
ASTRE: a transformation system using completion

Francoise Bellegarde

Oregon G~aduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 9 1-017

August, 1991

ASTRE: a transformation system using completion

Fransoise BELLEG ARDE *
Western Washington University
Computer Science Department

Bellingham WA. 97226
email: bellegar@st rawberry.cs.wwu .edu

Abstract

ASTRE is a program transformation system whose central parts are partial comple-
tion procedures. A description of ASTRE and scripts of many examples show that such
a system allows a minimum of intervention from the user and provides all the theorem
proving abilities that are required for a good transformation system.

1 Program transformation and rewriting

Dershowitz [7,9] has shown how the completion procedure can be applied to program trans-
formation by automatizing the instanciation, folding and unfolding processes originated by
Burstall and Darlington [4]. But no attempt has been made to apply the completion to
design a program transformation system.

We think that program transformation can take its place in software design only if the
transformation process is automated as much as possible. Moreover the program trans-
formation process requires theorem proving abilities such as ground convergence proofs,
induction proofs, sufficient completness, that can be easily provided by completion proce-
dures and other term rewriting system techniques.

The system Focus [21,22] uses rewriting and overlappings but it does not use completion
procedures. The main reason is that a completion procedure is doing too much for the
purpose of the transformation. That is why ASTRE limits the completion process and uses
"partial completion proceduresn. Justification of this point of view has been done in [3]. In
this paper, our goal is to present ASTRE and examples of program transformation using
ASTRE.

2 Basic notions and notations

A program is presented by a set of equalities (or equations). An operational semantics can
be given to functions defined by equations by using term rewriting systems.

An equation is a pair of terms s = t. We will denote by T (C , X) the set of terms built
with the variables X and the functions symbols of the signature C. V(t) denotes the set of
the variables oft . The set of ground terms or terms without variables is denoted by T (C) .

'This research was conducted at the Oregon Graduate Institute of Science and Technology, Beaverton,
OR 97005

Given a binary relation, 4, +* is the reflexive transitive closure of +. ++* is its reflexive
and symmetric transitive closure. A relation + is noetherian or (strongly) terminating if
there is no infinite sequence tl + t2 -. .. A relation + is confluent if +* o -t*E+* o +*,
where o denotes the composition of relations.

t l p is the subterm of t at the position p. The replacement of the subterm t l p in t by
the term u is denoted by t[p c u].

A rule is an oriented pair of terms 1 + r. We must have V(r) C V(1). A term rewriting
system is a set of rules. Given a term rewriting system R, the rewriting relation --+R is a
binary relation in T(C, X). s +R t if there exists a rule 1 r in R, a position p in s, a
substitution a such that a(1) = s l p and t = s[p < -a(r)]. A term t is in normal form if it
is irreducible.

A term rewriting system is terminating if the relation -,R is noetherian, confluent
if the relation + R is confluent, and convergent if it is both confluent and terminating.
Convergence ensures existence and unicity of the normal form of every term.

Critical pairs are produced by overlaps of two redexes in a same term. A non-variable
term t' and a term t overlap if there exists a non-variable position p in t such that t l p and t'
are unifiable. Let g -, d and 1 -, r be two rules such that 1 and g overlap at the position p
with the most general unifier a. The overlapped term a(g) produces the critical pair (p, q)
defined by p = a(g[p < -TI) and q = a(d). A critical pair is convergent if p and q reduce to
the same term.

The completion pmedure [14] was introduced as a means at deriving convergent term-
rewriting systems used as procedures for deciding the validity of identities (the word prob-
lem) in a given equational theory. The procedure generates new rewrite rules to resolve
ambiguities resulting from existing rules that overlap. These new rules are produced by
non-convergent critical pairs.

