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Abstract 
When analyzing programs with parallel imperative constructs ( e . g . ,  cobe- 
gin/coend), standard computer intermediate representations (Control Flow 
Graphs) are inadequate. This paper discusses semantics for parallel con- 
structs, and introduces new intermediate forms, called the Parallel Control 
Flow Graph and the Parallel Precedence Graph. These data structures have 
certain advantages for compiler analysis and optimization. As an example 
of the advantages, the analysis requirements of converting an explicitly par- 
allel program into Static Single Assignment form are given. To do this; the 
dominance relation and dominance frontiers for explicitly parallel programs 
must be defined. 

1 Introduction 

Given the failure of automatic parallelizing compilers, many users want to explore writing 

explicitly parallel programs. Some language and compiler researchers believe that explicit 

parallelism should be avoided, and functional or applicative implicitly parallel languages 

should be used. Nonetheless, a significant user community desires and demands language 

constructs for expressing explicit parallelism in programs. The Parallel Computing Forun~ 

was formed to generate portable syntax and semantics for parallel extensions to Fortran-77 

[15]; this consortium of industry and academic parties has now spawned an ANSI standards 

committee to complete the project. In order to deliver the very best performance, com- 

pilers will soon be required to perform aggressive optimization in the presence of explicit 

parallelism. 

The standard intermediate form for compilers is the Control Flow Graph, or CFG. 

To help with compiler optimizations, other information is generally collected about the 

program; this information is sometimes represented explicitly in an auxiliary data structure, 

or replaces the CFG as the primary data structure, e.g., the data dependence graph, progrntn 



dependence graph, program dependence web, dependence flow graph, and so on. Many 

optimizations have been designed around the Static Single Assignment (SSA) form of the 

program [20,4, 18,9]. This paper focuses on how to convert an explicitly parallel program 

to SSA form. 

The standard algorithms for converting a program to SSA form use the information in 

the CFG; focusing on the Parallel  Sections construct of PCF Fortran, we show here 

that adding parallelism to a CFG is non-trivial. Instead we propose a new model for control 

flow in parallel programs, imaginatively named the Parallel Control Flow Graph (PCFG). 

Explicit ordering between different sections is represented by a Parallel Precedence Graph 

(PPG). 

Two important concepts used in deriving the SSA form of a program are the dominance 

relation defined between nodes in a Control Flow Graph, and the dominance frontiers of 

nodes in a CFG. Extending these definitions to nodes in a PCFG is not straightforward; a 

PCFG has two types of nodes, those representing parallel constructs and those represent- 

ing basic blocks. This paper defines the dominance relation and dominance frontiers for 

PCFGs; efficient algorithms to compute these are described in the references [19,22,21,23]. 

Of critical importance for creating the SSA form of a parallel program is the definition 

of what are the reaching definitions for a variable in an explicitly parallel program. The 

concept of reaching definitions comes from the semantics of the language; we explore copy- 

in/copy-out semantics for parallel constructs, both for clarity in writing parallel programs, 

and to simplify and improve compiler analysis. 

2 Parallel Section Semantics 

The Paral le l  Sections construct [15] is similar to a cobegin/coend [7] or the Parallel 

Cases statement introduced by Allen et a1 [2]. It is a block structured construct used 

to specify parallel execution of identified sections of code. The parallel sections may also 

be nested. The sections of code must be data independent, except where an appropriate 

synchronization mechanism is used. Here we consider only structured synchronization 

expressed as Wait clauses, i.e., DAG parallelism [lo]. Transfer of control into or out of a 

parallel section is not supported. 

Some definition must be made when two sections of code that can execute in parallel 

both modify the same variable, or when one section modifies a variable that is used by 

the other. Consider the program in Figure l(a) as an example. What values should be 

printed for t and u? What values for w can reach statement 6? What assignments to v can 



i : v = i  
2: w = 2  

P a r a l l e l  Sect ions  
Sect ion A 

3 : w = 3  
4 : v = 4  
5 : t = v  

Sec t ion  B 
6 : v = w  
7 : w = 7  
8 : u = w  

End P a r a l l e l  Sect ions  

P r i n t  ' t=' , t , ' ,  u= ' ,  u 

1: v1=  1 
2: w 1 =  2 

P a r a l l e l  Sec t ions  
Sect ion A 

3: w z = 3  
4:  v z = 4  
5 : tl = Vp 

Sect ion B 
6 : vg = ~1 

7:  wg=7 
8 : u1 = wg 

End P a r a l l e l  Sect ions  

v4 = $(vz,vs) 
w4 = +(wz, w3) 

P r i n t  ' t=' , t l , ' ,  u= ' ,  ul 

Figure 1: Parallel Sections Construct and its SSA Form 

reach statement 5? Can statements 3 and 4 be interchanged? Can the compiler forward 

substitute statement 4 into statement 5? These are all questions that the compiler should 

be able to answer via analysis of the program. 

