
Analyzing Programs with Explicit Parallelism

Harini Srinivasan and Michael Wore

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006- 1999 USA

Technical Report No. CS/E 91-022

July, 1991

Analyzing Programs with Explicit Parallelism

Harini Srinivasan Michael Wolfe

July 29, 1991

Abstract
When analyzing programs with parallel imperative constructs (e . g . , cobe-
gin/coend), standard computer intermediate representations (Control Flow
Graphs) are inadequate. This paper discusses semantics for parallel con-
structs, and introduces new intermediate forms, called the Parallel Control
Flow Graph and the Parallel Precedence Graph. These data structures have
certain advantages for compiler analysis and optimization. As an example
of the advantages, the analysis requirements of converting an explicitly par-
allel program into Static Single Assignment form are given. To do this; the
dominance relation and dominance frontiers for explicitly parallel programs
must be defined.

1 Introduction

Given the failure of automatic parallelizing compilers, many users want to explore writing

explicitly parallel programs. Some language and compiler researchers believe that explicit

parallelism should be avoided, and functional or applicative implicitly parallel languages

should be used. Nonetheless, a significant user community desires and demands language

constructs for expressing explicit parallelism in programs. The Parallel Computing Forun~

was formed to generate portable syntax and semantics for parallel extensions to Fortran-77

[15]; this consortium of industry and academic parties has now spawned an ANSI standards

committee to complete the project. In order to deliver the very best performance, com-

pilers will soon be required to perform aggressive optimization in the presence of explicit

parallelism.

The standard intermediate form for compilers is the Control Flow Graph, or CFG.

To help with compiler optimizations, other information is generally collected about the

program; this information is sometimes represented explicitly in an auxiliary data structure,

or replaces the CFG as the primary data structure, e.g., the data dependence graph, progrntn

dependence graph, program dependence web, dependence flow graph, and so on. Many

optimizations have been designed around the Static Single Assignment (SSA) form of the

program [20,4, 18,9]. This paper focuses on how to convert an explicitly parallel program

to SSA form.

The standard algorithms for converting a program to SSA form use the information in

the CFG; focusing on the Parallel Sections construct of PCF Fortran, we show here

that adding parallelism to a CFG is non-trivial. Instead we propose a new model for control

flow in parallel programs, imaginatively named the Parallel Control Flow Graph (PCFG).

Explicit ordering between different sections is represented by a Parallel Precedence Graph

(PPG).

Two important concepts used in deriving the SSA form of a program are the dominance

relation defined between nodes in a Control Flow Graph, and the dominance frontiers of

nodes in a CFG. Extending these definitions to nodes in a PCFG is not straightforward; a

PCFG has two types of nodes, those representing parallel constructs and those represent-

ing basic blocks. This paper defines the dominance relation and dominance frontiers for

PCFGs; efficient algorithms to compute these are described in the references [19,22,21,23].

Of critical importance for creating the SSA form of a parallel program is the definition

of what are the reaching definitions for a variable in an explicitly parallel program. The

concept of reaching definitions comes from the semantics of the language; we explore copy-

in/copy-out semantics for parallel constructs, both for clarity in writing parallel programs,

and to simplify and improve compiler analysis.

2 Parallel Section Semantics

The Paral le l Sections construct [15] is similar to a cobegin/coend [7] or the Parallel

Cases statement introduced by Allen et a1 [2]. It is a block structured construct used

to specify parallel execution of identified sections of code. The parallel sections may also

be nested. The sections of code must be data independent, except where an appropriate

synchronization mechanism is used. Here we consider only structured synchronization

expressed as Wait clauses, i.e., DAG parallelism [lo]. Transfer of control into or out of a

parallel section is not supported.

