiments generally become increasingly accurate with "better" basis sets and "higher" levels of 
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Figure 6: Program Package Aggregation and Version Hierarchy. 

theory, albeit with exponentially higher computational demands and diminishing degree of accuracy. 
However, choices for level of theory and basis set are not independent: an experiment run with a 
lower level of theory and more primitive basis set could give more accurate results than one run with 
higher levels of theory and better basis sets if respective discrepancies in the former case cancel out 
each other. Basis sets could be paired with levels of theory that "work" for a family of molecules, 
and thus, in principle, arranged hierarchically . 

Formats of both basis sets and levels of theory are specific to  the program package chosen. 

5.8 Observable Properties 

Observable properties for a given molecule are a function of an experiment, not the molecule 
itself. They are represented as property-unit-value triples and grouped according to  the experiment 
that produced them. Additional property types can be added to  the database at any time; data 
dictionary facilities should support and control this function. Examples of observable properties 
include: 

1. Hydrophobicity. 

2. Polarizability. 

4. Anisotropicity. 

5. Bond Measurements. 

(a) Bond Distances. Measured in nanometers or Angstroms. Physically measurable by xray 
diffraction. 

(b) Bond Angle. Measured in degrees, e.g., carbon might be 109. Physically measurable by 
xray diffraction or spectroscopic techniques. 



Figure 7: Functional Relationships - Experiments and Properties. 

(c) Bond Dipole Moment (Bond Polarity). A measure of the distribution of electrical charge, 
weighted by mass. Measured in nuclear distance (esu/cm). Bond polarity affects the 
bonding characteristics of the molecule and is physically measured by ultraviolet spec- 
t roscopy. 

(d) Bond Energy. Measured in kcalories/mole. 

(e) Bond Frequency. Measured in hertz. 

The number of property-unit-value triples associated with a given experiment can be a function 
of the size of the molecule and its structure, e.g., the number of bonds. Properties can be categorized 
according to  whether they refer to  atom, bag of atoms, molecule, bond, or atom pair. A molecule 
might have one bond angle for every pair of bonds, one bond distance per pair of atoms bonded, 
and one measure of polarizability per molecule. 

A computational experiment typically produces many observable properties, but a laboratory 
experiment usually only one, e.g., polarizability or bond distances. The relationship between ex- 
periment and a set of observable properties is modeled by a (stored) function "produces" that, 
given an experiment and a property, returns a set of unit-value pairs. The relationship between 
a computational chemistry experiment and the observable properties confirming it is modeled by 
a stored function "associated" that, given a computational experiment and a property, returns a 
laboratory experiment. The "produces" function can again be applied, this time to  the laboratory 
experiment, t o  retrieve the observable properties confirming that computational experiment. (See 
Figure 7.) 

Comparability of observable properties is an exacting task. Computational programs differ 
greatly in the units they use to report properties and the assumptions they make in calculating 
properties. While units typically can be inferred from the particular code package used to  run that 
experiment, assumptions are typically a function of the basis functions used. 



The information that would be necessary to pin down the results of one program vs. 
another is quite detailed. Molecular orbitals (M07s) are but one example: The orbitals 
represent one of several "n2" data sets, that to  an outsider consist of nothing but n2 
double precision numbers. Each of n MO's is a vector of length n. Each number in 
the vector is a coefficient multiplying a basis function. To make sense of an arbitrary 
set of M07s  stored in the database, one needs to  know which basis functions were used 
and in what order. For example, knowing that the "STO-3G" basis set was used t o  
generate a set of MO's for water is necessary but not sufficient. One must also know the 
correspondence between the MO coefficients and the basis functions. Program RHFSCF 
in MELDF lists the basis function and the atom on which it sits. In some cases even that 
doesn't really pin things down. One might also need to  know how the basis functions 
were normalized. [Fe191] 

6 Challenges 

The information model described above presents particular challenges to the database system in 
which the corresponding physical schema is implemented. In addition, there remain nuances within 
the information model itself that require further work if the database is to  represent accurately the 
computational chemistry research enterprise. 

6.1 Challenges to the Target Database System 

The computational chemistry information model confirms suspicions that currently available re- 
lational products will not meet the needs of this applica.tion class. For example, abstract data 
structures such as lists and bags are needed to  model experiments, molecules and atoms. Further- 
more, without matrix and vector representations, modeling computational chemistry results and 
basis sets will be needlessly complex. Families of molecules should be ordered using a molecu- 
lar template into lists according to  some goodness of fit criteria. Currently available commercial 
relational products do not support abstract data structures such as lists, bags, vectors and matrices. 

Note also that the "predicts" and "confirms" relationships, linking computational and labo- 
ratory experiments to  observable properties constitute derived attributes for these two kinds of 
experiments. Another derived value of importance is program performance, calculated using data 
spread across disparate entities: program package, experiment, basis set, size of molecule, level of 
theory. I believe that derived attributes of this sort are considerably easier to  model and implement 
in the object-oriented paradigm than in the relational. 

6.2 Remaining Challenges in Information Modeling 

Using an object-oriented product for building the computational chemistry database will alleviate 
some of the problems outlined above. However, key challenges remain before a computational 
chemistry database system can build an infrastructure for future research. These challenges include: 

1. Semantically overloaded terms. The application abounds with highly context-dependent 
terms, each use of which is really a different aggregation or view of an entity in the model. 
Molecule and experiment are prime exa.mples of this overloading. 