Under some models of parallelism, such as a model allowing any sequentially consistent 

execution 1131, there is more than one legal output for this program; we might consider the 

following possibilities (to save space, only a few orderings are shown): 

statement 

ordering output 

Note that optimization within a parallel section is restricted; even though statements 3 

and 4 are completely data independent, interchanging these two statement would allow the 

statement order: 4,6,7,3,5,8, which would give the unexpected output t = 2 ,  u=3. The legal 



outputs for this program depend on how the anomalous parallel updates to the variables 

are resolved, and this depends on the rules for the language. Several different rules can be 

(and have been) proposed for such syntax: 

Error: The language might define anomalous updates to variables as a programmer 

error. In this case no output is a legal output, since this is an illegal program. With the Ada 

view of a language, such errors should be detected and reported, either at compile time (if 

possible) or at run time. While detection of potential anomalous updates at compile time 

is possible, precise compile time analysis would in general be intractible. The user may 

want to know about potential anomalies in explicitly parallel code, since it may indicate a 

programming error, even when it is legal. Thus, compiler analysis for potential anomalies 

may be a very useful option [B, 5, 11, 31. 
Undefined: This is the Fortran view of languages: anything not required is optional, 

and there are no illegal options. Thus, compiler implementers are free to do whatever 

they want; any output is a legal output (from the compiler point of view). Often the 

implementers define some meaning, either actively or passively ("the definition is what the 

compiler does"), and then are forced into compatibility for the rest of eternity. 

Sequential: Here the only legal output is one that could have arisen by a sequential 

execution of the statements in lexical order. This view is sometimes expressed for anoma- 

lous parallel loops. In any case, with this definition there is only one unambiguous legal 

output, t=4  ,u=7. 

Immediate Update: This view is often taken due to hardware support for coherent 

multiprocessor caches. Here, any update to a variable must be visible to all other processors 

(or processes). This is closely related to the problem of multiprocessor memory coherence, 

where a sequentially consistent implementation is considered indistinguishable from a strict 

conflict-free shared memory multiprocessor [13]; sometimes a weak consistency model is 

used to overcome long latency operations for shared variable updates [12]. Under this 

model, any of the statement orderings in the table above would be legal, with three different 

possible outputs. The problems for the compiler are to detect what statement orderings are 

required, and what optimizations are illegal in the presence of other code that might execute 

in parallel with this code [14]. The statement reordering question mentioned above is one 

such example. This problem is even more insidious than it seems; if the language allows 

subroutines to be called in parallel (as does PCF Fortran) with potentially anomalous 

updates to global variables, the compiler can't even know the scope of the parallelism nor 

the variables that might be volatile, much less the interaction between multiple variables. 

Such a definition would essentially invalidate all compiler optimizations involving global 



varj ables. 

Copy-in/Copy-out: This is similar to the value/result style of parameter passing. 

The values of shared variables in a parallel section are defined to be initialized to the 

values they had when the parallel block was entered; any updates are made (conceptually) 

to local copies of the variable. When the parallel block is complete, the global state is 

updated with any modifications made within any section. This completely defines the 

values to be used for shared variables that are defined and used in different sections. If 

any shared variable is updated by more than one parallel section, some definition must still 

be made, corresponding to one of the previous choices. With this definition, the compiler 

can know that statement 4 can always be forward substituted into statement 5, since no 

anomalous updates are allowed to any variable while the section is executing. The only 

legal output is the same (for this program) as for sequential semantics, t=4 ,  u=7. 

