
Database Support for Computational Chemistry

Judith Bayard Cushing

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 92-001

May 12,1991
February 24,1992 (revised)

Database Support for Computational Chemistry

Judith Bayard Cushing

May 12,1991
January 23, 1992 (revised)

Abstract

In common with other computational science applications, computational chemistry appli-
cations have the need both for increasing the speed of calculations and for storing and viewing
large amounts of specialized information. This paper addresses the latter of these two needs:
a review of current literature in scientific data management shows computational chemistry to
be fairly typical among scientific applications in its use of flat files as opposed to database sys-
tems. Good initial choices for certain input parameters would greatly improve the individual
chemist's research efficacy and even the accuracy and performance of these computationally in-
tensive experiments. Unfortunately, because of the high data management overhead, computer-
readable results that could help in setting up future experiments are typically discarded once
an experiment is complete. While the object-oriented paradigm appears adequate for model-
ing the required computational chemistry information, specific database technology necessary
for implementing the application may as yet be lacking. To test this hypothesis, I performed
both a conceptual database design and a functional specification for a computational chemistry
database browser. This report describes those specifications, and identifies some challenges and
research opportunities suggested by the computational chemistry information model.

1 Introduction

Computational chemistry is one of the emerging computational sciences that bring toget her applied
mathematicians and computer scientists with scientists from domains such as environmental science,
biology, chemistry or physics. The computational sciences have in common a need for (1) increasing
the speed and precision of computation so that operations not now practical can be performed,
(2) promoting the sharing of scientific data, and (3) providing better support for the individual
scientist's research activities, e.g., help in managing an increasingly high volume of data, providing
visualization and analysis facilities, and promoting easily used computer program libraries. This
report describes an effort to learn how computational chemists conceptualize and use scientific
structures, preparatory to exploring how database technology can ameliorate the problems stated
above.

Computational chemistry applications, an area to which database technology has not to my
knowledge been applied, share many of the critical characteristics of scientific data management
identified by the 1990 NSF Workshop on Scientific Database Management (see Figure 1). Clear
specifications of the required modeling and behavioral functionality for computational chemistry
will help indicate if current development and research efforts in computer science address the needs
of scientific data management in general. If scientific data management needs are not being met,
then such studies as this one, spread over several scientific disciplines, could lead to data structures
and data management capabilities and policies adequate for many sciences.

a U s e r Interfaces
Ohlore Flexible Representational Stxuctures
~ ~ ~ ~ r o ~ r i a t e Analysis Operators

 special Concurrency Support
OData Citation Standards
OData Interchange Standards

Metadata
a H i g h Ulume, Multi-Level Store, Indefinite Retention

mFast(er) Dataset Transmission
acornparability of Multiple Datasets
IL]Interoperability of Multivendor DBMSs
O ~ u a l i t ~ ~ssurance of Datasets

Anting of 3 indicates issue highly relevant KO Compuutiod ChunntrX
2 relevant, MII 1 only slightly relevant.

Figure 1: Scientific Database Issues as per 1990 NSF Workshop

Computational chemistry applications, an area to which database technology has not t o my
knowledge been applied, share many of the critical characteristics of scientific data management
identified by the 1990 NSF Workshop on Scientific Database Management (see Figure 1). Clear
specifications of the required modeling and behavioral functionality for computational chemistry
will help indicate if current development and research efforts in computer science address the needs
of scientific data management in general. If scientific data management needs are not being met,
then such studies as this one, spread over several scientific disciplines, could lead to data structures
and data management capabilities and policies adequate for many sciences.

This report covers the information modeling phase for an ab initiol computational chemistry
database project. The objective of this work was to establish that conceptual structures from this
application area stretch the object-oriented paradigm and suggest new object-oriented structures
that might be generalized to other scientific applications, perhaps t o other heterogeneous distributed
data intensive computing environments. In effect, I propose to develop more useful information
structures and programmatic interfaces for computational chemistry based on observational analy-
ses of how scientists working in this field use existing programs and information structures. I have
worked closely with computational chemist David Feller at the Applied Physics Center of Battelle
Pacific Northwest Laboratories, observing and analyzing tasks performed both by chemists and
programs. To the best of my knowledge, the data management requirements of this application
area have not been described from the point of view of computer science.

Sections 2 and 3 present related work, implementation alternatives for scientific databases, and
a brief argument for using an object-oriented database for developing an exploratory prototype in
this application area. Section 4 includes a functional description of tasks routinely performed by
computational chemists and goes on to outline the computational chemistry database project. Sec-
tion 5 presents the information model in detail. Finally, Sections 6, 7, and 8 outline opportunities
for future research offered by the study of colnputational chemistry data and show how the proposed
research could contribute to the application area. in the longer term. The proposed database proto-
type meets some immediate needs of chemists, coiilcidental to giving computer science researchers
insight into data structures and data access patterns.

Ab init io computational chemistry involves the computation of chemical properties from first principles alone.

2 Related Work

The Invitational NSF Workshop on Scientific Database Management held in March of 1990 brought
together about forty computer scientists and domain scientists to address data management prob-
lems facing scientific researchers. The workshop report corroborates other work in the scientific
database area: many scientists still, by and large, manage their information through programs
reading and writing flat files. Almost every scientific domain has an extensive software investment
in programs (usually FORTRAN) that use flat files and that have evolved over a number of years.
While database management systems would ultimately improve the reliability, availability, con-
currency levels, and programmability of scientific applications (just as for any application area),
scientists now attempting to use databases find that current technology does not match their needs.
Even if current technology were adequate, changing from flat file access to database access would
involve retraining highly skilled programmers and extensive conversion of existing programs and
files t o database representations [FJPSOa, FJP9Obl.

Molecular scientists have been among the first to use private and public databases, perhaps
because this data is (at least on the surface) easily represented as ASCII character strings [Bur89,
BoaSO, FBSO]. While the past four years have seen "only" a 7-fold increase in the number of
nucleotides in the centralized DNA databases (from 3 million to 21 million), and the data is ac-
cumulating at "only" 7 million nucleotides per year, automated sequencing methods promise t o
increase this rate by an order of magnitude [Wat89]. Of particular interest are the Human Genome
project [LPSSO] and three protein structure databases Compo-OWL [BWSO], BIPED [Gar89], and
P/FDM [GPKFSO], each of which attempts to use different methods to represent similar structures.
Other work in protein sequencing [FB90, HS86, LWS87, PL88] gives insight into the interplay be-
tween parallel algorithms and innovative data structures.

