
Abstract

Experience with prototyping tools for user interfaces in-
dicates that just providing tools does not solve the problem
of producing useful interfaces. Rapid prototyping is a de-
sign method for user interface development that emphasiz-
es usability. However, it a bottom-up approach and thus in
inherent conflict with more traditional software engineer-
ing techniques, which are top-down and specification-driv-
en. The solution is to integrate both approaches in a single
method.

The Quick User Interface Design (QUID) method is a
user-centered method that is particularly useful for pro-
ducing an initial prototype so that iterations of the proto-
type/test loop can begin from as good a design as possible.
The method is a refinement of participatory design, adapt-
ed specifically for use with interface prototyping tools.

 In practice, we have observed novice designers use this
method quickly to produce prototypes that are useful be-
cause the method promotes systematic attention to users.

1: Introduction

The recent methodology of user-interface development
has been characterized by two complementary issues, us-
ability and productivity. Approaches for dealing with these
issues have centered around rapid prototyping and inter-
face tool or construction kits, respectively. That is, the is-
sue of usability has been addressed by software engineer-
ing techniques that allow greater exploration of the design
space or more attentiveness to users’ needs, while the issue
of productivity has been addressed by software systems de-
signed to remove the tedium of hand-coding interactor ob-
jects and/or their integration into in an interface.

In this paper, we propose a methodical approach to the
development of the initial prototype that addresses both us-
ability and productivity. The method, Quick User Interface
Design (QUID) method, extends our previous work in user
interface construction kits. We describe QUID, placing it in

the context of prior work in prototyping and construction
kits, and present our experience with using the method. The
fundamental idea in QUID is to begin the iterative process
of designing, evaluating and refining the user interface at a
position in the design space that minimizes the effort re-
quired to attain an acceptable design.

1.1: Rapid prototyping

We begin by briefly examining the origins and current
practice in the use of rapid prototyping for design and im-
plementation of user interfaces. The key point is that proto-
typing techniques avoid many pitfalls of more traditional
approaches but in turn lead to methodological conflicts
among members of the design team.

Gould and Lewis [10] recommended three principles of
design for usability of computer software: early focus on
users and tasks, empirical measurement, and iterative de-
sign. These principles underlie the use of rapid prototyping
as a method for development of user interfaces and stand in
contrast to beliefs that lead to waterfall-model design: be-
lief in the power of reason to construct an ab-initio rational
design, belief that design guidelines should be sufficient
because they generalize our experience with human-com-
puter interaction, and belief that good design means “get-
ting it right the first time.”

As a development method, rapid prototyping of user in-
terfaces has matured into a reasonably well-understood
program. This involves acceleration of the process of con-
structing a system—and particularly for user-interface
components—prototypes so that the time between design
and evaluation is minimized [13]. This permits multiple it-
erations through the design and test loop, thus leading to
better attention to the needs of the user and systems that are
more learnable, usable, and functional.

Rapid prototyping of user interfaces has played a
significant role in participatory approaches to design (see,
e.g, [2, 3]), primarily because the user/designers can
quickly see the consequences of design decisions.

QUID: A Quick User-interface Design Method Using Prototyping Tools

David G. Novick

Dept. of Computer Science and Engineering
Oregon Graduate Institute

19600 N.W. Von Neumann Drive
Beaverton, OR 97006-1999

Sarah A. Douglas

Dept. of Computer and Information Science
University of Oregon
Eugene, OR 97403



Prototyping is a social process that provides a means for
designers’ ideas to be understood and evaluated by the
design team [28]. 

There is an apparent conflict between this sort of bot-
tom-up method and the top-down methods based on speci-
fication. The issue we see as critical in considering the util-
ity of rapid prototyping for user interfaces is the conflict
between the methods of development best suited to usable
interfaces and those best suited to achieving economical re-
sults. These differences stem in part from the characteris-
tics of the technology and in part from the characteristics of
the members of the design team. Accordingly, a basic con-
flict as to method may emerge among members of the de-
sign team as they strive to meet divergent goals:

 For most applications an evolutionary, whole-sys-
tem, continuous prototype is a desirable choice for
the human factors developer. However, revolution-
ary, interface-only, intermittent prototypes are
much easier for the computer scientist to provide,
mainly because most programming environments
require programs to be complete and correct. [13,
p.60].

The differences in approach among members of the de-
sign team may stem from their inherent cognitive models of
user interfaces. Gillan and Breedin [8] have shown system-
atic differences in the cognitive models of the human com-
puter interface between human factors specialists and soft-
ware developers. The different experts have different pat-
terns of links between interface and system-related
concepts, suggesting that the experts view the components
of the an interface system in terms of the functional values
most directly relevant to their own methodological con-
cerns. For example, human factors experts tend to associate
the term UIMS with prototyping, while software experts
tend to associate UIMS with application software. Accord-
ingly, we conclude that a good design method for support-
ing multiple-role design teams should provide systematic
means for specifying and communicating information from
which the design is to be developed.