Of these possible definitions, sequential semantics is the most well-defined, and also the 

most restrictive. Many current coherent memory parallel computers support immediate 

update semantics; however preserving immediate update semantics may be too restrictive 

in terms of the optimizations allowed. We advocate using copy-in/copy-out semantics. This 

gives a well-defined program without volatile variables, and allows optimization within a 

parallel section independent of code in other sections. The model has several potential 

problems, such as the overhead of making local copies of variables, and atomic merging of 

updated variables. There is more opportunity for compiler optimization here; the compiler 

can try to distinguish variables which are read-only in the parallel block (so no local copies 

need be made), those that are read and written in different parallel sections (so local copies 

must be made), and those that are read and written, but for which updates can be made 

in place. The analysis for update-in-place will be similar to that for functional languages, 

such as SISAL. For read-write variables which must be merged, the compiler must generate 

code to merge the updated values efficiently, without causing a bottleneck in the executing 

program. The Myrias SPS-1 control mechanism supported copy-in/copy-out semantics by 

clever use of the virtual paging translation hardware and operating system primitives [6];  

in that system, multiple updates to a shared variable by parallel tasks gave an undefined 

result after the parallel block. 

Static Single Assignment Form 

After converting a program into SSA form, it has the following two properties [9]: 

Each use of a variable is reached by exactly one assignment to that variable. 



X = l  
Y = l  
if P then 

X = 2  
else 

Y = 5  
endif 
z = X+Y 

X - I  
Y - I  
P a r a l l e l  s e c t i o n s  
Sect ion  

X = 2 
Sect ion 

Y = 5  
end p a r a l l e l  sec t ions  
z = X+Y 

Figure 2: Conditional and Parallel programs 

a The program contains merge functions, called &functions to distinguish values of 

variables transmitted from distinct incoming control flow edges. 

Cytron et a1 191 present a fast algorithm to convert a program into SSA form in which 

the number of $-functions inserted is minimal. The algorithm uses the dominance relation 

and dominance frontiers as reviewed briefly here. 

A CFG is a directed graph with a distinguished unique Entry vertex. We say a vertex 

v dominates another vertex w, written v >> w, if v appears on every path from Entry to w. 

By this definition, every vertex dominates itself, and Entry dominates every other vertex. 

The dominance frontier of a node v, DF(v), is the set of all CFG nodes z such that v 

dominates a predecessor of z but does not strictly dominate z. Note that v may itself be 

a member of DF(v). 

The SSA algorithm uses dominance frontiers to determine where to place +functions. 

+functions for a variable X are required at all the nodes in the iterated dominance frontier 

of S, where the set S is the union of all the nodes where X is assigned. The dominance 

frontier sets are constructed in a single bottom-up traversal of the dominator tree. Thus, 

both the dominance relation and the dominance frontiers are crucial to the conversion of 

a program to SSA form. We need to be able to extend these concepts to explicitly parallel 

code, and we want to have a meaningful SSA form of a parallel program. 

Flow Graphs for Parallel Constructs 

In the case of sequential programs, CFGs accurately model potential control flow. We 

might be tempted to model Para l l e l  Sections in a CFG by treating the fork point as a 

branch node and the join as a merge node. The CFGs for the two programs in Figure 2 



X1 = 1 
Yl = 1 
if P then  

Xz = 2 
e l s e  

Y2 = 5 
endif  
x3 = 4 ( X 2 , X l )  
Y3 = cb(YlrY2) 
z1 = X3+Y3 

X1 = 1 
Yl = 1 
P a r a l l e l  s ec t i ons  
Sect  ion  

X2 = 2 
Sect  ion 

Y2 = 5 
end p a r a l l e l  s ec t i ons  

Figure 3: SSA Forms of Conditional and Parallel programs 

will then look the same. However, the execution semantics of the two programs are very 

different. In the sequential program, only one of the two assignments X = 2 or Y = 5 will 

be executed; the value of Z will be 3 or 6, depending on the branch taken. In the parallel 

program, however, both assignments will be executed, and the value of Z will always be 

7; in fact, the two initial assignments to X and Y are dead code. The proper SSA forms 

of these two programs are shown in Figure 3. No $-functions are needed in the parallel 

program, since only the X2 and Y2 assignments reach the Z1 assignment. Clearly, trying to 

model this parallel program with a simple CFG is incorrect; the simple CFG would model 

the parallel construct just like it models conditionals, and would then add unnecessary 

4-functions at the join point. 

What we would like to have is a representation where the X2 assignment dominates 

the Z1 assignment, Y2 assignment dominates the Z1 assignment, but there is no dominance 

relation between the X2 and Y2 assignments at all. No Control Flow Graph will give us this 

kind of relationship. To handle this, we introduce Parallel Control Flow Graphs. 

5 Parallel Control Flow Graphs 

This section presents the Parallel Control Flow Graph (PCFG) that models control flow 

in parallel programs accurately and the Parallel Precedence Graph (PPG) that models 

concurrent execution within a parallel construct. A set of PCFGs and PPGs make up the 

Extended Flow Graph set (EFG) that model an entire program unit. 