Most work by computer scientists concerning scientific databases can be classified as (1) general
characterizations of scientific databases [Olk86b, Olk86a, SOW841, (2) studies of scientific data
structures [Be183, BP87, Be1881, and (3) specifications of future data-intensive scientific application
systems, such as the Earth Observing System [CheSO, DozSO]. Other database research areas, such
as geographical information systems [WK90], temporal data structures [GSSO, SS881, and statistical
databases [Gho88, RSSOa, RR90, KR881 exhibit important similarities to scientific databases.

Within the mainstream of database research, special attention should be paid to innovative
work in two areas. (I) Both semantic and object-oriented data modeling techniques are important
to scientific data management because of the importance of representing complex scientific objects
and their associated behavior independently of any physical schema [BS85, MD90, AG89, BBMA89,
Mai891. (2) Research on personal databases and laboratory notebooks is relevant because of the in-
terplay between an individual scientist's private databases and laboratory-wide or public databases
[LM84, Wei89, BB871.

Scientific applications of interest to the research outlined in this paper fall into three categories:
computationally intense programs, scientific visualization systems, and data interchange programs.
(1) A basic understanding of commercially available and public domain programs by domain scien-
tists is relevant to scientific data management research because commonly used programs define the
relevant data modeling entities of interest and will constitute the ultimate clients for a data repos-
itory. Commonly used programs that perform nb initio chemistry computations include Gaussian
(which includes a data browser capability) [Gau89], GAMESS [GAMSO], HONDO [DupSO], and
MELDF [F+91]. (2) Scientific visualization tools are also likely clients for scientific data reposito-
ries; many chemists use graphical molecular display and editing packages such as Tektronix' CAChe
[CACSO] and Chem3D [Che89] to prepare molecular structures input to computational programs.

Specialized toolkits such as Daylight Tools [DAY911 and AVS Chemistry subsystems [Vango] that
allow visual rendering of molecular structures are available to the developer of application programs
in this area. (3) A scientific data repository system should be prepared to accept data from and
generate data for data exchange formats commonly used in the respective scientific domains. Like
all scientists, computational chemists typically share both programs and data. Data interchange
efforts strive to make data prepared for interchange "self describing" and thus readable by hetero-
geneous systems. The NetCDF project, aimed at atmospheric data, is an example of just such an
effort [Fu19 11.

3 Paradigm Choices for Scientific Databases

The relational model, developed by Codd and based on set-theoretic notions, organizes data into
flat relations called tables [Cod88]. Relationships between tuples (or rows of tables) within two or
more relations are represented via shared attribute values. Relationships are typically materialized
via joins. Even though typical scientific data management transactions require many more joins
than typical business transactions, relational database systems do offer two distinct advantages
over object-oriented database systems: (1) The relational model is well-understood, well-grounded
in theory, and well-documented. (2) Mainstream relational systems are robust. Unfortunately,
however, the relational model seems inadequate for directly representing and implementing some
important structures and functionalities required for scientific applications, such as ordered se-
quences and temporal relationships. Supporting large complex transactions, representing spatial
information, and maintaining complicated ancillary information (also known as "metadata") are dif-
ficult to provide in an application that runs on top of a relational system [FJPSOa, FJPgOb, MS901.
Several DNA research centers are attempting to reap the advantages of the relational model and
overcome its deficiencies by using a relational system for a data repository with a more flexi-
ble object-oriented system as the interface to application programs. In addition to the obvious
disadvantages of maintaining two database designs and two databases, this approach risks losing
information when moving data from the object-oriented database back to the relational [Pecgl].

Protein sequence databases, used to predict and compare protein structures, can be stored in
relational systems, but for performance reasons implementers often introduce considerable data
redundancy (with fewer tables come fewer joins), thus undermining the strict relational approach.
Queries not anticipated at the database design stage and basic behavioral functionality both present
difficulties. For example, because of the difficulty of combining complex calculation with retrieval,
the Biped database implemented in Oracle is used simply to store and retrieve protein sequences.
In a separate step, programs read the textual output of Biped's Oracle queries, perform com-
plex calculations, and only then display superimposed motifs [Gar89, GPKF901. For examples of
shortcomings of the relational paradigm specifically with respect to computational chemistry, see
Section 6.1.

While many scientific database researchers believe that relational systems as now implemented
are inadequate to the task at hand, they feel that the following options are still too immature or too
expensive to use for major implementation efforts [FJPSOa, FJPSOb, Pec91, SOW841: special pur-
pose data management facilities [B W90], extended relational IJag89, RSSOb, H+90], extensible tool
kits [C+90], logic databases [GPKFSO], and object-oriented databases [AMKPSO, GH91, ZM901.

4 The Computational Chemistry Database Project

To explore the applicability of object-oriented database management systems for managing scien-
tific data, computer scientists from the Scientific Database Laboratory at the Oregon Graduate
Institute and computational chemists and computer scientists at the Molecular Sciences Research
Center (MSRC) and Applied Physics Center (APC) at Battelle Pacific Northwest Laboratory (PNL)
in Hanford, Washington, have developed an initial working relationship. A b initio computational
chemistry has been identified as a specific initial research area within which to explore the applica-
bility of emerging database technology to high performance scientific applications. David Feller, an
active researcher in computational chemistry and a co-author of the computational chemistry pro-
gram MELDF, is the primary domain scientist collaborator at PNL[DF86, FHD87, FD90, F+91].
After evaluating several object-oriented database systems for use in this application area, I intend
eventually to generalize results to other scientific domain areas.

4.1 Computational Chemistry

The emergence of quantum theory during this century is still changing the ways in which chemists
work. As early as 1929, it was clear that quantum chemistry calculations could predict molecular
properties and structure, but most scientists believed that adequately precise calculations would be
impossible. By the 1950's) approximate methods had been developed, but most scientists felt even
these would be impractical for molecules of any size or complexity. Until recently, ab initio methods
have been of interest primarily to theoretical chemists: only semi-empirical methods, considerably
less accurate, could be used for molecules larger than 50-100 atoms. Rapid increases in computing
power, however, will soon make ab initio methods applicable to much larger molecules, including
those of interest to molecular biologists [Sa187, Cam70, Lev83, PB701.

The computational chemist's laboratory is his or her computer, where numerical experiments
based on quantum theoretical models compute chemical properties, i.e., structure, dynamics and
molecular properties, for a molecule under investigation. A b initio molecular orbital methods apply
quantum mechanical techniques to molecular structure and energetics, solving the Schoedinger
equation to various levels of approximation. Most chemists construct each experiment in an iterative
manner and use more than one library of programs, since each offers slightly different capabilities.
The chemist will rerun the programs several times, adjusting various parameters and tuning the
programs for each molecule studied [Fe19 11.