Hartson and Smith [13] identified the bottom-up nature
of designs as a pitfall for user interfaces produced by rapid
prototyping. They pointed out that because the details of
the interface tend to be developed first, basic issues of sys-
tem functionality may be ignored until too late in the devel-
opment process. This causes upheaval in the progression
toward an implementation and, we would add, frustration
on the part of user/designers. One solution to this problem
involves alternating phases in the development process. In
case studies of interface design, Hartson and Smith ob-
served alternating “waves” of bottom-up and top-down
progressions through abstractions in design.

What is needed, then, is a more integrated approach that
seeks to combine the benefits of both bottom-up and top-
down design in the initial prototyping process. In section 2
of this paper, we propose such an approach.

1.2: Prototyping tools

User interface construction kits, including direct-manip-
ulation systems, now support relatively rapid programming
of interface functions, particularly for prototypes. Howev-
er, the evidence suggests that these systems do not lead to
increased productivity because of a systematic failure in
their interaction with current design methods. 

Gould and Lewis [10] observed that although their three
design principles seem obvious and have been recommend-
ed since the 1970’s, they are not usually employed in sys-
tem design. One might have surmised that, from the per-
spective of 1985, the failure to use the prototyping method
was a consequence of a lack of prototyping tools: the de-
signs could not be prototyped rapidly enough for the meth-
od to be effective. Thus, in considering the same question
in 1988, Wilson and Rosenberg [28]suggested that the
stumbling block is the unavailability of prototyping tools:

We might ask, ‘If prototyping is so great, why is it
so seldom used?’ Neither computer programmers
nor designers seem to be formally trained in the
techniques of prototyping. The tools that exist are
usually proprietary or require expensive worksta-
tions. Surprisingly, few prototyping tools are avail-
able for the ubiquitous ‘personal computer.’ [28,
p.873].

In the three years since Wilson and Rosenberg assessed
the situation, some parts of the answer have become clear-
er. More tools are available, even on personal computers;
recent commercial tools include HyperCard, SuperCard,
Prototyper, the NeXT Interface Builder, and HPVUE. The
problem seems to arise from some factor other than tools.

 Grudin [12] suggested that the failure of software de-
velopers to adopt the Gould and Lewis approach can be at-
tributed to organizational forces. The importance of the
user interface to other organizational units, such as prepar-
ers of documentation, leads to discouraging the use of an it-
erative approach: when an interface is produced—even the
first prototype—there is strong pressure to “sign off” on it
in order to avoid instability in the development process as
a whole.

Our own experience with prototyping tools for user
interfaces indicates that just providing tools does not solve
the problem of producing useful interfaces. It is certainly
true that prototyping tools relieve the programmer of the
onerous burden of coding the mechanics of interactor



objects, just as interface toolkits relieved the burden of
having to code interactor objects using graphics primitives.
(Interactor objects are the components of the user interface
that present and collect communication to and from the
user; interactor objects typically include text fields, buttons
and menus.) The problem remains, however, that a rapidly
produced interface may place the prototype in a non-
advantageous location in the design space. Addressing the
issue of user interfaces specifically, Wilson and Rosenberg
[28, p. 873] concluded that

 No matter how powerful the tools used for rapid
prototyping, the job of designing a human-comput-
er dialogue for a significant size project will always
remain complex. A lot must be articulated between
user and computer just to perform a simple task. It
is important to remember that the ‘tool’ only speeds
up the process, it does not ensure a high quality de-
sign solution.

One approach to overcoming this problem has been to
change the technology. In the PICTIVE design technique
[18], users manipulated physical representations of inter-
face design objects. Sharing of design concepts and ration-
ales is achieved via video recordings of the users’ actions
and interactions. The developer of PICTIVE found this ap-
proach to be particularly successful in originating new de-
signs. The major problems of the technique that he ob-
served basically involved the video technology: the records
were too informal and too extensive. Of course, the tech-
nology of plastic and video does not create a working inter-
face. Moreover, other research suggests the importance of
providing “vertical” prototypes (i.e., usefully functional,
even if only for a subset of the application domain) for user
evaluation [11].

We addressed the technical aspects of prototyping with
our research into the QUICK, the Quick User Interface
Construction Kit [5, 6]. QUICK was a Macintosh-based
system intended for non-programmers. In developing
QUICK, we stressed that productivity gains from prototyp-
ing tools must be understood by considering the program-
ming language and the programming environment as sepa-
rate factors. We approached the problem of the program-
ming language by offering a system with mid-level
abstractions—interface objects with powerful, general
functionality—that could be manipulated directly in the
programming environment. The objects were prototype-
based rather than class-based.

 In using QUICK to prototype interfaces, we found:

• Although the set of application functions was limited
(e.g., no arithmetic), expressive interface prototypes
could be developed quickly.

• Complex objects could be rapidly created, duplicat-
ed, and modified.

• Interfaces had to planned; creation of interfaces us-
ing a “free-form” approach was time-consuming and
frustrating.

