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Abstract 

This note gives a method for performing the center manifold reduction that 

eliminates the need to transform the original equations of motion into block diagonal 

form. To achieve this, we write the center manifold as an embedding, rather than as 

a graph over the center subspace. The technique is well-suited to computer algebra 

implementation of the center manifold reduction. 



1 Introduction 

The center manifold reduction is a technique for eliminating non-essential degrees 

of freedom in bifurcation problems. The low-dimensional equations of motion on 

the center manifold, or their projection onto the center subspace, tell us about the 

topological character of the flow. 

For example suppose that the vector field f ( X )  : R~ --t RN has an equilibrium 

at X = 0. Let D f 0 be the linearization at this equilibrium. The center subspace 

Ec is the space spanned by the (generalized) eigenvectors of D f 0 corresponding to 

eigenvalues on the imaginary axis. The center manifold is tangent to EC at X = 0 

and is invariant under the flow of f .  

2 The Graph Construction 

In the usual center manifold reduction, one transforms the equations of motion 

into eigencoordinates. One then writes the center manifold as a graph over the 

center subspace, the latter having been linearly decoupled from the other degrees of 

freedom by the diagonalization [l, 21. 

Assume that the vector field has an equilibrium at the origin. In the transformed 

coordinates, the system of differential equations has the form [I, p. 130]), 

where B has eigenvalues with real part equal to zero, C has eigenvalues with negative 

real part, and F and G and their first derivatives vanish at the origin. We assume 

that the unstable manifold is empty. The center manifold is written as a graph 

W c  = {(x, y) I y = h(z)), h(0) = Dh(0) = 0 (2) 



in the neighborhood of the origin. Since the center manifold is invariant under the 

flow, we can substitute y = h(x) into the second equation of (1) and obtain 

This is solved for h(x) by expanding in a power series about the origin with the 

boundary conditions h(0) = Dh(0) = 0. 

With the center manifold identified, the flow is projected onto the center subspace 

The stability of the origin for the full system (1) is given by the stability for the 

reduced system (4). 

3 The Center Manifold as an Embedding 

One difficulty in the above procedure is that the initial transformation to simplify 

the linear system can be quite cumbersome. For high-dimensional systems the di- 

agonalization becomes tedious for hand calculation and one turns to a machine im- 

plementation. Unfortunately, diagonalizing large algebraic matrices can be difficult 

for symbolic computation systems. 

This note gives an alternative center manifold expansion that dispenses with 

the need to perform the initial coordinate transformation. The procedure requires 

only knowledge of the vectors spanning the center subspace. For systems where 

D f has zero eigenvalues, the center subspace is just the kernel of D f o.  Symbolic 

computation packages are able to find kernels of matrices with little difficulty. 

We return to the original system of equations 



and assume that f ( 0 )  = 0 and that D f  0 has a one-dimensional kernel spanned by 

v,. Before proceeding, we need to establish some notation. Df [ a ]  is the action 

of D f on the vector a. The result is a vector whose components in a coordinate 

svstem are 

where ai is the i th component of the vector a. For example 

Similarly D2 f [a,  b ]  is the action of the second derivative D2 f on the pair of vectors 

a, b. The result is a vector with components 

Contractions of higher order derivatives are similarly defined. 

We write the center manifold as an embedding from R1 -t RN,  

1 
x c m ( T )  = V,. T $ W ( T )  = v, 7. f -w,, r2 + .  . . . 

2 ( 6 )  

with w I v,. (Here we choose w to lie in the orthogonal complement to v,. One can 

use another splitting, e.g. choose w in the range of D f 0. This leads to a different 

parameterization of the center manifold, i.e. W ( T )  has a different functional form. 

This is illustrated in the example in $4.) The form of the embedding ( 6 )  and 

the boundary conditions (7) insure that the center manifold passes through the 

equilibrium at the origin, and that it is tangent to the center subspace EC there. 

The geometry of the construction is shown in figure 1. 



Figure 1: Center manifold WC and center subspace Ec.  

Since the center manifold is invariant under the flow, the vector field on xCm 

must be tangent to x,,. Hence we can write 

where a ( r )  is a real-valued function. Note that since f ( 0 )  = 0, a(0) = 0. 

3.1 Flow on the Center Manifold 

The flow on the center manifold is given by 

having used (8) in the last equality. Thus 

and the scaling function a(r )  gives the time rate of change of the embedding pa- 

rameter induced by the motion on the center manifold. 



3.2 Solving the Embedding Equation 

The embedding function w  and the scaling function a are found by solving the 

tangency condition (8) in a Taylor series expansion about r = 0. For the first order 

term in the Taylor expansion, take the derivative of (8) with respect to  r 

Evaluating (10) at T = 0  gives 

which expresses the fact that the linear part of the motion along the center manifold 

vanishes at  the origin. For the second order term, take the derivative of (10) with 

respect to T leaving 

D f  [ w T T ]  + ~~f [ v T + W T )  v ~ + W ~ ]  

- a,, (v,  + w,) + 2 a, w,, + a w,,,. 