A completion procedure can fail because it is unable to orient an equation into a rule
without losing the termination property of the system. However, non-orientable equations
may sometimes be used for reduction anyway, because their instances can be oriented. This
idea is basic t o the unfailing completion procedure [2, 11. It uses the notion of ordered
rewriting which does not require that an equation always be used from left to right. An
ordered rewriting system is a set of equations together with a reduction ordering >, i.e. a
well-founded, monotonic and stable. An ordered rewriting system can be denoted (E , >).
When the equations in E can be oriented with >, we usually call them rules. The ordered
rewriting relation using (E, >) is the rewriting relation +E> where E > denotes the set of all
the orientable instances of E. This allows us to extend the notion of critical pairs to ordered
critical pairs and to extend the completion process to an unfailing completion process, i.e.
a completion that cannot fail. The outcome of the unfailing completion procedure, when it
does not loop, is either a (ground) convergent term rewriting system R when all equations
are rules or a ground convergent ordered rewriting system (E, >) when some equations
remain unordered. By ground convergence, we mean termination and confluence on ground
terms. Obviously, convergence implies ground convergence.

Given a ground convergent term rewriting system R, a term t is ground (or inductively)
reducible with R if all its ground instances are R reducible.

An equation s = t is an inductive theorem (or inductive consequence) of E if for any
ground substitution a, a(s) = a(t).

We consider programs presented in a specification S = (C, E) by a set of equations
E. We consider the case when the set of functions in the signature C can be split into a
set of constructors C and a set of defined functions D. The definition of functions of D

is suficiently complete with mspect to C , i.e. it produces no junk, if every ground term is
provably equal to a constructor term, which is a term built only with constructors.

In its operational point of view, the program is presented by a term rewriting system R
for the specification (C, R). Computation of a (ground) term in T(C) is done by rewriting.
The operationally complete definition of a function f w.r.t C is when for all ground term
f (t l , . . . , t ,) , there exists a constructor term s such that

3 ASTRE, a system for program transformation

ASTRE has been written in CAML [lo]. The implementation uses largely all the functions
CAML provided by the system ORME [18, 191

A functional language like CAML can be considered as a good specification language
and it is easy to translate a program written in a pure functional language into a set of first
order equations. Let us consider a simple CAML program to computes permutations which
can be found in [12]:
Example 1

let rec permut =
let perms 1 x = map (cons x) (permut (discard(x 1))

where rec discard x = function
a -> a
1 y : : ys -> if (x=y) then ys

else y::discard(x,ys)
in function U -> [a]

I1 -> flatten (map(perms 1) 1)
where rec flatten = function

-> U
1x::xs -> x Q flatten(xs);;

By transforming the higher order functions, it can be written as a set of first-order equations:

discard(x,)=[I
discard(x,y::ys)= if (x=y) then ys

else y::discard(x,ys)
perms(1 ,XI= map,cons(x,permut (discard(x ,1))
permut(l)=if null(1) then [[I]

else flatten(map,perms(l,l))

ASTRE considers a program of a function f presented by the set of equalities E in the
specification S = (C, E) . f is a distinguished function in the set of function symbols of
C we call main symbol for the transformation. ASTRE considers the case when the set of
functions in the signature C can be split into a set of constructors C and a set of defined
functions D. ASTRE transforms the program o f f presented by the set of equalities E into
a program of f presented by a set of equalities E'.

The presentation of a program by a set of equalities E is a term rewriting system R
whose rules are the equalities in E directed from left t o right. For example, the program
for permutations is the following term rewriting system:

discard(x,U) -> El
discard(x,y : :ys) -> if (x=y) then ys

else y: :discard(x,ys)
perms(1,x) -> map~cons(x,permut(discard(x,l)))
pemut(1) -> if null(1) then [Ell

else flatten(map,perms (1.1))

The result of computation of a (ground) term like permut([l; 2; 31) is obtained by (ground)
rewriting in the (ground) normal form:

[[l; 2; 31; [I; 3; 21; [2; 1; 31; 12; 3; I]; [3; 1; 21; [3; 2; 111.

The correctness of the transformation is ensured when R and R' are ground convergent.
Weaker sufficient conditions for the correctness of the transformation involve properties such
as the (operationally) sufficient completness of the specifications S and S' [3]. ASTRE can
verify the ground convergence of R and R' by using an unfailing completion procedure.

The transformation process also involves a (partial) unfailing completion procedure. The
original code of an unfailing completion procedure is borrowed from the system ORME. It
is described in [18, 191.