Our results with QUICK indicated that there was a
strong need for planning in interface design and develop-
ment. It’s not simply that the designer needs a clear notion
of the functions of the interactor objects; we explored ex-
amples of interface creation in cases where a complete,
working system had already been developed on another
platform. Rather, it was the process of creation that needed
the planning. For example, the ease of creation and modifi-
cation of interface interactor objects was both exhilarating
and frustrating. Typically, the designer would create some
basic object, perform modifications that specialized the ob-
jects, and then would realize that the basic objects should
have been different in some way. This meant either chang-
ing each of the objects or abandoning the specialization.
Garnet [19] partially addresses the specific problem of de-
layed modification through default inheritance of values of
the prototype. In Garnet, objects are copies of a prototype
rather than instances of a class; however the copies will re-
flect subsequent changes to the prototype. Nevertheless,
the general problem of a lack of a systematic approach to
the development of the initial prototype remains unsolved.

In short, what is needed is a design method that accounts
for and facilitates effective use of user interface prototyp-
ing tools. Perlman [21] contrasts user interface develop-
ment tools versus methods. A better approach, we believe,
is tools plus methods. To reach the goal of a synthesis of
tools and methods, we developed a process of rapid proto-
typing designed to take advantage of the features of user in-
terface construction kits such as QUICK and HyperCard.

2: An introduction to QUID

The Quick User Interface Design method (QUID) is a
user-centered method that is particularly useful for produc-
ing an initial prototype so that iterations of the prototype/
test loop can begin from as good a design as possible. The
method is a refinement of participatory design, adapted
specifically for use with interface prototyping tools. The
central idea is to combine the advantages of prototyping as
a method with the characteristics of user-interface con-
struction kits so that both usability and productivity are en-
hanced.

In developing QUID, we took a pragmatic approach to
defining usability. That is, usability is an empirically
determinable quality, the attributes of which can be
assessed via observation of indices of satisfaction by users.
Thus, for example, one could assess usability by looking at



these measures—some objective, others subjective—of a
system’s user interface:

a. Overall functionality
b. Learnability (i.e., “intuitive” ease of use)
c. Robustness (i.e., protection against and recovery from

failures)
d. Quality of output
e. Time to perform tasks
f. Enjoyableness
g. Overall acceptability

Accordingly, productivity could be measured in terms
of the number of person-hours spent by the design team in
reaching an acceptable level of usability. To attain these
goals, then, we refined QUID from the earlier prototyping
methods, taking particular account of the characteristics of
currently available prototyping tools.

QUID’s contribution to the methodology of user-inter-
face development is to integrate (1) prototyping for usabil-
ity and (2) specification for productivity in a way that ad-
dresses the conflict between top-down and bottom-up
methods.

2.1 Task/Action analysis in QUID

To integrate the results of functional analysis into a pro-
totype user interface, one needs a systematic approach to
providing users with the means to express their actions in
the domain of the program. While guidelines and standards
have been traditionally used in interface development to as-
sociate actions with meaning, recent research suggests that
guidelines are not very useful [25], particularly for design
teams with few HCI experts [14]. In QUID, then, designers
apply a task/action analysis to make explicit what the user
does and how they do it.

The task/action analysis in QUID is a simplification and
refinement of traditional task analysis; our intention is to
make the process a feasible one in order to overcome the
blocks to the use of prototyping observed by Lewis and
Gould and of prototyping tools observed by Wilson and
Rosenberg. Task/action analysis involves a kind of action
language as perceived by the user; that is, how users can
express their goals through the interactive system [20].

There are a variety of task analytic techniques because
this approach has application in a wide number of fields. In
the general case, a task is a meaningful unit of work perfor-
mance. According to Phillips, et al. [22], the focus of users
as members of the design team is on explaining the require-
ments and their interactions; task analysis is an appropriate
method for doing this. As a user interface design method
for conceptual design, they propose defining (a) the display
objects, (b) their associated properties, and (c) the opera-
tions on the objects, their properties and relationships. In

screen design, the point of task analysis is to determine
what items of information the user needs at every step in
the task, and what items the user needs to provide to the
system [27]. The system of task/action analysis used in
QUID derives from the GOMS model developed by Card,
Moran and Newell [4]. QUID’s model is like that of Siochi
& Hartson’s User Action Notation for representation of
tasks in user interfaces [23]. However, QUID’s model was
simplified and generalized to include graphical user inter-
faces in addition to text-based interfaces.

 2.2: Overview of the method

In QUID, the user interface design team follows modern
models of team-based approaches to software develop-
ment. Much of the process is akin to knowledge engineer-
ing: the knowledge of the tasks to be performed is a kind of
expertise to be elicited from the users. Accordingly, we
base our the makeup of our design team on successful sys-
tems for knowledge elicitation (see, e.g., [1]). The cast of
characters should include representatives of the parties in-
terested in the outcome of the development process:

• Client: The person (or a representative of the organi-
zation) who has authority for the project.

• User: Actual users of the current and proposed sys-
tems. If the product is a mass-market product, repre-
sentative users should be identified.

• Interface designer: Typically a human factors spe-
cialist or computer scientist with particular expertise
in human-computer interaction.

• Programmer: Software engineers who will be build-
ing and maintaining the system.

QUID stresses participatory design. Recent research
suggests that the interface designer should also be a part of
the team rather than a consultant [16]. Certainly the users
on the design team should be actual users rather than super-
visors or other team members who are role-playing.