An investigation is over when the chemist has completed a run that adequately models the
molecule in question. An admitted problem with the current methodology is that little or no
information associating parameters with molecules is captured from the experimental process in
a way directly applicable to later experiments with other molecules. In addition, the chemist's
work on even relatively small molecules (many fewer than 50 atoms) is hampered by the amount
of information he or she can store, search, and manage effectively. Being able to run experiments
on molecules significantly larger than 50-100 atoms (as is expected in the next five years) will
exacerbate these data management problems.

4.2 User Scenario for a Computational Data Browser

In this section, I describe a typical scenario for the use of the computational database and its
browser which are central architectural components of the chemist's workbench. (See Figure 2.)

1. Using a molecular structure editor (and templates of similar molecules from the database),
the chemist will graphically define the subject molecule within a "private" database (aka a

Figure 2: Computational Chemistry Data Browser Architecture

Personal Laboratory Notebook). The chemist may also perform simple structure optimiza-
tions. During the course of the investigation this geometry will likely be radically changed.
The chemist will usually save only the final, optimized structure for a molecule. Sometimes
a sequence of structures, for example those associated with a chemical reaction, may be of
interest.

Delta
Mac
intmb

2. The chemist may consult the database for computational and laboratory experiments on
molecules of similar structure and properties. Selected experiments may then be loaded into
the personal database. Because the chemist may not be familiar with all of the computational
programs or apparatus on which the selected experiments were run, associated data must be
available to help interpret input parameters and results. Since data may be physically stored
in the database, archived at the site, or resident at another location, the chemist must be
presented with a consistent view of data irrespective of its physical location or the format or
machine on which it was generated or is stored.

3. While consulting the public database, the chemist may determine that important information
from the literature ("property data" [SO W84, DubSl]) is missing. The chemist should be able
t o add such information to the public database, assuming of course some quality assurance
measures.

Sun
314

4. Using the molecular properties in which the chemist is interested and the experiments re-
trieved above, the browser then assists the chemist in choosing an appropriate set of pa-
rameters, a highly specialized and critical activity. Since at least some of the computational
chemistry programs likely to be encountered by a scientist wishing to perform calculations will
be little more than research devices, it may be difficult for a "benchn chemist2 to properly
prepare input, due to the combination of mathematical sophistication and research orien-
tation of the codes. The consequences of a mistake may be a failed run, a much-too-long
run or, what is undoubtedly worst, a run that produces seemingly plausible results that are
inherently incorrect.

2The term LLbench chemistn refers to an experimentalist (i.e., nontheoretician) involved in synthetic work or
spectroscopic analysis.

RS
6000

'"Y

The database will hold input templates for each computational program, as well as methods
for converting to formats appropriate to a particular parameter from the internal formats.
Using templates and information gleaned from previous "like" experiments, the browser will
assist the chemist in determining an appropriate first cut set of parameters to use, as well as
a target machine on which to run the the experiment.

5. Using the first cut set of parameters and a set of codes that meet the chemist's needs, an
available target machine on which to run the experiments is selected. The chemist is given
an estimate of how long the computational experiment will run and (if relevant) how much
it will cost. As a result of this information, the chemist may further optimize the molecular
structure or modify parameters before asking the system to schedule and run the experiment.
Once the experiment is run, results are placed in the chemist's personal database.

6. The above process may be repeated many times before the chemist is satisfied with the
results. The computational experiment may be run on several sets of codes, and the results
compared with each other and with those of previous experiments. A browser interface to
analysis packages such as "S" [BCWSS] would be ideal, but even the side by side viewing
of different computational experiments would be helpful. The database system must provide
the capability of capturing results from different programs in comparable form viewing and
analysis.

7. Once the chemist has successfully completed an investigation and published the results, data
may be added to the public database or sent to colleagues at outside laboratories.

A successful computational chemistry experiment results in long term storage of only about
two megabytes of data, but may be preceded by as many as hundreds of "unsuccessful" runs, each
resulting in the short term storage of about two megabytes. The personal database, a kind of
"laboratory notebook", is proposed to hold this work in progress. In addition, a run can generate
up to 5 or 10 gigabytes of intermediate data, written temporarily to disk, and used in the solution
of the problem or restarting an interrupted run. A laboratory such as Battelle's Environmental and
Molecular Research Laboratory at Hanford now generates per year about 1.2 gigabytes of data that
are candidates for permanent archiving. This laboratory-wide scientific reference material should
be accessible by casual and off site users, and will likely be archived or compressed. In addition,
data from other chemistry laboratories will be imported to this repository.

4.3 Computational Chemistry Data Browser

The initial project is to provide a database and browser for the chemist who uses ab initio tech-
niques. While no current database system adequately addresses all anticipated needs, existing
database technology could effectively enhance the chemist's computing environment and give com-
puter scientists important insight into additional database functionality that may be needed. A
prototype database browser will enable chemists at PNL to query data for both ongoing and
archived experiments. Presently, once work on a particular molecule has been completed these
data are for all practical purposes discarded, primarily because maintaining all the data for each
experiment represents too great a data management overhead for the researcher. Data management
barriers also hinder comparison of runs even within the same investigation.

A prototype data browser should offer the following immediate benefits to the chemist: (1) repos-
itory for computational chemistry experiment data (until the data can be archived), (2) repository
for computational chemistry experiment metadata (for browsing archived data and online data),

Experiment Experiment -
\ J L

u u l c o w

c.Rdvcad man vrilivr
OD

Package

Figure 3: Computational Chemistry Data Model

and (3) help in the selection and development of parameters for computational chemistry pro-
grams. Support for chemists performing computational chemistry experiments involves: setting
up a personal database corresponding to the current set of experiments; side-by-side viewing of
parameters and results for a number of runs, or of the current experiment and those in the main
repository; comparison and analysis of computational results with those of laboratory experiments;
and assistance in archiving successful results in the main repository.

For the reasons given in Section 3 above, current relational database systems seem unsuitable
for this application class. Object-oriented database technology shows promise for handling the data
types and queries for supporting these computational experiments. The requirements analysis of
the chemist's information needs are here presented independently of any particular object-oriented
database management system. From this information model specific (physical) database schema
can be developed. Once it has been determined whether the object-oriented database paradigm
fits the application in general, a chief research objective will be to determine any inadequacies of
the paradigm and to design extensions as needed.

5 Computational Chemistry Database Information Model

Figure 3 mirrors my current overall understanding of the information model for computational
chemistry experimentation, The model is expanded and elaborated in sections that follow.

5.1 Chemists and Experiments

The model includes simple identifying information about chemists whose experiments or basis sets
are included in the database so that users can contact a chemist about his or her work.