Some definition must be made when two sections of code that can execute in parallel

both modify the same variable, or when one section modifies a variable that is used by

the other. Consider the program in Figure l(a) as an example. What values should be

printed for t and u? What values for w can reach statement 6? What assignments to v can

i : v = i
2: w = 2

P a r a l l e l Sect ions
Sect ion A

3 : w = 3
4 : v = 4
5 : t = v

Sec t ion B
6 : v = w
7 : w = 7
8 : u = w

End P a r a l l e l Sect ions

P r i n t ' t=' , t , ' , u= ' , u

1: v1= 1
2: w 1 = 2

P a r a l l e l Sec t ions
Sect ion A

3: w z = 3
4: v z = 4
5 : tl = Vp

Sect ion B
6 : vg = ~1

7: wg=7
8 : u1 = wg

End P a r a l l e l Sect ions

v4 = $(vz,vs)
w4 = +(wz, w3)

P r i n t ' t=' , t l , ' , u= ' , ul

Figure 1: Parallel Sections Construct and its SSA Form

reach statement 5? Can statements 3 and 4 be interchanged? Can the compiler forward

substitute statement 4 into statement 5? These are all questions that the compiler should

be able to answer via analysis of the program.

Under some models of parallelism, such as a model allowing any sequentially consistent

execution 1131, there is more than one legal output for this program; we might consider the

following possibilities (to save space, only a few orderings are shown):

statement

ordering output

Note that optimization within a parallel section is restricted; even though statements 3

and 4 are completely data independent, interchanging these two statement would allow the

statement order: 4,6,7,3,5,8, which would give the unexpected output t = 2 , u=3. The legal

outputs for this program depend on how the anomalous parallel updates to the variables

are resolved, and this depends on the rules for the language. Several different rules can be

(and have been) proposed for such syntax:

Error: The language might define anomalous updates to variables as a programmer

error. In this case no output is a legal output, since this is an illegal program. With the Ada

view of a language, such errors should be detected and reported, either at compile time (if

possible) or at run time. While detection of potential anomalous updates at compile time

is possible, precise compile time analysis would in general be intractible. The user may

want to know about potential anomalies in explicitly parallel code, since it may indicate a

programming error, even when it is legal. Thus, compiler analysis for potential anomalies

may be a very useful option [B, 5, 11, 31.
Undefined: This is the Fortran view of languages: anything not required is optional,

and there are no illegal options. Thus, compiler implementers are free to do whatever

they want; any output is a legal output (from the compiler point of view). Often the

implementers define some meaning, either actively or passively ("the definition is what the

compiler does"), and then are forced into compatibility for the rest of eternity.

Sequential: Here the only legal output is one that could have arisen by a sequential

execution of the statements in lexical order. This view is sometimes expressed for anoma-

lous parallel loops. In any case, with this definition there is only one unambiguous legal

output, t=4 ,u=7.

Immediate Update: This view is often taken due to hardware support for coherent

multiprocessor caches. Here, any update to a variable must be visible to all other processors

(or processes). This is closely related to the problem of multiprocessor memory coherence,

where a sequentially consistent implementation is considered indistinguishable from a strict

conflict-free shared memory multiprocessor [13]; sometimes a weak consistency model is

used to overcome long latency operations for shared variable updates [12]. Under this

model, any of the statement orderings in the table above would be legal, with three different

possible outputs. The problems for the compiler are to detect what statement orderings are

required, and what optimizations are illegal in the presence of other code that might execute

in parallel with this code [14]. The statement reordering question mentioned above is one

such example. This problem is even more insidious than it seems; if the language allows

subroutines to be called in parallel (as does PCF Fortran) with potentially anomalous

updates to global variables, the compiler can't even know the scope of the parallelism nor

the variables that might be volatile, much less the interaction between multiple variables.

Such a definition would essentially invalidate all compiler optimizations involving global

varj ables.

Copy-in/Copy-out: This is similar to the value/result style of parameter passing.

The values of shared variables in a parallel section are defined to be initialized to the

values they had when the parallel block was entered; any updates are made (conceptually)

to local copies of the variable. When the parallel block is complete, the global state is

updated with any modifications made within any section. This completely defines the

values to be used for shared variables that are defined and used in different sections. If

any shared variable is updated by more than one parallel section, some definition must still

be made, corresponding to one of the previous choices. With this definition, the compiler

can know that statement 4 can always be forward substituted into statement 5, since no

anomalous updates are allowed to any variable while the section is executing. The only

legal output is the same (for this program) as for sequential semantics, t=4 , u=7.