QUID includes the essential of elements of Gould and
Lewis’s method, but adds a critical top-down component as
a way of providing a more systematic means of creating the
initial design, thus positioning the initial design in a good
location in the design space. Accordingly, the four key
themes in QUID are

1. Focus on the user
2. Top-down analysis
3. Early and continuous testing
4. Iterative process

As QUID’s principal focus—and its chief difference
from earlier methods—is development of the initial
prototype, in this paper we concentrate on this phase of the
method. In QUID, then, the process of design includes a



functional specification, an interface specification, and a
prototype implementation. We now discuss each of these
steps in turn.

2.3: Functional specification

The functional specification of the interface involves
characterizing the user population, studying the existing
system, and defining the primary functions of the new sys-
tem (seen as including both machines and humans).

2.3.1: Characterizing the user population: Typically, the
client will have identified particular users or a class of users
for whom the new system is intended. If for particular
users, the process of characterization is a straightforward
one; the design team can directly apply the kinds of user-
focusing techniques described by Gould [9]. In the general
case, the design team should address the following ques-
tions:

Who are the users?

Are they going to become true experts or just casual us-
ers or one-time only users?

What familiarity do they already have with answering
machines and telephones? 

What kinds of things are they likely to want the system
to do? 

How much time will they have to learn the system? 

How much time are they willing to spend looking things
up in a manual?

How much time do they have to use the system?

With an explicit profile of the users, the designers can
judge the suitability of the design during the initial stages
of development rather than simply hoping that the initial
design will be useful.

2.3.2: Study the existing system: The second phase of
the functional specification is to study the existing system.
Often the existing system is not computer-based; neverthe-
less, the functions that the existing system provides to its
users can be identified and analyzed. In this process, it is
the actual system rather than a description of the system
that should be analyzed.

The analysis of the existing system should address these
questions:

What are the most useful functions of the existing sys-
tem and why?

What functions, if any, seem unneeded and why?

What problems do you find in the existing design?

What is good in the design of the existing system?

2.3.3: Define the primary functions of the system: The
third phase of QUID’s functional specification is to define
the system’s basic functionality.

We have found that it is helpful to focus on the most
central, characteristic functions rather than to try to define
peripheral functions. Functions that will be merely helpful
can and should be added in later iterations of the design. In-
deed, it may turn out that a clear and direct system pro-
duced by basic functional specification does not need the
ancillary functions that the designers had anticipated. If
these functions are in fact needed, early usability tests will
disclose this. Functions relating to on-line assistance
should not be considered ancillary however. Postponing
development of on-line assistance until later iterations is
one of the chief causes of inadequate help systems; assis-
tance should be implemented as a central function of the
system [7]. Thus, the key questions to ask are

What are the most necessary functions? Why?

What other functions would be nice to have? Why?

What functions should an on-line help system support?

In answering these questions, the design team should
take into account the following factors:

• What does the user want the system going to do? The
system will be a process, so an appropriate way to
think about its characteristics is in terms of its dy-
namic functions.

• What “products” will it produce? What the user ex-
pects from the process is some useful result, so the
system should be defined functionally in terms of its
outputs, most broadly considered.

• What are the constraints? The system consists of both
computational and human elements, and each is sub-
ject to its peculiar constraints. For the computational
elements, the constraints include the complexity of
the application’s computation and the characteristics
of available input and output devices. For the human
users, the constraints include psycho-motor at-
tributes, cognitive capacity, and extent of knowl-
edge.

2.4: Interface specification

With the functional specification completed, the next
major step in QUID is the interface specification, in which
the system’s domain functions are expressed as computa-
tional functions. Thus the interface specification includes
refining the system’s functions into core functions for im-
plementation, translating the functions into a task-based
design of the interaction, and then defining the presentation
of the interactor objects that constitute the interface. The
key point of this process involves a task/action analysis of
the system: for each primitive task, the interface developer
identifies the function the user seeks to execute, the user’s



action needed to achieve this, and the response produced by
the interface’s display. These factors help to determine sys-
tematically the presentation and responses of interface in-
teractor objects.

2.4.1: Define core functions: The process of interface
specification begins with refinement and reformulation of
the system’s high-level primary functions into lower-level
core functions for implementation. This process has three
components: reconciliation of constraints, decomposition,
and allocation of responsibilities.

In reconciling constraints, the designers determine
which of the system’s possible functions can be achieved.
Factors to be considered include the constraints identified
in the functional specification, the particulars of the target
platform and environment of use, and the resources avail-
able to the design team.

The second step is a top-down decomposition of the
achievable functions. The basic idea is to decompose each
high-level function into functional primitives available in
the prototyping environment.

 Third, the system’s component functions should be al-
located between user and machine in a way that takes best
advantage of the characteristics. Factors to be considered
include:

• Repetitive elements. If some functions are repetitive
or ministerial, they ought generally to be assigned to
the machine. For example, searching text for a string
would be a good function to assign to the machine.

• Judgment calls. If other functions require the exer-
cise of judgment, they are likely candidates for as-
signment to the user. For example, determining if a
sentence has a clear meaning would be a good func-
tion to assign to the human. 