Experiments are arranged in an is-a hierarchy. An experiment, perhaps a collaborative effort of
more than one chemist, is either a laboratory experiment or a computational chemistry experiment.
Experiment attributes include simple identifying information such as name, e.g., a run title or a
textual annotation, date-begun, date-completed, and meta-information such as a citation for the
data used as source of the experiment. Experiments will be accessed through links with root entities
chemist or molecule.

5.2 Computational Experiments

A chemist performs a computational chemistry experiment on a given molecule using a program
package, specifying as many as 200 parameters, including initial estimations of molecular structure,
basis set and level of theory. Selection of input. parameters is critical not only to how rapidly the
numerical experiment will run, but also to the accuracy of the results. The syntax of parameters
varies from program to program and sometimes from one version of the programs to the next.

Computational chemistry experiments can require, as input, somewhere between 50 and 200
"numbers" and produce, as output, several thousand additional "numbers". Between the input
and output may lie several trillion other "numbers" needed to solve the mathematical equations.
Among the "numbers" that appear in the output are some that correspond to physically observable
properties of a molecule, and some that are simply artifacts of the equations that were solved. The
most important output value is the total energy of the molecule. This energy can be determined
by a variety of different techniques, e.g., Hartree-Fock self consistent field theory or configuration
interaction theory. An example of an artifact of solving the equation is the set of molecular orbitals,
an array of numbers whose size varies approximately with the square of the number of atoms in
the molecule. Although molecular orbitals cannot be physically observed, they can be combined
with input parameters to produce a map of the electron density about a molecule and, as such,
have meaning beyond the particular program that produced them [Fe191].

Molecular properties are generated directly from the detailed molecular structure derived in
an experiment. An experiment is "successful" if these computed properties agree with properties
measured in laboratory experiments, e.g., by x-ray crystallographic methods.

Chemists study many kinds of combinations of the atoms making up a molecule. A "suite of
experiment" is an aggregation of computational experiments that reflects such combinations. For
example, in studying transition states from hydrogen and oxygen to water, four computational
experiments might be grouped together into a suite of experiments (see Figure 4): Two initial
experiments model the stable states of hydrogen and oxygen molecules. An intermediate experiment
models the unstable state of these elements at the energy level required for the transition. A fourth
experiment models the final and stamble state of the water molecule. This suite of computational
experiments predicts molecular properties of the hydrogen and oxygen atoms at the points where the
energy values, computed and stored as "results" of the computational experiment, are minimal (at
the stable states), and maximal (at the unstable state). Energy curves, however, are not typically
smooth as depicted in Figure 4; an improper or careless determination of molecular structure or
other parameter can cause the computation to converge only to a local minima or local maxima.

A series of computational experiments can also be grouped into an "investigation", as follows:
In the course of computationally determining a molecule's structure, a chemist performs several
experiments on that molecule; only a few (perhaps one or even none) will ultimately be archived.

Transition Period

maximum or minimum energy for one experiment
0 aggregated energy for more than one experiment

Figure 4: Transition of hydrogen and oxygen to water.

Until deemed "successful", such experiments should be marked as private and available only to
the performing chemist(s). In the course of such an investigation, the chemist uses results of
intermediate experiments to identify trends, isolate local minima, and then iteratively tune input
parameters. Storing inputs and results of different iterations of an investigation supports the
ongoing experimental process. (For a discussion of how the model supports the startup of an
investigation, i.e., the selection of initial parameters, see Section 5.7 below.)

Viewing results of two or more runs side by side would constitute an improvement over the
existing practice. Translucent display of molecular orbitals over the original or optimized molecular
structure would further aid the chemist in the investigation.

Another measure of the accuracy of the computational experiment is the amount of numerical
error. Stability analysis techniques are generally too difficult for a theoretical or bench chemist
to apply to a particular set of experiments, although authors of commercially available programs
usually perform a general stability analysis for the method. If the experiment object contained some
measure of the cumulative error introduced by each state of the calculation, an associated browser
could upon request perform a rudimentary st ability analysis. Stability analyses from different runs
could then be ,compared and contrasted statistically.

5.3 Laboratory Experiments

A laboratory experiment is conducted in a "traditional" chemistry laboratory usually by a bench
chemist, using laboratory apparatus such as a mass spectrometer or a cloud chamber, and producing
a value or values for a specific observable property.

Laboratory experiments are relevant to computational experiments in a t least two ways: (1) A
computational chemist typically validates a computational chemistry experiment by comparing the
calculated molecular properties to properties physically observed through one or more laboratory
experiments, usually performed by another chemist, perhaps at another site. Whether a laboratory
experiment "agrees with" a computational experiment is typically a matter of judgement, not
formal analysis. (2) On occasion a laboratory experiment may yield a property value that does
not seem to agree with accepted theory. The bench chemist might then set up a computational
experiment to explore the apparently anomalous laboratory result.

5.4 Molecules

A molecule is the subject of one or more laboratory and computational chemistry experiments, and
can be identified by name or chemical formula or through its corresponding experiment. Molecule

Canesian
Coordinates

Structure

/ 3
Internal
Coordinates

Figure 5: Molecular Structure Representations.

name and chemical formula are examples of information that is extraneous to the computational
experiment per se but is included for the chemist's use when retrieving data on molecules. Some
attributes of the molecule (e.g., name, chemical formula, atomic weight) are functions of the atoms
or isotopes comprising the molecule, and, as such, are also independent of a particular experi-
ment. Other attributes, in particular molecular structure, are highly dependent on a particular
experiment.

For a computational experiment molecular structure is the only necessary information regarding
a molecule. Molecular structure, the location of the atoms in the molecule, identifies the molecule to
the application program. Different programs require different representations; sometimes the same
program may even require different representations depending on the function to be calculated.
Molecular structures are represented in three basic formats:

1. Structure. Three-dimensional Cartesian coordinates, atomic mass and charge are specified
for each atom in the molecule.

2. Partial structure with symmetries. Here, only the locations of symmetry-unique atoms of the
structure are specified; others are calculated using symmetry rules.

3. Internal coordinates, sometimes called "optimized structure". The molecular geometry is
specified using bond lengths and angles instead of Cartesian coordinates. A well-optimized
structure can significantly increase the speed and accuracy of an experiment. There is no
unique set of internal coordinates corresponding to a given set of Cartesian coordinates, but
by conforming to any one of a number of conventions which fix the positions of the first few
atoms in the molecule with respect to a fixed Cartesian axis system, it is possible to define
the remainder of the molecule in terms of a variety of internal coordinates [Felgl].