Of these possible definitions, sequential semantics is the most well-defined, and also the

most restrictive. Many current coherent memory parallel computers support immediate

update semantics; however preserving immediate update semantics may be too restrictive

in terms of the optimizations allowed. We advocate using copy-in/copy-out semantics. This

gives a well-defined program without volatile variables, and allows optimization within a

parallel section independent of code in other sections. The model has several potential

problems, such as the overhead of making local copies of variables, and atomic merging of

updated variables. There is more opportunity for compiler optimization here; the compiler

can try to distinguish variables which are read-only in the parallel block (so no local copies

need be made), those that are read and written in different parallel sections (so local copies

must be made), and those that are read and written, but for which updates can be made

in place. The analysis for update-in-place will be similar to that for functional languages,

such as SISAL. For read-write variables which must be merged, the compiler must generate

code to merge the updated values efficiently, without causing a bottleneck in the executing

program. The Myrias SPS-1 control mechanism supported copy-in/copy-out semantics by

clever use of the virtual paging translation hardware and operating system primitives [6];

in that system, multiple updates to a shared variable by parallel tasks gave an undefined

result after the parallel block.

Static Single Assignment Form

After converting a program into SSA form, it has the following two properties [9]:

Each use of a variable is reached by exactly one assignment to that variable.

X = l
Y = l
if P then

X = 2
else

Y = 5
endif
z = X+Y

X - I
Y - I
P a r a l l e l s e c t i o n s
Sect ion

X = 2
Sect ion

Y = 5
end p a r a l l e l sec t ions
z = X+Y

Figure 2: Conditional and Parallel programs

a The program contains merge functions, called &functions to distinguish values of

variables transmitted from distinct incoming control flow edges.

Cytron et a1 191 present a fast algorithm to convert a program into SSA form in which

the number of $-functions inserted is minimal. The algorithm uses the dominance relation

and dominance frontiers as reviewed briefly here.

A CFG is a directed graph with a distinguished unique Entry vertex. We say a vertex

v dominates another vertex w, written v >> w, if v appears on every path from Entry to w.

By this definition, every vertex dominates itself, and Entry dominates every other vertex.

The dominance frontier of a node v, DF(v), is the set of all CFG nodes z such that v

dominates a predecessor of z but does not strictly dominate z. Note that v may itself be

a member of DF(v).

The SSA algorithm uses dominance frontiers to determine where to place +functions.

+functions for a variable X are required at all the nodes in the iterated dominance frontier

of S, where the set S is the union of all the nodes where X is assigned. The dominance

frontier sets are constructed in a single bottom-up traversal of the dominator tree. Thus,

both the dominance relation and the dominance frontiers are crucial to the conversion of

a program to SSA form. We need to be able to extend these concepts to explicitly parallel

code, and we want to have a meaningful SSA form of a parallel program.

Flow Graphs for Parallel Constructs

In the case of sequential programs, CFGs accurately model potential control flow. We

might be tempted to model Para l l e l Sections in a CFG by treating the fork point as a

branch node and the join as a merge node. The CFGs for the two programs in Figure 2

X1 = 1
Yl = 1
if P then

Xz = 2
e l s e

Y2 = 5
endif
x3 = 4 (X 2 , X l)
Y3 = cb(YlrY2)
z1 = X3+Y3

X1 = 1
Yl = 1
P a r a l l e l s ec t i ons
Sect ion

X2 = 2
Sect ion

Y2 = 5
end p a r a l l e l s ec t i ons

Figure 3: SSA Forms of Conditional and Parallel programs

will then look the same. However, the execution semantics of the two programs are very

different. In the sequential program, only one of the two assignments X = 2 or Y = 5 will

be executed; the value of Z will be 3 or 6, depending on the branch taken. In the parallel

program, however, both assignments will be executed, and the value of Z will always be

7; in fact, the two initial assignments to X and Y are dead code. The proper SSA forms

of these two programs are shown in Figure 3. No $-functions are needed in the parallel

program, since only the X2 and Y2 assignments reach the Z1 assignment. Clearly, trying to

model this parallel program with a simple CFG is incorrect; the simple CFG would model

the parallel construct just like it models conditionals, and would then add unnecessary

4-functions at the join point.

What we would like to have is a representation where the X2 assignment dominates

the Z1 assignment, Y2 assignment dominates the Z1 assignment, but there is no dominance

relation between the X2 and Y2 assignments at all. No Control Flow Graph will give us this

kind of relationship. To handle this, we introduce Parallel Control Flow Graphs.