• Errors and error recovery. The characteristics of the
anticipated errors should suggest a strategy for allo-
cation.

• Speed. Again, the particulars of the function and the
abilities of the user and the machine need to be eval-
uated on an individual basis. For example, arithmetic
division would likely be performed by the machine
and identification of pictures of faces would likely be
performed by the human.

2.4.2: Translate functions into design specification:
After the core functions have been identified and allocated,
the functions assigned to the computer need to be translated
into a specification for the design of the user interface. The
basic idea is to express functions in terms of actions that
users can take, thus the key question for the design team to
answer is “How will the users use the system’s functions?”

Using QUID’s task/action analysis scheme, the specifi-
cation is expressed as a comparatively simple triple of

function, action, and display response. Thus to define task
specification, the design team defines the user task method
for each core function. The function is the expressed as a
unit task, the action as an expression by the user via the in-
terface, and the display response as feedback from the sys-
tem to the user. The display response normally includes the
consequences of the application’s processing; the design
team needs to bear in mind that absent a display response,
the effect to the user of even the most effective computa-
tion is that nothing has occurred. We express this analysis
in the following formula:

Goal + Action on Object -> Display Response

The objects that compose the interface can both exhibit
responses and collect input from the user. The effects of the
user’s actions on the objects constitute an interactor object
specification. This specification should be directly imple-
mentable in the prototyping environment available to the
design team. In other words, it is highly unlikely that there
is a primitive operation in the prototyping environment that
expresses any of the high-level functions the system is in-
tended to perform. If one of these component functions can
be realized directly by a primitive operation available in the
prototyping environment, the decomposition is complete
for that function. Otherwise, the process continues recur-
sively on the remaining complex, intermediate functions
until all functions are expressed as design primitives of the
prototyping environment.

The palette of user actions provided by the prototyping
environment constitutes a bound on the design. Thus if one
is prototyping in QUICK, a possible user action might in-
volve dragging an object on the screen; if one is prototyp-
ing in HyperCard, such an action would not be possible. If
the design team is using HyperCard, the possible user ac-
tions would be

mouse up
 button

 card

type
 field

scroll
field

mouse in XY
 picture

Possible display responses in HyperCard would include:

show / hide
 picture
 field
 button

play
 sound

visual effects
 (on go to card)



 Expressing the interface specification using the task/action
method thus involves generation of triples of functional
goals, means for users to achieve the goals, and the sys-
tem’s feedback to the user.

2.4.3: Define presentation of display objects: The
final step of the interface specification process involves
defining the layout and graphical characteristics of the
interactor objects. Up to this point, the screens and interac-
tor objects have existed as abstractions; the design team is
now ready to make them more concrete because the key
functional aspects of the interface have already been made
explicit. The alternative, bottom-up approach, lets the
determination of key functions of the initial design fall to
the more haphazard consequences of choice of layout and
graphical characteristics of the interface objects. This dif-
ference explains why QUID’s approach is likely to lead to
a better starting point in the design space for the iterative
process of prototype development.

The spatial layout of the interactor objects again pro-
ceeds via top-down refinement. For example, overall con-
texts are assigned to windows and sub-contexts assigned to
sub-windows. In making these choices, performance issues
become important: the physical ability of the platform to
express the design must be taken into account. A similar
balance of factors must be considered in choosing the
graphic characteristics of the interactor objects. Here, hu-
man factors research provides assistance in deciding on at-
tributes such as shape and colors (see, e.g.,[24]). Metaphor
and analogy also provide useful design-organizing princi-
ples [17].

2.5: Interface implementation and evaluation

With the specification, the initial prototype can be im-
plemented in a reasonably straightforward manner using
systems such as Garnet, QUICK, HyperCard, or HP-VUE.
Testing of the initial prototype can then be conducted.

Prototype implementation need not be complete, or
even computer-based. While QUID emphasizes systematic
development of an initial prototype for implementation
with computer-based rapid prototyping tools, other re-
searchers in the field of iterative, participatory design have
achieved success with low-tech methods such as mock-ups
and storyboarding (see, e.g., [15]). There is, in fact, a spec-
trum of prototypes extending from plastic shapes on a table
[18], through storyboarding, mock-ups, Wizard-of-Oz
techniques, and functional software prototypes.

At this point, the design team’s main task is to build the
display objects and their responses. The prototype should
include the design’s spatial layout, graphics, text, and other
details. Implementors can stub system functions where

necessary but should try to give the user an indication of
what function would have been executed. In HyperCard,
showing a field or going to a card (and then hiding or re-
turning) are typical ways of doing this. For display respons-
es that involve on-line assistance to the user, the actual text
of the specified system should be displayed to the extent
possible. The initial prototype should emphasize coverage
of the most significant features of the design. Storyboard-
ing, metaphors, and RTN specifications can be used in or-
der to cover display and control aspects of the design.