A single comutational experiment typically uses only one of the structure representations listed
above, but a chemist performing a suite of experiments for different chemical states of the "same"
molecule will create several instances of that molecule, each potentially with a different molecular
structure. There is no reliable algorithm for converting partial structure or Cartesian coordinates
to optimized structure (internal coordinates), but with extreme care ab initio programs can be used
to optimize structures for use in (other) ab initio programs. (See Figure 5.) For further discussion
of this issue, see Section 5.8.

The meaning of "molecule" differs depending on context, and often varies with respect to the
stage of a particular computational experiment. A suite of computational experiments looking

at different states of a molecule must have as subject several spatial variants of that molecule,
though always for the same collection or "bag of atoms". Each distinct view of the same molecule
necessitates a different conceptual representation of the same physical information: A spatial variant
of a molecule is one of several molecular structures in which the atoms of a molecule arrange
themselves when in different chemical states. A "bag of atoms" is a collection of atoms and
isotopes that carries atom- and isotope-specific information, grouped together by virtue of being
the constituent parts of the subject of a suite of experiments. An atom associates a given atomic
symbol with a certain nuclear charge. Atomic mass is taken from an instance of isotope of the atom
in question.

5.5 Molecular Template

To browse the database for candidate basis sets, a chemist will want to examine experiments run on
similar molecules. A molecular template is a way of characterizing a list of similar molecules, or a
"molecular family", and defines ordered aggregations of molecules. A given molecule can of course
match a number of templates and thus belong to a number of families. A molecular template is a
structure much like a molecule that can be rendered either graphically or textually and be matched
against molecular structures in the database. A chemist will usually choose to view an instance of
a template graphically, in color, rather than textually, as "C,H,".

5.6 Program Package

Each computational experiment is run on a versioned instance of program package. A version of
program package refers to a release of the program package, compiled by a particular version and
release of a compiler, on and for particular platforms. Program packages are thus represented as
a version hierarchy of program package, release, architectural platform, and compiler version. For
example, a computational experiment might utilize the GAMESS package, release 2.0, compiled
under version 3.21 of the Sun 3 FORTRAN 77 compiler. Important meta-information is stored at
each level, for example, basic formatting and functional capability of the program package at the
highest level, changes in format at the release level, and performance characteristics at the compiler
version and platform level. (See Figure 6.)

5.7 Basis Sets and Levels of Theory

A basis set is a set of real functions in three-dimensional space. Basis sets are in effect artifacts
of solving the Schroedinger equation, and might have no correspondence to the symmetries in
the geometry of a molecule. Basis sets are used in describing the electron density about the
molecule. Although the solution of the Schroedinger equation does not explicitly require their
use, the overwhelming majority of quantum chemistry techniques are formulated assuming that a
suitable basis set is available [Felgl].

A large number of basis sets are in popular use, and these can be categorized according to the
families of molecules for which they "worl<". Determining which basis set to use is an extremely
complicated process, even for theoretical chemists. For a new investigation, it is possible that no
known basis set is appropriate and the chemist will need to develop his or her own.

The level of theory corresponds to the degree of accuracy with which the motion of the electrons
around a molecule will be described. Higher levels of theory usually result in better agreement
with experiment, but can cost much more in terms of computer time. Computational chemistry
experiments generally become increasingly accurate with "better" basis sets and "higher" levels of

I Instances of ' v2fJ versionsheleases
/ . 1.0 of Gaussian

LGaussian
\ J

InsrPnces of
Compilations

/&ay2 hose
Forum77 vm"=

Sun3
F o m n

Figure 6: Program Package Aggregation and Version Hierarchy.

theory, albeit with exponentially higher computational demands and diminishing degree of accuracy.
However, choices for level of theory and basis set are not independent: an experiment run with a
lower level of theory and more primitive basis set could give more accurate results than one run with
higher levels of theory and better basis sets if respective discrepancies in the former case cancel out
each other. Basis sets could be paired with levels of theory that "work" for a family of molecules,
and thus, in principle, arranged hierarchically .

Formats of both basis sets and levels of theory are specific to the program package chosen.

5.8 Observable Properties

Observable properties for a given molecule are a function of an experiment, not the molecule
itself. They are represented as property-unit-value triples and grouped according to the experiment
that produced them. Additional property types can be added to the database at any time; data
dictionary facilities should support and control this function. Examples of observable properties
include:

1. Hydrophobicity.

2. Polarizability.

4. Anisotropicity.

5. Bond Measurements.

(a) Bond Distances. Measured in nanometers or Angstroms. Physically measurable by xray
diffraction.

(b) Bond Angle. Measured in degrees, e.g., carbon might be 109. Physically measurable by
xray diffraction or spectroscopic techniques.

Figure 7: Functional Relationships - Experiments and Properties.

(c) Bond Dipole Moment (Bond Polarity). A measure of the distribution of electrical charge,
weighted by mass. Measured in nuclear distance (esu/cm). Bond polarity affects the
bonding characteristics of the molecule and is physically measured by ultraviolet spec-
t roscopy.

(d) Bond Energy. Measured in kcalories/mole.

(e) Bond Frequency. Measured in hertz.

The number of property-unit-value triples associated with a given experiment can be a function
of the size of the molecule and its structure, e.g., the number of bonds. Properties can be categorized
according to whether they refer to atom, bag of atoms, molecule, bond, or atom pair. A molecule
might have one bond angle for every pair of bonds, one bond distance per pair of atoms bonded,
and one measure of polarizability per molecule.

A computational experiment typically produces many observable properties, but a laboratory
experiment usually only one, e.g., polarizability or bond distances. The relationship between ex-
periment and a set of observable properties is modeled by a (stored) function "produces" that,
given an experiment and a property, returns a set of unit-value pairs. The relationship between
a computational chemistry experiment and the observable properties confirming it is modeled by
a stored function "associated" that, given a computational experiment and a property, returns a
laboratory experiment. The "produces" function can again be applied, this time to the laboratory
experiment, t o retrieve the observable properties confirming that computational experiment. (See
Figure 7.)

Comparability of observable properties is an exacting task. Computational programs differ
greatly in the units they use to report properties and the assumptions they make in calculating
properties. While units typically can be inferred from the particular code package used to run that
experiment, assumptions are typically a function of the basis functions used.

The information that would be necessary to pin down the results of one program vs.
another is quite detailed. Molecular orbitals (M07s) are but one example: The orbitals
represent one of several "n2" data sets, that to an outsider consist of nothing but n2
double precision numbers. Each of n MO's is a vector of length n. Each number in
the vector is a coefficient multiplying a basis function. To make sense of an arbitrary
set of M07s stored in the database, one needs to know which basis functions were used
and in what order. For example, knowing that the "STO-3G" basis set was used t o
generate a set of MO's for water is necessary but not sufficient. One must also know the
correspondence between the MO coefficients and the basis functions. Program RHFSCF
in MELDF lists the basis function and the atom on which it sits. In some cases even that
doesn't really pin things down. One might also need to know how the basis functions
were normalized. [Fe191]

6 Challenges

The information model described above presents particular challenges to the database system in
which the corresponding physical schema is implemented. In addition, there remain nuances within
the information model itself that require further work if the database is to represent accurately the
computational chemistry research enterprise.