5 Parallel Control Flow Graphs

This section presents the Parallel Control Flow Graph (PCFG) that models control flow

in parallel programs accurately and the Parallel Precedence Graph (PPG) that models

concurrent execution within a parallel construct. A set of PCFGs and PPGs make up the

Extended Flow Graph set (EFG) that model an entire program unit.

A Parallel Control Flow Graph (PCFG) is a CFG which may have a special type of

node called a supernode. A supernode essentially represents an entire Parallel Sections

construct. Parallel execution of the sections within a parallel block is represented by a

ParaZZeZ Precedence Graph (PPG). Wait clauses in a parallel block impose wait-dependence

between the waiting section and the sections specified in the Wait clause. Nodes in the PPG

represent the sections in the parallel block with two additional nodes, cobegin and coend.

The edges in the PPG (also called wait-dependence arcs) represent the wait dependences.

To conserve space, we do not discuss wait dependence arcs in detail here.

Formally a PCFG is defined as the graph G = (VG, EG,EntryG, ExitG) where

VG is a set of vertices, each representing a basic block (basic block node) or an entire

parallel block (supernode).

EG is a set of edges {a + b 1 a, b E VG), representing potential flow of control in the

program.

EntryG E VG is the unique start node (or entry node) of the PCFG, with all vertices

reachable from EntryG.

ExitG E VG is the exit node of the PCFG, where ExitG is reachable from all vertices

in VG.

Parallel execution within a parallel block is represented by a PPG which is formally

defined as a graph P = (Vp, Ep, Entryp, Exitp) where

Vp is a set of vertices, each representing a section in a parallel block (section node).

Ep is a set of edges or wait-dependence arcs in the PPG.

Entryp E Vp is the cobegin node.

Exitp E Vp is the coend node.

By definition of the language, the PPG graph must be a DAG.

Each section S is again represented by a PCFG S = (Vs, Es, Entry,, Exits) where

Entrys marks the entry into that section and Exits marks the exit from that section.

The Extended Flow Graph set (EFG) is the set of PCFG's and PPG's representing

control flow and parallelism for a single program unit. The distinguished PCFG corre-

sponding to the program unit is called G,,;,. When we talk about the nodes in an EFG,

we mean the union of all the nodes in all the PCFG's and PPG's in the EFG. The nodes

may be Entry or Exit nodes, basic block nodes, supernodes, cobegin or coend nodes, or

section nodes.

The EFG of the parallel program in Figure l(a) is shown in Figure 4. G,,;, has 5
vertices: Entry, m (an assignment basic block), P1 (a parallel block), n (a print basic

block), and Exit. The parallel block is represented by PPGpl with four vertices: the

cobegin, A and B (one for each of the two sections), and coend. The two parallel sections

are then again represented by PCFGs, each (in this case) with three vertices, one of which

represents the basic block of assignments.

6 Dominance Relation Between Vertices of an EFG

Given a parallel program and its EFG, we want to compute the SSA form of the program.

As mentioned before, the SSA algorithm depends on the dominance relation in the program.

However, the vertices of the EFG are now spread over several graphs. While we have an

intuitive feel for how the graphs are "nested," there is little formal basis for this. For

instance, in Figure 4, by the semantics of the language, we want to have the relationships

m >> q and q >> n, but not to have q >> r. Since m and q do not appear in the same

directed graph, the canonical dominance relation between them is not defined. Here we

address this problem.

One way to define the execution relationships of vertices from different PCFGs is to

consider all possible combinations of paths through all the parallel blocks in the program.

We use a method to derive a set of sequential CFGs from an EFG, referred to as factoring

[19, 211. Since there are only two paths through the only parallel block in Figure 4, there

are only two factors, shown in Figure 5.

Computing the dominance relation between nodes in the sequential CFGs obtained by

factoring the EFG can be done easily using the standard definition of dominance. We

define the parallel dominance relation to be the dominance relation for a basic block node

in an EFG, computed as the union of the sequential dominators of in each of the sequential

CFGs obtained by factoring the EFG.

In the sequential factors in Figure 5, the dominance relations m >> q and q >> n hold

in the first factor, and m >> r and r >> n in the second factor. We thus define this to be

the set of parallel dominance relations for the program. Note that the parallel dominance

relation can not be represented by a tree.