In testing the initial prototype developed via QUID, we
suggest using protocol analysis of target users performing
real tasks. A complete review of evaluation techniques is
beyond the scope of this paper. We would like, though, to
stress the factors that we believe are key to successful use
of the techniques in the context of the QUID method. In
producing the protocol, we prefer the “constructive interac-
tion” approach, which involves a problem-solving conver-
sation between two users, rather than the “think-aloud” ap-
proach, which may distort cognitive loads and lead to mis-
leading introspection. The tasks presented to the users
should encompass the key functions, present a range of ac-
tions, and vary in difficulty. The interaction should be vid-
eotaped for later analysis. 

In analyzing the users’ interaction with the prototype,
QUID again uses the task/action analysis as a central part
of the process. The design team reviews the testing proto-
col, identifying and describing in detail incidents of inter-
action difficulties in the following categories:

(a) Interpreting the meanings and functions of the inter-
actor objects

(b) Formulating tasks (matching actions to goals)

(c) Knowing what to do next

(d) Misunderstanding feedback

(e) Getting help

(f) Other

For each problem the users encountered in performing
the tasks, the design team recommends changes to make
the system more useful or learnable. Indeed, the same basic
analytic methods applied to the existing system can now be
brought to bear on the new system: What are the most use-
ful functions of the system and why? What functions, if
any, seem unneeded and why? What is good in the design
of the system? Given answers to these questions, the cycle
of analyze-specify-implement-and-test can begin its sec-
ond iteration, moving closer to the best possible design.



3: Example

To make clear the use of QUID, we illustrate key points
of the method using the design of computer-based tele-
phone answering machine as an example.

3.1: Functional specification

In studying the existing system, the design team should
see what an actual answering machine really does, as op-
posed to reading the machine’s instructions or manual. In
the absence of experience with the real system, judgments
of utility of functions will be significantly less accurate.
When the team then defines the primary functions of the
system, in the case of the telephone answering machine the
core functions would likely include dialing and answering
telephone calls, and might include setting a message that
incoming callers would hear. The system’s products turn
out mainly to be actions: outgoing calls should be placed
and incoming calls should be signaled and answered.

3.2: Interface specification

In the interface specification, the system’s domain func-
tions are expressed as computational functions. A signifi-
cant aspect of this process is identifying what aspects of the
task are computational and what are best-suited to humans.
Thus, in allocating responsibility for functions between hu-
man and machine, for the telephone answering machine,
looking up phone numbers in a directory would thus be an
appropriate function for the computer, because it calls for
repetitive, speedy work. Conversely, choosing which num-
ber to call should normally be the responsibility of the user
because it requires the exercise of judgment. Similarly,
identifying a null outgoing message would be appropriate
for the machine; identifying that the wrong number had
been reached would be appropriate for the user. Clearly,
generation of the dialing tones would be a good function
for allocation to the computer.

Having identified and allocated functions, the designers
of the telephone answering system would then apply task/
action analysis to develop actions for the user that express
their task goals. For example, one of the task/action triples
might express the task, action, and display response in the
case of the human’s using the system to dial a telephone
number:

Function: dial a telephone number

Action: mouse up PhoneButton

Display response: change PhoneButton icon, play
PhoneTones

 Defining the presentation of the display objects for the
telephone answering system would then involve graphic

representation and placement of the interactor objects. A
typical display might include a text field for a number to be
dialed.

3.3: Implementation and evaluation

Having implemented a prototype of the specified an-
swering machine system in QUICK or HyperCard, evalua-
tion of the prototype should be based on a range of tasks
typical to the application. For example, one might ask the
users of the telephone answering machine system to per-
form the following tasks:

1. Listen to new messages

2. Record an outgoing message

3. Call a relative

4. Look up a friend’s telephone number

These tasks were chosen because they represent classes
of goals at different levels of specificity and function. They
are intended both to assure usability and to challenge the
designers to be imaginative.

4: Discussion

Having described QUID, we now look at our experience
with the method in practice and the implications of using
QUID for developing usable and efficiently produced user
interfaces.

4.1: Empirical evaluation of QUID

In practice, we have observed novice designers use the
QUID method quickly to produce prototypes that are use-
ful. We tested QUID using a method similar to that of
Thakkar, et al. [26]. Our design teams consisted of mem-
bers of a class in interface design and evaluation. There
were 15 designers working in teams of two or three. The
designers were typically software professionals with con-
siderable experience with graphical user interfaces. The
teams were given an actual telephone answering machine
and asked to build a user interface for a similar computer-
based system using HyperCard.

All six teams produced goal-oriented interfaces, rather
than the function-oriented interfaces typified by VCR con-
trols. They were able to do so despite little or no prior
knowledge of HyperCard. In three days, the teams
achieved two iterations of their prototypes, including task/
action analysis, specification, implementation and evalua-
tion.

The prototypes varied mainly in terms of completeness.
Not surprisingly, prototypes developed by three-member
teams appeared more complete and polished than those



developed by two-member teams. All prototypes had
appropriate levels of system display responses, as
determined by the evaluations and our post-course
judgment. There was general agreement among the
prototypes as to key tasks but user actions for these tasks
varied from team to team. Accordingly, using the criteria of
Thakkar, et al., we conclude that the QUID method met its
goals for both usability and productivity.