A Parallel Control Flow Graph (PCFG) is a CFG which may have a special type of 



node called a supernode. A supernode essentially represents an entire Parallel  Sections 

construct. Parallel execution of the sections within a parallel block is represented by a 

ParaZZeZ Precedence Graph (PPG). Wait clauses in a parallel block impose wait-dependence 

between the waiting section and the sections specified in the Wait clause. Nodes in the PPG 

represent the sections in the parallel block with two additional nodes, cobegin and coend. 

The edges in the PPG (also called wait-dependence arcs) represent the wait dependences. 

To conserve space, we do not discuss wait dependence arcs in detail here. 

Formally a PCFG is defined as the graph G = (VG, EG,EntryG, ExitG) where 

VG is a set of vertices, each representing a basic block (basic block node) or an entire 

parallel block (supernode). 

EG is a set of edges {a + b 1 a, b E VG), representing potential flow of control in the 

program. 

EntryG E VG is the unique start node (or entry node) of the PCFG, with all vertices 

reachable from EntryG. 

ExitG E VG is the exit node of the PCFG, where ExitG is reachable from all vertices 

in VG. 

Parallel execution within a parallel block is represented by a PPG which is formally 

defined as a graph P = (Vp, Ep, Entryp, Exitp) where 

Vp is a set of vertices, each representing a section in a parallel block (section node). 

Ep is a set of edges or wait-dependence arcs in the PPG. 

Entryp E Vp is the cobegin node. 

Exitp E Vp is the coend node. 

By definition of the language, the PPG graph must be a DAG. 

Each section S is again represented by a PCFG S = (Vs, Es, Entry,, Exits) where 

Entrys marks the entry into that section and Exits marks the exit from that section. 

The Extended Flow Graph set (EFG) is the set of PCFG's and PPG's representing 

control flow and parallelism for a single program unit. The distinguished PCFG corre- 

sponding to the program unit is called G,,;,. When we talk about the nodes in an EFG, 

we mean the union of all the nodes in all the PCFG's and PPG's in the EFG. The nodes 



may be Entry or Exit nodes, basic block nodes, supernodes, cobegin or coend nodes, or 

section nodes. 

The EFG of the parallel program in Figure l(a) is shown in Figure 4. G,,;, has 5 
vertices: Entry, m (an assignment basic block), P1 (a parallel block), n (a print basic 

block), and Exit. The parallel block is represented by PPGpl with four vertices: the 

cobegin, A and B (one for each of the two sections), and coend. The two parallel sections 

are then again represented by PCFGs, each (in this case) with three vertices, one of which 

represents the basic block of assignments. 

6 Dominance Relation Between Vertices of an EFG 

Given a parallel program and its EFG, we want to compute the SSA form of the program. 

As mentioned before, the SSA algorithm depends on the dominance relation in the program. 

However, the vertices of the EFG are now spread over several graphs. While we have an 

intuitive feel for how the graphs are "nested," there is little formal basis for this. For 

instance, in Figure 4, by the semantics of the language, we want to have the relationships 

m >> q and q >> n, but not to have q >> r. Since m and q do not appear in the same 

directed graph, the canonical dominance relation between them is not defined. Here we 

address this problem. 

One way to define the execution relationships of vertices from different PCFGs is to 

consider all possible combinations of paths through all the parallel blocks in the program. 

We use a method to derive a set of sequential CFGs from an EFG, referred to as factoring 

[19, 211. Since there are only two paths through the only parallel block in Figure 4, there 

are only two factors, shown in Figure 5. 

Computing the dominance relation between nodes in the sequential CFGs obtained by 

factoring the EFG can be done easily using the standard definition of dominance. We 

define the parallel dominance relation to be the dominance relation for a basic block node 

in an EFG, computed as the union of the sequential dominators of in each of the sequential 

CFGs obtained by factoring the EFG. 

In the sequential factors in Figure 5, the dominance relations m >> q and q >> n hold 

in the first factor, and m >> r and r >> n in the second factor. We thus define this to be 

the set of parallel dominance relations for the program. Note that the parallel dominance 

relation can not be represented by a tree. 

Similarly, we define the parallel dominance frontier of a basic block node to be the 

dominance frontier in the EFG, computed as the union of the sequential dominance frontiers 



PCFG for the program PPG for supernode PI 

Exit 8 
Section A 

coend 92 

Section B 

Figure 4: Extended Flow Graph set 



A factor 

Exit Exit 

Figure 5: Factors of an EFG 

in each of the sequential CFGs derived by factoring the EFG. 