Similarly, we define the parallel dominance frontier of a basic block node to be the

dominance frontier in the EFG, computed as the union of the sequential dominance frontiers

PCFG for the program PPG for supernode PI

Exit 8
Section A

coend 92

Section B

Figure 4: Extended Flow Graph set

A factor

Exit Exit

Figure 5: Factors of an EFG

in each of the sequential CFGs derived by factoring the EFG.

7 SSA with Copy-in/Copy-out Semantics

The advantage of using the copy-inlcopy-out semantics is that the SSA form of the program

can be easily constructed from the parallel dominance frontier. In fact, the same algorithms

used to construct the SSA form in [9] can be easily modified to construct the SSA form of a

parallel program. The key property of copy-in/copy-out semantics that makes this possible

is that the only definitions for a variable that can reach a use within a parallel block must

reach that use by some path from the cobegin vertex. We took advantage of this when

defining the parallel dominance relation. Some examples will show the advantages; our

first example program can be simply converted to SSA form as shown in Figure l(b). Note

for instance that the only definition of w that reaches statement 6 is from statement 2. No

&functions are needed here since there is no conditional code. The $-functions will be

explained shortly.

A second example shows conditional code within and surrounding the parallel block,

in Figure 7. In every case, the only &functions needed in the program are those that are

needed in some factor of the graph.

a = l
b = 2
i f a = c then

b = b + l
e l s e

P a r a l l e l Sect ions
Sect ion A

a = a + l
i f e > 0 then

e = 99
endif

Sect ion B
c = a
i f b = c then

e = l
endif

d = e + i
End P a r a l l e l Sect ions

p r i n t a , b , c , d , e

a1 = I
bl = 2
i f a1 = co t hen

b2 = bl + 1
e l s e

P a r a l l e l Sect ions
Sec t ion A

a 2 = a1 + I
i f eo > 0 then

el = 99
endif

e2 = $(el, eo)
Sect ion B

c1 = a1
i f bl = cl then

e3 = I
endif

e4 = 4(e3, eo)
dl = e4 + 1

End P a r a l l e l Sect ions

e5 = +(e2 , e4)
endif

a3 = $(all a2)

b3 = #(bz, bl)
c2 = $(co,c1)
d2 = 4(do,di)
e6 = 4(eo,e5)
p r i n t az7b3,c2,d2,e6

Figure 6: Original and SSA Form of Extended Example

8 Anomalous Updates

When only one section updates a shared variable, the value of that variable after the

parallel block is complete is well defined. Even if other sections use that variable, they will

always get the "old" value of the variable (in the absence of any synchronization or wait

clauses); for example, see variable a in Figure 7. Section A increments a, but Section B
still sees the old value of a, namely al, which is equal to 1. In fact, constant propagation

could be used to forward substitute the constant value 1 into all uses of al; this would then

allow a2 to be computed as the value 2, and so on.

However, when two parallel sections update the same variable, the value of the variable

after the parallel block is indeterminate. In Figure l(b), variables v and w were updated in

both sections; within the sections, the values to be used for each variable is well defined.

A use of v outside the parallel block, however, might be reached by either v2 or vg; to keep

the Static Single Assignment rules, where each use is reached by only a single assignment,

we must somehow merge these two updates at the End Parallel Sections statement.

This is the reason for the $-functions in the parallel SSA programs.

The presence of a $-function may indicate to the compiler that the program contains

an actual or potential anomaly. A useful compiler option would be to flag all potential

anomalies such as this. Note that such anomalies may only be potential; in Figure 7,

the variable e is only potentially updated in the two sections. If the two conditions are

mutually exclusive, then in fact only one update will be done, and the semantics of the

language should preserve whichever update is performed. Nonetheless, the $-function is

needed to preserve the SSA properties.

Conclusion

Previous work has shown that the Static Single Assignment intermediate representation

forms a practical basis for optimizing sequential programs. We have shown how to extend

Control Flow Graphs, dominance relation and dominance frontiers used in computing SSA

to include parallel constructs. SSA is discussed in detail in [9]. By extending SSA to include

parallel constructs, the resulting intermediate language will form a powerful platform for

many classical code optimization algorithms that can be run on parallel programs.