6.1 Challenges to the Target Database System

The computational chemistry information model confirms suspicions that currently available re-
lational products will not meet the needs of this applica.tion class. For example, abstract data
structures such as lists and bags are needed to model experiments, molecules and atoms. Further-
more, without matrix and vector representations, modeling computational chemistry results and
basis sets will be needlessly complex. Families of molecules should be ordered using a molecu-
lar template into lists according to some goodness of fit criteria. Currently available commercial
relational products do not support abstract data structures such as lists, bags, vectors and matrices.

Note also that the "predicts" and "confirms" relationships, linking computational and labo-
ratory experiments to observable properties constitute derived attributes for these two kinds of
experiments. Another derived value of importance is program performance, calculated using data
spread across disparate entities: program package, experiment, basis set, size of molecule, level of
theory. I believe that derived attributes of this sort are considerably easier to model and implement
in the object-oriented paradigm than in the relational.

6.2 Remaining Challenges in Information Modeling

Using an object-oriented product for building the computational chemistry database will alleviate
some of the problems outlined above. However, key challenges remain before a computational
chemistry database system can build an infrastructure for future research. These challenges include:

1. Semantically overloaded terms. The application abounds with highly context-dependent
terms, each use of which is really a different aggregation or view of an entity in the model.
Molecule and experiment are prime exa.mples of this overloading.

Sometimes "molecule" means any collectiotl of specific atoms. For example, "Retrieve all
experiments on the water molecule" means retrieve all experiments for which the molecule

entity has two hydrogen atoms and one oxygen atom. "Molecule" can also mean particular
spatial groupings of atoms associated with the input of an experiment; these spatial groupings
can be in any of three (or more) formats. Sometimes, a molecule display should include the
electron cloud, and sometimes not.

Molecular structure in terms of bond lengths and angles is both an attribute of the molecule
(and hence an input to a set of programs) and an observable property (an output from a
program package). The output of one computational experiment could be used as the input
to another, although this is not a straightforward process:

If one performs a calculation on water with Gaussian and wants to use the
molecular orbitals in GAMESS, one must have some detailed knowledge of the
format in which Gaussian stores orbitals and the conventions it follows. The orbitals
have a meaning beyond the bounds of a particular code: They are mathematical
entities resulting from the way the Schroedinger equation is solved. In principal it
is possible, but difficult, to compute orbitals with one program and use them in
another. First, one needs the equivalent of the metadata. Second, one then must
construct a conversion utility to reformat the orbitals from one program's format
to another. [Fe191]

"Experiment" sometimes means one run of a program package, sometimes a set of runs
modeling states of one molecule, sometimes a set of runs modeling transition from one or
more molecules to one or more different molecules. "Experiment" can also be an aggregation
of any of these, in the sense that when solving a molecular structure, the chemist groups
a number of runs together. I have used the terms "experiment", "suite of experiments",
and "investigation" to denote these different senses of the term "experiment", but there is
considerable subtlety remaining in how this term is used by the practicing scientist.

2. Representing relationships or groupings within a domain. A single instance of Molecule, Basis
Set, and Computational Experiment can be grouped into one or more collections. For exam-
ple, a molecule can belong to none, one, or several different families of molecules depending on
how many molecular templates it ma,tches and how well. A single instance of Basis Set could
belong to several basis set hierarchies, and be placed at a different level in each hierarchy
depending on how well it solves the structure problem for several families of molecules. The
energy levels of several computationaa experiments, for some queries, might be aggregated
and reported as a single value; see, for exa.mple, the energy values of hydrogen and oxygen
depicted in Figure 4 in Section 5.2.

3. Populating the database. Once a physical schema has been prepared, there remains the
problem of populating the database with enough data to test the schema design. For an
initial verification, the database can be populated by hand. However, populating the database
by hand with enough instances to give chemists a realistic feeling for its use, or to measure
performance, is not a practical alternative. Automating the database population, however,
presents significant challenges: Few computational experiments are archived with all the meta
information needed to populate the database. Data. for experiments run on different programs
have not been converted to common units.

7 Future Work

Opportunities for future research in this area grow directly out of the information modeling phase.
Once an initial database is built, populated, and in preliminary use, the software infrastructure
will be in place for pursuing research in one of several areas:

1. Generalizing results to other application areas. Bell's work with particle physics programs
suggests that a t least some of the underlying structures will be similar enough to abstract
more general (higher level) types and operations [Be188]. Our own work suggests that, within
computational chemistry itself, structures for holding data from ab initio programs could be
generalized to semi-empirical programs. Computational cl~cb~l~istry structures bear similarity
t o materials science and other molecular sciences.

2. Ob ject-oriented database system issues. Effectively generalizing a model containing complex
data types and associated behaviors requires better data modeling constructs for specifying
the logical database designs than are now a,vailable.

3. User interface design issues. Can a data modeling environment rich enough to describe
computational chemistry data types and associated operations be made simple enough for
a practitioner to use when accessing data or designing a personal research database? Im-
portant areas for research are the design of effective user interfaces and visualization and
analysis support for large amounts of scientific data within specific application areas such as
computational chemistry.

4. Database system interface to operating systems and compilers. Recent advances in processing
power have rendered this application class I/O intensive as well as computationally intensive
[HS86]. Information about the structure of the persistent data could perhaps be passed from
the database to the operating system to enhance the performance of application programs by
better data caching policies.

Computational chemistry programs have not yet been effectively parallelized, but there is
evidence that the data could be partitioned to this end [FOXSO, Taygl]. Many scientific
data collection and analysis tasks involve the paraJle1 treatment of large numbers of similar
data items. Compiler methods of data dependence might be extended to include analysis of
persistent data, providing hints to the compiler for efficient partitioning of data into parallel
processors and reconstruction of results from parallel computations.

8 Conclusion

This report describes an initial information model for a computational chemistry database browser,
the first phase of a longer-term research project to explore data management support for this
application area. I have thus far gained a basic understanding of the structure of molecule and
experiment objects and confirmed the hypothesis that computational chemistry is a fertile field
for research in scientific data management. Work to date also corroborates the hypothesis that
computational chemistry applications seem better suited to object-oriented database management
systems than to current relational systems. Several aspects of the information model will require
further exploration, however, and may prove difficult to represent using even the relatively flexible
ob ject-oriented paradigm.