Sometimes "molecule" means any collectiotl of specific atoms. For example, "Retrieve all 
experiments on the water molecule" means retrieve all experiments for which the molecule 



entity has two hydrogen atoms and one oxygen atom. "Molecule" can also mean particular 
spatial groupings of atoms associated with the input of an experiment; these spatial groupings 
can be in any of three (or more) formats. Sometimes, a molecule display should include the 
electron cloud, and sometimes not. 

Molecular structure in terms of bond lengths and angles is both an attribute of the molecule 
(and hence an input to a set of programs) and an observable property (an output from a 
program package). The output of one computational experiment could be used as the input 
to  another, although this is not a straightforward process: 

If one performs a calculation on water with Gaussian and wants to  use the 
molecular orbitals in GAMESS, one must have some detailed knowledge of the 
format in which Gaussian stores orbitals and the conventions it follows. The orbitals 
have a meaning beyond the bounds of a particular code: They are mathematical 
entities resulting from the way the Schroedinger equation is solved. In principal it 
is possible, but difficult, to compute orbitals with one program and use them in 
another. First, one needs the equivalent of the metadata. Second, one then must 
construct a conversion utility to reformat the orbitals from one program's format 
to another. [Fe191] 

"Experiment" sometimes means one run of a program package, sometimes a set of runs 
modeling states of one molecule, sometimes a set of runs modeling transition from one or 
more molecules to one or more different molecules. "Experiment" can also be an aggregation 
of any of these, in the sense that when solving a molecular structure, the chemist groups 
a number of runs together. I have used the terms "experiment", "suite of experiments", 
and "investigation" to denote these different senses of the term "experiment", but there is 
considerable subtlety remaining in how this term is used by the practicing scientist. 

2. Representing relationships or groupings within a domain. A single instance of Molecule, Basis 
Set, and Computational Experiment can be grouped into one or more collections. For exam- 
ple, a molecule can belong to none, one, or several different families of molecules depending on 
how many molecular templates it ma,tches and how well. A single instance of Basis Set could 
belong to several basis set hierarchies, and be placed at a different level in each hierarchy 
depending on how well it solves the structure problem for several families of molecules. The 
energy levels of several computationaa experiments, for some queries, might be aggregated 
and reported as a single value; see, for exa.mple, the energy values of hydrogen and oxygen 
depicted in Figure 4 in Section 5.2. 

3. Populating the database. Once a physical schema has been prepared, there remains the 
problem of populating the database with enough data to test the schema design. For an 
initial verification, the database can be populated by hand. However, populating the database 
by hand with enough instances to give chemists a realistic feeling for its use, or to  measure 
performance, is not a practical alternative. Automating the database population, however, 
presents significant challenges: Few computational experiments are archived with all the meta 
information needed to populate the database. Data. for experiments run on different programs 
have not been converted to common units. 



7 Future Work 

Opportunities for future research in this area grow directly out of the information modeling phase. 
Once an initial database is built, populated, and in preliminary use, the software infrastructure 
will be in place for pursuing research in one of several areas: 

1. Generalizing results to  other application areas. Bell's work with particle physics programs 
suggests that a t  least some of the underlying structures will be similar enough to  abstract 
more general (higher level) types and operations [Be188]. Our own work suggests that, within 
computational chemistry itself, structures for holding data from ab initio programs could be 
generalized to  semi-empirical programs. Computational cl~cb~l~istry structures bear similarity 
t o  materials science and other molecular sciences. 

2. Ob ject-oriented database system issues. Effectively generalizing a model containing complex 
data types and associated behaviors requires better data modeling constructs for specifying 
the logical database designs than are now a,vailable. 

3. User interface design issues. Can a data modeling environment rich enough to  describe 
computational chemistry data types and associated operations be made simple enough for 
a practitioner to use when accessing data or designing a personal research database? Im- 
portant areas for research are the design of effective user interfaces and visualization and 
analysis support for large amounts of scientific data within specific application areas such as 
computational chemistry. 

4. Database system interface to  operating systems and compilers. Recent advances in processing 
power have rendered this application class I/O intensive as well as computationally intensive 
[HS86]. Information about the structure of the persistent data could perhaps be passed from 
the database to  the operating system to enhance the performance of application programs by 
better data caching policies. 

Computational chemistry programs have not yet been effectively parallelized, but there is 
evidence that the data could be partitioned to this end [FOXSO, Taygl]. Many scientific 
data collection and analysis tasks involve the paraJle1 treatment of large numbers of similar 
data items. Compiler methods of data dependence might be extended to  include analysis of 
persistent data, providing hints to the compiler for efficient partitioning of data into parallel 
processors and reconstruction of results from parallel computations. 

8 Conclusion 

This report describes an initial information model for a computational chemistry database browser, 
the first phase of a longer-term research project to explore data management support for this 
application area. I have thus far gained a basic understanding of the structure of molecule and 
experiment objects and confirmed the hypothesis that computational chemistry is a fertile field 
for research in scientific data management. Work to date also corroborates the hypothesis that 
computational chemistry applications seem better suited to object-oriented database management 
systems than to  current relational systems. Several aspects of the information model will require 
further exploration, however, and may prove difficult to represent using even the relatively flexible 
ob ject-oriented paradigm. 



Implementation of the information model in an object-oriented database system and of a rudi- 
mentary data browser is targeted for the immediate future [CMRSl]. Releasing a populated 
database to  the chemists and exploring possible interfaces of computational chemistry utilities and 
programs will give us insight into the data access patterns of this application class. Preliminary 
efforts suggest four general areas for future research: generalizing computational chemistry data 
types, object-oriented data modeling extensions to cover behavior as well as structure, user inter- 
face issues specific to scientific data management, and enhancing the performance of computational 
chemistry applications through database interface to the operating system and compiler. 
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