Our current work has found an efficient and simple algorithm for finding the parallel

dominators and parallel dominance frontiers [22]. We are implementing this algorithm as

well as the algorithm to find anomalous updates in parallel programs in our prototype

compiler, Nascent.

References

[I] Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne Ferrante.
An overview of the PTRAN analysis system for multiprocessing. In Elias N. Houstis,
Theodore S. Papatheodorou, and Constantine D. Polychronopoulos, editors, Super-
computing: 1st International Conf., volume 297 of Lecture Notes in Computer Science,
pages 194-21 1. Springer-Verlag, Berlin, 1987.

[2] Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne Ferrante.
An overview of the PTRAN analysis system for multiprocessing. J. Parallel and
Distributed Computing, 5(5):617-640, October 1988. (update of [l]).

[3] Todd R. Allen and David A. Padua. Debugging Fortran on a shared memory machine.
In Sartaj K. Sahni, editor, Proc. 1987 International Conf. on Parallel Processing,
pages 721-727, St. Charles, IL, August 1987.

[4] B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables in pro-
grams. In Conf. Record 15th Annual ACM Symp. Principles of Programming Lan-
guages [16], pages 1-11.

[5] Vasanth Balasundaram and Ken Kennedy. Compile-time detection of race conditions
in a parallel program. In Proc. 3rd International Conference on Supercomputing, pages
175-185, June 1989.

[6] Monica Beltrametti, Kenneth Bobey, and John R. Zorbas. The control mechanism
for the myrias parallel computer system. Computer Architecture News, 16(4) :21-30,
September 1988.

[7] Per Brinch Hansen. Operating Systems Principles. Automatic Computation. Prentice-
Hall, 1973.

[8] David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event synchronization
in a parallel programming tool. In Second ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming [17], pages 21-30.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Kenneth
Zadeck. An efficient method of computing static single assignment form. In Con$
Record 16th Annual ACM Symp. on PrincipIes of Programming Languages, pages 25-
35, Austin, TX, January 1989.

[lo] Ron Cytron, Michael Hind, and Wilson Hsieh. Automatic generation of DAG par-
allelism. In Proc. ACM SIGPLAN '89 Conf. on Programming Language Design and
Implementation, pages 54-68, Portland, OR, June 1989.

[ll] Anne Dinning and Edith Schonberg. An empirical comparison of monitoring algo-
rithms for access anomaly detection. In Second ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming [17], pages 1-10.

[12] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access buffering in
multiprocessors. In Conf. Proc. 13th Annual International Symp. on Computer Ar-
chitecture, pages 434-442, Tokyo, June 1986.

[13] Leslie Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. on Computers, C-28(9):690-691, September 1979.

[14] Samuel P. Midkiff, David A. Padua, and Ron Cytron. Compiling programs with user
parallelism. In David Gelernter, Alexandru Nicolau, and David A. Padua, editors,
Languages and Compilers for Parallel Computing, Research Monographs in Parallel
and Distributed Computing, pages 402422. MIT Press, Boston, 1990.

[15] Parallel Computing Forum. PCF Fortran, April 1990.

[16] Conf. Record 15th Annual ACM Symp. Principles of Programming Languages, San
Diego, CA, January 1988.

[17] Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Progmm-
ming, Seattle, Washington, March 1990. ACM Press.

[18] B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Global value numbers and redundant
computations. In Conf. Record 15th Annual ACM Symp. Principles of Programming
Languages [16], pages 12-27.

[19] Harini Srinivasan. Analyzing programs with explicit parallelism. M.S. thesis 91-TH-
006, Oregon Graduate Institute, Dept . of Computer Science and Engineering, July
1991.

[20] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. A CM Trans. on Programming Languages and Systems, 13(2):181-2 10, April
1991.

[21] Michael Wolfe, James Hook, and Harini Srinivasan. Flow graph relations for explicitly
parallel programs, 1991. submitted for publication.

[22] Michael Wolfe and Harini Srinivasan. Data structures for optimizing programs with
explicit parallelism. In Proc. First International Conference of the Austrian Center
for Parallel Computation, Salzburg, September 1991. to appear.

[23] Michael Wolfe and Harini Srinivasan. Static single assignment form for explicitly
parallel programs, 1991. submitted for publication.