Implementation of the information model in an object-oriented database system and of a rudi-
mentary data browser is targeted for the immediate future [CMRSl]. Releasing a populated
database to the chemists and exploring possible interfaces of computational chemistry utilities and
programs will give us insight into the data access patterns of this application class. Preliminary
efforts suggest four general areas for future research: generalizing computational chemistry data
types, object-oriented data modeling extensions to cover behavior as well as structure, user inter-
face issues specific to scientific data management, and enhancing the performance of computational
chemistry applications through database interface to the operating system and compiler.

9 Acknowledgements

This work is supported financially by grants from the Oregon Advanced Computing Institute
(OACIS) and Battelle Pacific Northwest Laboratory's (PNL) Molecular Sciences Research Cen-
ter (MSRC) and Applied Physics Center (APC).

Individuals at both PNL and OG1 provided ongoing guidance: From PNL, James Thomas pro-
vided the original spark that ignited my interest in computational chemistry, and Michael DeVaney
the absolutely essential week to week suggestions. Their encouragement and support is gratefully
acknowledged. The information model results largely from length discussions with computational
chemist David Feller of PNL and my advisor computer scientist David Maier of OGI. The vision
they hold of how a computational chemist might benefit from better data management facilities has
been invaluable. Any errors in the model are, of course, due to my own ignorance of computational
chemistry and object-oriented data modeling.

References
[ACM89] ACM. Proceedings ACM SIGMOD, volume 18, New York, June 1989. ACM Press.

[AG89] R. Agrawal and N. H. Gehani. ODE (Object Database and Environment): The language and the data
model. In Proceedings ACM SIGMOD [ACM89], pages 36-45.

[AMKPSO] H. Afsarmanesh, D. McLeod, D. Ihapp , and A. Parker. An extensible object-oriented approach to
databases for VLSI/CAD. In Zdonik and Maier [ZMgO], pages 607-618.

[BB87] J. Biskup and H. H. Bruggemann. The personal model of data - towards a privacy oriented information
system. Technical report, Hochschule Hildescheim, Hildescheim, West Germany, 1987.

[BBMA89] A. Borgida, R. J. Brachman, L. McGninness, and L. Alperin Resnick. CLASSIC: A structural data model
for objects. In Proceedings A CM SIGMOD [ACM89], pages 58-67.

[BCW88] R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language. Wadsworth and Brooks-Cole, 1988.

[Be1831 J. L. Bell. Data Structures for Scientific Simulation Programs. PhD thesis, University of Colorado, Boulder,
CO, 1983.

[Be1881 J. L. Bell. A specialized da ta management system for parallel execution of particle physics codes. In
Proceedings ACM SIGMOD, volume 18, pages 377-285. ACM, ACM Press, June 1988.

[Boago] Computer Science and Technology Board. Computing and Molecular Biology: Mapping and Interpreting
Biological Information, a CSTB Workshop. NRC, Washington, DC, 1990.

[BP87] J. L. Bell and G. S. Patterson, Jr. Data organization in large numerical computations. The Journal of
Supercomputing, 1:105-136, 1987.

[BS85] R. J. Brachman and J. G. Schmolze. An overview of the I<L-ONE knowledge representation system.
Cognitive Science, 9:171-216, 1985.

[Bur891 C. Burks. Genbank: Current status and future directions. Technical Report LA-UR-89-1154, Los Alamos
National Laboratory, Los Alamos, NM, April 1989.

[BW90] A. J. Bleasby and J. C. Wootton. Construction o f validated, non-redundant composite protein sequence
databases. Protein Engineering, 3(3):153-159, 1990.

[C+90] M. J . Carey et al. The EXODUS extensible DBMS project: An overview. In Zdonik and Maier [ZMgO],
pages 474-499.

[CAC9O] Tektronix, Beaverton, OR. CAChe: Modeling for the Experimental Chemist, 1990.

[Cam701 J. A. Campbell. Chemical Systems. Freeman, San Francisco, 1970.

[Che89] Cambridge Scientific Computing, Inc., Cambridge, MA. ChemSD, 1989.

[CheSO] R. M. Chervin. High performance computing and the grand challenge of climate modeling. Computers in
Physics, pages 234-238, May/June 1990.

[CMRgl] J. B. Cushing, D. Maier, and M. Rao. Computational chemistry database prototype: Objectstore. Technical
Report CS/E92-002, The Oregon Graduate Institute, Beaverton, OR, 1991.

[Cod881 E. F. Codd. A relational model of data for large shared da ta banks. In Michael Stonebraker, editor,
Readings in Database Systems, pages 5-15. Morgan ICaufmann, San Mateo, CA, 1988.

[DAY911 Daylight Chemical Information Systems, Irvine, CA. The Daylight Toolkit, 1991.

[DF86] E. R. Davidson and D. Feller. Basis set selection for molecular calculations. Chemical Review, 86:681-696,
1986.

[Doz9O] J. Dozier. Looking ahead to EOS: The earth observing system. Computers in Physics, pages 248-259,
May/June 1990.

[Dub911 B. Dubrovsky. Universal data access for time series analysis. Pixel, pages 42-44, March/April, 1991.

[Dup9O] M. Dupuis. HONDO-8 User's Guide. IBM Center for Scientific and Engineering Computations, Kingston,
NY, 1990.

[F+91] D. Feller et al. MELDFX User's Guide. Molecular Science Research Center, BatteIle Pacific Northwest
Laboratories, Richland, WA, April 1991.

[FB90] J. W. Fickett and C. Burks. Development of a database for nucleotide sequences. In M. S. Waterman,
editor, Mathematical Methods for DNA Sequences, pages 1-35. CRC Press, 1990.

[FBD87] D. Feller, C. M. Boyle, and E. R. Davidson. One-electron properties of several small molecules using near
Hartree-Fock limit basis sets. Journal of Chemical Physics, 86(6):3424, 1987.

[FD90] D. Feller and E. R. Davidson. Basis sets for ab initio molecular orbital calculations and intermolecular
interactions. In K. B. Li~kowitz and D. B. Boyd, editors, Reviews in Computational Chemistry, pages
1-43. VCH, New York, 1990.

[Fe191] D. Feller. Personal communications, Dec 1990 - Apr 1991.

[FJPSOa] J. C. French, A. K. Jones, and J. L. Pfaltz. NSF scientific database management workshop (final report).
Technical Report TR-90-21, University of Virginia, Charlottesville, VA, August 1990.