There were significant differences, however, in the cir-
cumstances, methods, and results of the QUID experience
and that of Thakkar, et. al, in their evaluation of the NeXT
Interface Builder (NeXT IB). In the NeXT IB evaluation,
the designers had the underlying program functionality al-
ready prepared for them; all they had to do was to build the
user interface. In the QUID evaluation, no prior answering
machine application program was available to the design-
ers, so they had to program whatever functions they needed
in HyperTalk. The method of evaluation differed as well. In
the NeXT IB evaluation, the designers rated their own in-
terfaces. In the QUID evaluation, the rating of interfaces
was conducted by non-team designers. In both cases, sub-
jective measures of usability were collected, but compari-
sons between these numbers is not meaningful. In the
QUID evaluation, use of the QUID method included oper-
ational testing by persons who were not members of the de-
sign team, but the results of this kind of usability testing are
of the “here’s something to fix” variety rather than a nu-
merical value somehow indicating goodness.

A comparison of the interfaces produced using the
NeXT IB alone and using HyperCard with QUID is diffi-
cult because of the different circumstances of the evalua-
tions. However, review of the graphics of the designs pro-
duced by the design teams suggests the following prelimi-
nary conclusions. First, the interfaces produced with the
NeXT IB look more polished, largely because the range of
design expression is limited by the construction environ-
ment to interaction objects with a consistent “NeXT look.”
The HyperCard interfaces have a much greater variety in
their expression, reflecting the plasticity of HyperCard as a
tool. Second, the NeXT IB interfaces, based on an underly-
ing application and without using user-focused, top-down
methods, appear to express the computational functions of
the underlying application quite directly; the buttons and
fields correspond to functions and fields of the program. In
the systems developed through QUID, the interfaces ap-
pear to express task-based functional goals, and then pro-
vide means to accomplish these. In making these com-
ments, though, we want to make clear that:

(1)We could only evaluate the Next IB interfaces on the
basis of the pictures and descriptions of the interfaces
published by Thakkar, et al.

(2)The study performed by Thakkar, et al., was sound
and needed research; we believe that their comments
about the NeXT IB are well-founded.

(3)The NeXT IB is not a prototyping environment; it is
basically a construction kit particularly suited to cer-
tain kinds of applications. However, we believe that
use of QUID in conjunction with the NeXT IB could
produce significantly more usable interfaces.

We have replicated our results with QUID in additional
classes of undergraduate and graduate students in computer
science.

4.2: QUID in the development context

In discussing obstacles to participatory design in large
product development organizations, Grudin [12] identified
several challenges to productive involvement of users in
the design process. In some cases, the use of the QUID
method should ameliorate some of the systematic problems
Grudin observed. Foremost among these is the late in-
volvement of users and HCI experts. In traditional software
engineering methods, a relatively sharp line is drawn be-
tween the application and its interface; this leads to defin-
ing the tasks with too little consideration of user expres-
sion. And at the same time, as Grudin stressed, organiza-
tional forces cause too-early stabilization of the interface
because organizational units dealing with issues like docu-
mentation and training depend on it. These forces, taken to-
gether, tend to squeeze interface development into a very
small window.

The use of QUID addresses this problem by requiring
that systems be analyzed from the beginning in terms of us-
ers’ requirements and expression. That is, what the system
is to do depends on analysis of user tasks in terms of actions
within the interface. Moreover, we expect that the use of
QUID would help to overcome challenges to benefiting
from user contact and challenges to obtaining feedback
from users. Grudin noted that:

• Developers typically either generalize from a limited
number of contacts or get bogged down with dis-
agreements among users;

• Design recommendations may not be incorporated in
the product;

• Feedback from users is usually gathered haphazard-
ly; little actually gets to developers, who are rarely
aware of users’ pain; and 

• Developers neglect on-line help systems.

Participation by users in the design process, use of iter-
ative prototyping, early and continuous testing, and incor-
poration of on-line assistance as a central function of the
system would be systematic responses to these problems.
Most important, the problem of the shrinking window for
interface development can be addressed via the use of a



top-down, task-analytic specification technique, specifying
the “application” and the “interface” as a single system,
and incorporating user involvement from the earliest stages
of the design process. These are precisely the significant
features of the QUID method for user interface develop-
ment. We thus expect that use of QUID in large software
development organizations should reflect a positive out-
come similar to that in our trial evaluations.

Acknowledgments

The authors wish to thank one of the anonymous re-
viewers, who provided extensive, helpful comments and
suggestions for improving this paper.

References

[1] Bell, J., & Hardiman, R. (1989). The third role—the natu-
ralistic knowledge engineer. In Diaper, D. (ed.), Knowl-
edge elicitation. Chichester: Ellis Horwood.

[2] Bannon, L. (1991). From human factors to human actors:
the role of psychology and human-computer interaction
studies in system design. In Greenbaum, J., & Kyng, M.
(eds.), Design at work: cooperative design of computer
systems. Hillsdale, N.J.: Erlbaum, 25-44.

[3] Bodker, K. (1989). Analysis and design of computer sys-
tems supporting complex administrative work processes.
Office: Technology & People, 4(1), 75-89.