Evaluating this at r = 0  leaves 

Now let vr be the left eigenvector of D  f corresponding to eigenvalue zero. Left 

multiply the last expression by vl and solve for a,, to obtain 

With this expression for a,,, (12) can be solved for w,, 



where L is defined as the restriction of D f 0 to v:, and L-l is its inverse. 

The procedure can be extended to arbitrary order. For reference the third order 

terms are 

W T T T ~  = L - ' ( ~ T T T ~  vT + ~ ~ T T ~ W T T ~  - 3D2fo[w77~ VT] - ~ ~ f o [ v ~ ,  V T ] ) .  (16) 

Note that to obtain cr to third order (and hence the motion on the center manifold 

to third order), we need w only to second order. 

4 An Example: The Lorenz Equations 

The Lorenz equations 

j? = a (Y - 2) 

y = p x - y - x z  

i = XY - Pa 

have an equilibrium at (x,  y, z) = (0,0,0) with linearization 

At p = 1, D f has right and left kernels v, = {1,1,O}, vl = {l/a, 1,O). 

The center manifold is given as an embedding from ( r ,  p) into (a, y, z,  p)  with 

the tangency condition 

f ( x C ~ ( T ,  P), P )  = a (T, P )  ( VT + wT(T~ P) ). PI) 
f 0 is an isomorphism from v: to Range ( D f o  ) and, from (12), a,, v, - D2 fo [v,, v, ] is in 

Range( D  fo  ), so w,,, is uniquely defined in v$ . 



Differentiating this with respect to p leaves 

where f p  - d f l a p .  Evaluating the derivatives at the bifurcation point (7, p )  = ( 0 , l )  

and dotting with vl gives 

a,, = 0. 

Substituting this result into (22)  and evaluating the result at  the bifurcation point 

leaves 

Dfo [ wpo I = 0. 

Since w 1 v,, this requires that 

W,, = 0. 

Differentiating (22)  with respect to r gives 

Evaluating this at the bifurcation point leaves 

The last expression is solved for a,,, and w,,, as 



With 

I find 

u  
QhPO = - ( 26 )  

WTPO - 2 ( 1 +  0 ) ~ 2 ( 1 + ~ ) '  01. ( 27 )  

The terms second order in T are given by ( 13 )  and (14) .  The required contraction 

is 

D2.f0 [UT, u r ]  = { 0 ) 0 , 2 )  

and I find 

Thus to second order the center manifold is given by 

To calculate the motion on the center manifold, we need the coefficient a,,, 

from equation ( 15 ) .  Since D3 f and a,, are both zero, we have 

Including only terms of order r3 and (p  - 1 )  r ,  the motion on the center manifold is 

given by 



Figure 2: Two different parameterizations of the  center manifold. 

which is the normal form for a pitchfork bifurcation. 

4.1 Alternative Parameterization 

In the construction used so far, we wrote the center manifold in terms of components 

in EC and ECL as depicted in figure 2a. The constraint w(r)  I v, uniquely defines 

the preimage of Df used in (14) and (16). One can, however, use any other 

convenient decomposition. For example we can require w(r) E Range(D fo) as in 

figure 2b. This defines a different preimage of Dfo  for use in (14) and (16) and will 

lead to  different functional forms for W(T) and a ( ~ ) .  These differences amount to a 

reparameterization of the center manifold. 

For the example of the Lorenz system, writing the center manifold as 



leads to an expression for w,,, that differs from (27). Specifically 

The remaining coefficients: a,,,, a,,, and w,, are unchanged. To second order, 

the center manifold is given by 

This agrees with the expression obtained by the usual graph procedure [2, 31. The 

parameterizations in terms of r and ?. are related by the transformation 

as can be verified by substituting into (30) and retaining terms of order T ,  T 2 ,  and 

?.(p - 1). 

5 Summary 

We have given a technique to identify the center manifold, and the flow on the center 

manifold in a coordinate-independent manner. This is accomplished by writing the 

center manifold as an embedding, rather than as a graph over the center subspace. 

With this technique it is unnecessary to transform the original system to block- 

diagonal form. This is an advantage for computer algebra implementation. 



References 

[I] John Guckenheimer and Philip Holmes. Non-linear Oscillations, Dynamical Systems 

and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983. 

[2] Richard H. Rand and Dieter Armbruster. Perturbation Methods, Bafurcation Theory 

and Computer Algebra. Springer-Verlag, New York, 1987. 

[3] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer- 

Verlag, New York, 1990. 