[FJP9Ob] J. C. French, A. K. Jones, and J. L. Pfaltz. NSF scientific database management workshop (panel reports
and supporting materials). Technical Report TR-90-22, University of Virginia, Charlottesville, VA, August
1990.

[Fox901 D. J. Fox. Gaussian 90, applying quantum chemistry to biology. Cray Channels, pages 19-21, Fall, 1990.

[Fulgl] D. W. Fulker . Unidata strawman for storing earth-referencing data. Proceedings of the Seventh Interna-
tional Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and
Hydrology, pages 210-217, 1991.

[GAMSO] Department of Chemistry, North Dakota State University, Fargo, N.D. GAMESS User's Guide, 1990.

[Gar891 J. M. Thornton and S. P. Gardner. Protein mot,ifs and database searching. TIBS, 14:300-304, July 1989.

[Gau89] Gaussian, Inc., Pittsburgh, PA. Browse: Quantum Chemistry Database System, 1989.

[GHgl] R. Gupta and E. Horowitz, editors. Object-oriented Databases with Applications to Case, Networks, and
VLSI/CAD. Prentice Hall Series in Data and Knowledge Base Systems, Englewood Cliffs, New Jersey,
1991.

[Gho88] S. P. Ghosh. Statistical relational model. In Rafanelli et al. [RKS88], pages 338-355.

[GPKFSO] P. M. D. Gray, N. W. Paton, G. J. L. Kemp, and J . E. Fothergill. An object-oriented database for protein
structure analysis. Protein Engineering, 3(4):235-243, 1990.

[GS90] H. Gunadhi and A. Segev. Temporal query optimization in scientific databases. In Ozsoyoglu [Ozs90], pages
27-34.

[H+90] L. M. Haas et al. Starburst mid-flight: As the dust clears. IEEE Transactions on Knowledge and Data
Engineering, 2(1), March 1990.

[HRSP86] W. J. Hehre, L. Radom, P. Schleyer, and J. A. Pople. Ab Initio Molecule Orbital Theory. Wiley, 1986.

[HS86] W. D. Hillis and G. Steele, Jr. Data parallel algorithms. CACM, 29(12):1170-1183, December 1986.

[Jag891 H. V. Jagadish. Incorporating hierarchy in a relational model of data. In Proceedings ACM SIGMOD
[ACM89], pages 78-87.

[KR88] J. C. Klensin and R. M. Romberg. Statistical data management requirements and the SQL standards. In
Rafanelli et al. [RKS88], pages 19-38.

[Lev831 I. N. Levine. Quantum Chemistry. Allyn and Bacon, 1983.

[LM84] P. Lyngbaek and D. McLeod. A personal data manager. Proceedings of the International Conference on
Very Large Databases, August 1984.

[LPS9O] S. Letovsky, R. Pecherer, and A. Shoshani. Scientific data management for human genome applications. In
Ozsoyoglu [Ozs90], page 51.

[LWS87] R. H. Lathrop, T. A. Webster, and T. F. Smith. ARIADNE: Pattern-directed inference and hierarchical
abstraction in protein structure recognition. CACM, Vol 30, No 11:909-921, November 1987.

[Mi891 D. Maier. Why isn't there an object-oriented data model? Technical Report CS/E89-002, Oregon Graduate
Institute of Science and Technology, Beaverton, OR, 1989.

[MD90] F. Manola and U. Dayal. PDM: An object-oriented data model. In Zdonik and Maier [ZM90], pages
209-215.

[MS90] D. Maier and J . Stein. Development and implementation of an object-oriented DBMS. In Zdonik and Maier
[ZM90], pages 167-185.

[Olk86a] I?. Olken. Physical database support for scientific and statistical database management. Technical Report
LBL-19940 (revs), Lawrence Berkeley Laboratories, Berkeley, CA, May 1986.

[Olk86b] F. Olken. Scientific and statistical data management research a t LBL. Technical Report LBL-21623,
Lawrence Berkeley Laboratories, Berkeley, CA, June 1986.

[Ozs90] Z. M. Ozsoyoglu, editor. Data Engineering (Special Issue on SSDBII.IS), volume 13, Washington, DC,
September 1990. IEEE Computer Society.

[PB70] J . A. Pople and D. L. Beveridge. Approximate Molecular Orbital Theory. McGraw-Hill, 1970.

[Pecgl] R. Pecherer. Personal communication, March, 1991.

[PL88] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Proc. Natl. Acad.
Sci. (U.S.), 85:2444-2448, April 1988.

[RH70] W. G. Richards and J. A. Horsley. Ab initio Molecttlar Orbital Calculations for Chemists. Clarendon Press,
Oxford, 1970.

[RKS88] M. Rafanelli, J. C. Klensin, and P. Svensson, editors. Fourth International Working Conference on Statistical
and Scientific Database Management (SSDBM), volume 339. Springer-Verlag, June 1988.

[RR90] M. Rafanelli and I?. L. Ricci. A visual interface for statistical entities. In Ozsoyoglu [Ozs90], pages 35-44.

[RSSOa] M. Rafanelli and A. Shoshani. STORM: A statistical object representation. In Ozsoyoglu [Ozs90], pages
12-18.

[RSgOb] L. A. Rowe and M. Stonebreaker. The Postgres data model. In Zdonik and Maier [ZMgO], pages 461-473.

[Sal87] L. Salem. Marvels of the Molecule. VCH Publishers, Inc., 1987.

[SO891 A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure
Theory. McGraw-Hill, 1989.

[SOW841 A. Shoshani, F. Olken, and H. K. T. Wong. Characteristics of scientific databases. Proceedings of the Tenth
International Conference on VLDB, pages 147-159, August 1984.

[SS88] A. Segev and A. Shoshani. The representation of a temporal da ta model in the relational environment. In
Rafanelli et al. [RKS88], pages 39-61.

[Taygl] P. Taylor. Computational chemistry well-suited to supercomputers. On Line, 13(1):1-3, January 1991.

[Van901 M. VandeWettering. The application visualization system - AVS 2.0. PIXEL, JulyfAugust 1990.

[Wat89] M. Waterman. Foreword. Bulletin of Mathematical Biology, 51(1):14, 1989.

[Wei89] R. F. E. Weissman. In search of the scholar's workstation: Recent trends and software challenges. Academic
Computing, pages 28-31,59-64, September 1989.

[WKSO] A. J. Westlake and I. Kleinschmidt. The implementation of area and membership retrievals in point
geography using SQL. In Ozsoyoglu [Ozs90], pages 4-11.

[ZMSO] S. B. Zdonik and D. Maier, editors. Readings in Object-oriented Database Systems. Morgan Kauffman, San
Mateo, CA, 1990.