[4] Card, S., Moran, T., & Newell, A. (1983). The psychology
of human-computer interaction. Hillsdale, NJ: Lawrence
Erlbaum.

[5] Douglas, S., Doerry, E., & Novick, D. (1990). QUICK: A
user-interface design kit for non-programmers. Proceed-
ings of the Third Annual Symposium on User Interface
Software and Technology (UIST90), Snowbird, UT, Octo-
ber, 1990.

[6] Douglas, S., Doerry, E., & Novick, D. (1991). Splitting the
difference: Exploring the middle ground in user interface
design. Proceedings of the 24th Annual Hawaii Interna-
tional Conference on System Sciences, January, 1991, 2,
468-477.

[7] Elkerton, J. (1991). Online aiding for human computer in-
terfaces. In Helander, M. (ed.), Handbook of Human-Com-
puter Interaction (2d edition). Amsterdam: Elsevier Sci-
ence Publishers, 345-364.

[8] Gillan, D., & Breedin, S. (1990). Designers’ models of the
human-computer interface. Human Factors in Computing
Systems (CHI ‘90), 391-398.

[9] Gould, J. (1991). How to design usable systems. In Heland-
er, M. (ed.), Handbook of Human-Computer Interaction
(2d edition). Amsterdam: Elsevier Science Publishers,
757-789.

[10] Gould, J., & Lewis, C. (1985). Designing for usability: key
principles and what designers think. CACM, 28(3), 300-
311.

[11] Gronbaek, K. (1989). Rapid prototyping with fourth gener-
ation systems—an empirical study. Office: Technology
and People, 5(2), 105-125.

[12] Grudin, J. (1990). Obstacles to participatory design in large
product development organizations. CPSR Conference on
Participatory Design, Seattle, WA,

[13] Hartson, H. R, & Smith, E. C. (1991). Rapid prototyping in
human-computer interface development. Interacting with
Computers 3(1), 51-91.

[14] Jeffries, R., Miller, J., Wharton, C., Uyeda, K (1991). User
interface evaluation in the real world: A comparison of four
techniques. Human Factors in Computing Systems (CHI
‘91), 119-124.

[15] Kyng, M. (1989). Designing for a dollar a day. Office:
Technology and people, 4(2), 157-170.

[16] Lundell, J., & Notess, M. (1991). Human factors in soft-
ware development: Models, techniques, and outcomes.
Human Factors in Computing Systems (CHI ‘91), 145-
151.

[17] MacLean, A., Bellotti, V., Young, R., & Moran, T. (1991).
Reaching through analogy: A design rationale perspective
on roles of analogy. Human Factors in Computing Systems
(CHI ‘91), 167-172.

[18] Muller, M. (1991). PICTIVE, an exploration in participa-
tory design. Human Factors in Computing Systems (CHI
‘91), 225-231.

[19] Myers, B., Guise, D., Dannenberg, R., Vander Zanden, B.,
Kosbie, D., Pervin, S., Mickish, A., & Marchal, P. (1990).
Comprehensive Support for Graphical, Highly-Interactive
User Interfaces: The Garnet User Interface Development
Environment. IEEE Computer, 23(11), 71-85.

[20] Payne, S., & Green, T. (1986). Task-action grammars: A
model of the mental representation of task languages. Hu-
man-Computer Interaction, 2(2), 93-133.

[21] Perlman, G. (1991). Software tools for interface develop-
ment. In Helander, M. (ed.), Handbook of Human-Com-
puter Interaction (2d edition). Amsterdam: Elsevier Sci-
ence Publishers, 819-833.

[22] Phillips, M., Bashinski, H., Ammerman, H., Fligg, C. Jr.
(1991). A task analytic approach to dialogue design. In He-
lander, M. (ed.), Handbook of Human-Computer Interac-
tion (2d edition). Amsterdam: Elsevier Science Publishers,
835-857.

[23] Siochi, A., & Hartson, H. (1989). Task-oriented represen-
tation of asynchronous user interfaces. Human Factors in
Computing Systems (CHI ‘89), 183-188.

[24] Snyder, H. (1991). Image quality. In Helander, M. (ed.),
Handbook of Human-Computer Interaction (2d edition).
Amsterdam: Elsevier Science Publishers, 437-474.

[25] Tetzlaff, L. & Schwartz, D. (1991). The user of guidelines
in interface design. Human Factors in Computing Systems
(CHI ‘91), 329-333.

[26] Thakkar, U., Perlman, G., & Miller, D. (1990). Evaluation
of the NeXT Interface Builder for prototyping a smart tele-
phone.” SIGCHI Bulletin, 21(3), 80-85.

[27] Tullis, T. (1991). Screen design. In Helander, M. (ed.),
Handbook of Human-Computer Interaction (2d edition).
Amsterdam: Elsevier Science Publishers, 377-411.

[28] Wilson, J., & Rosenberg, D. Rapid prototyping for user in-
terface design. In Helander, M. (ed.), Handbook of Human-
Computer Interaction (2d edition). Amsterdam: Elsevier
Science Publishers, 859-875. 