7 SSA with Copy-in/Copy-out Semantics 

The advantage of using the copy-inlcopy-out semantics is that the SSA form of the program 

can be easily constructed from the parallel dominance frontier. In fact, the same algorithms 

used to construct the SSA form in [9] can be easily modified to construct the SSA form of a 

parallel program. The key property of copy-in/copy-out semantics that makes this possible 

is that the only definitions for a variable that can reach a use within a parallel block must 

reach that use by some path from the cobegin vertex. We took advantage of this when 

defining the parallel dominance relation. Some examples will show the advantages; our 

first example program can be simply converted to SSA form as shown in Figure l(b). Note 

for instance that the only definition of w that reaches statement 6 is from statement 2. No 

&functions are needed here since there is no conditional code. The $-functions will be 

explained shortly. 

A second example shows conditional code within and surrounding the parallel block, 

in Figure 7. In every case, the only &functions needed in the program are those that are 

needed in some factor of the graph. 



a = l  
b = 2  
i f  a  = c  then  

b = b + l  
e l s e  

P a r a l l e l  Sect ions  
Sect ion A 

a = a + l  
i f  e  > 0 then  

e  = 99 
endif 

Sect ion B 
c = a  
i f  b  = c then  

e = l  
endif 

d = e + i  
End P a r a l l e l  Sect ions  

p r i n t  a , b , c , d , e  

a1 = I 
bl = 2 
i f  a1 = co t hen  

b2 = bl + 1 
e l s e  

P a r a l l e l  Sect  ions  
Sec t ion  A 

a 2  = a1 + I 
i f  eo > 0 then  

el = 99 
endif  

e2 = $(el, eo) 
Sect ion B 

c1 = a1 
i f  bl = cl  then  

e3 = I 
endif  

e4 = 4(e3, eo) 
dl = e4 + 1 

End P a r a l l e l  Sect  ions  

e5 = +(e2 , e4) 
endif  

a3 = $(all a2) 

b3 = #(bz, bl) 
c2 = $(co,c1) 
d2 = 4(do,di) 
e6 = 4(eo,e5) 
p r i n t  az7b3,c2,d2,e6 

Figure 6: Original and SSA Form of Extended Example 



8 Anomalous Updates 

When only one section updates a shared variable, the value of that variable after the 

parallel block is complete is well defined. Even if other sections use that variable, they will 

always get the "old" value of the variable (in the absence of any synchronization or wait 

clauses); for example, see variable a in Figure 7. Section A increments a, but Section B 
still sees the old value of a, namely al, which is equal to 1. In fact, constant propagation 

could be used to forward substitute the constant value 1 into all uses of al; this would then 

allow a2 to be computed as the value 2, and so on. 

However, when two parallel sections update the same variable, the value of the variable 

after the parallel block is indeterminate. In Figure l(b), variables v and w were updated in 

both sections; within the sections, the values to be used for each variable is well defined. 

A use of v outside the parallel block, however, might be reached by either v2 or vg; to keep 

the Static Single Assignment rules, where each use is reached by only a single assignment, 

we must somehow merge these two updates at the End Parallel  Sections statement. 

This is the reason for the $-functions in the parallel SSA programs. 

The presence of a $-function may indicate to the compiler that the program contains 

an actual or potential anomaly. A useful compiler option would be to flag all potential 

anomalies such as this. Note that such anomalies may only be potential; in Figure 7, 

the variable e is only potentially updated in the two sections. If the two conditions are 

mutually exclusive, then in fact only one update will be done, and the semantics of the 

language should preserve whichever update is performed. Nonetheless, the $-function is 

needed to preserve the SSA properties. 

Conclusion 

Previous work has shown that the Static Single Assignment intermediate representation 

forms a practical basis for optimizing sequential programs. We have shown how to extend 

Control Flow Graphs, dominance relation and dominance frontiers used in computing SSA 

to include parallel constructs. SSA is discussed in detail in [9]. By extending SSA to include 

parallel constructs, the resulting intermediate language will form a powerful platform for 

many classical code optimization algorithms that can be run on parallel programs. 

Our current work has found an efficient and simple algorithm for finding the parallel 

dominators and parallel dominance frontiers [22]. We are implementing this algorithm as 

well as the algorithm to find anomalous updates in parallel programs in our prototype 



compiler, Nascent. 
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