For the transformation, the user provides definitions of new function symbols.
Example 2

For example, a transformation of permut can be initiated by introducing the new defi-
nition:

The result of the transformation process given by ASTRE is then:

[<<permut(xi)->IF(null(xl), [Dl ,fmp(xl,xi))>>;
<<discard(xl ,x2: :x3))->IF((xl=x2) ,x3,x2: :di~card(xl ,x3)))>>;
<<discard(xl, q)->[I >>;
<<map~cons(x1,x2::x3))->(xl::x2)::map,cons~x1,~3~~~~;
<<rnap,cons(xl,U)->U>>;
<<fmp(xi, [I)->[]>>;
<<fmp(xl, (x2: :x3))

- >
(map-cons (x2, null (discard(x2 ,xi)) , 1 ,
fmp(discard(x2,xl) ,discard(x2,xi)))) Q fmp(x1 ,x3))
>>I

This corresponds to the CAML program:

let pemut = function
[I->CU1
1->

let rec discard x = function
-> U

/y::ys -> if (x=y) then ys
else y::discard(x,ys)

in let fmp(x,y) = match y with q -> U
ly: :ys -> (map (cons y) (if null(discard y XI)

then Cfll
else fmp(discard(y ,XI ,diecard(y A))))

Q fmp(x,ys)
in fmp(1,l) ; ;

The transformation process gives a direct recursive definition of the function f mp.

Most of the time, properties of functions are required for the simplification of the defi-
nition. For the example above, the transformation will give

if the user does not supply the axiom:

in the middle of the transformation process.
In ASTRE, the user can provide these properties interractively at any time during the

transformation process which is very useful for simplification properties. In fact, ASTRE
asks the user:

ADD A LEMMA? ANSWER YES or NO.

at each new loop of the completion process.
Moreover, properties of functions are often required for the synthesis of new recursive

definitions as shown by the following example:
Example 3

The input for the transformation is:
<<CONC,ALL(NIL) -> NIL>>
<<CONC,ALL(C(x,xs)) ->(ALL(x) Q CONC,ALL(xs))>>
<<FILTER(NIL) -> NIL>>
<<FILTER(C(x,xs)) -> IF(ISSIG(x) ,C(X,FILTER(XS)) ,FILTER(XS) I>>
<<SIGPERM(x) -> FILTER(CONC,ALL(X))>>

,and the axiom given by the user is:

,and the definition of a new symbol is:

the result of the transformation is:

without the axiom about the endomorphism of FILTER,
the result of the transformation would have been:

Generally, the transformation process as well as the verification of the ground conver-
gence of the programs relies upon an unfailing completion procedure.

4 Ground Convergence

The verification of the ground convergence of the program is offered as an option to the user.
ASTRE uses the ER-COMPLETION procedure implemented in ORME for the verification
of ground convergence. It is described in. [18, 191.

It requires a complete reduction ordering i.e. an ordering that is total on ground terms.
This condition is fulfilled by an ordering based on polynomial interpretations [17, 51, called
polynomial ordering, or by a recursive path ordering [6] based upon a precedence which is
total on function symbols. These two kind of complete reduction orderings are available in
ASTRE.

When the user choses the polynomial ordering, he must provide the polynomial inter-
pretations before entering in the verification of the ground convergence.

When the user choses the recursive path ordering, the total precedence can be provided
interractively during the completion process. Recall that ASTRE requires from the user
the list of the constructor symbols. This allows us to get automatically an initialization
of the total precedence by putting the constructors at the bottom of the precedence. This
way, there are few interractions with the user.

Moreover, the programs are mostly presented as constructor systems.

Definition 1 A constructor system is a set of constructor equations. Constructor equations
are of the form: f (t l , . ., 5 ,) = t where t E T (F , V) , f E D, ti, i = 1, n E T (C) . These
equations must be oriented as (constructor) rules of a term rewriting system from left to
right.

When the program is presented by a constructor system, a total precedence of the symbols
for the recursive path ordering is derived automatically by ASTRE. This is provided by the
option "automatique rpo". You can find in annexe 9.1 the script of the verification of the
ground convergence of the presentation of the program for the example 1. The "automatique
rpo" can fail because it finds a circuit in the precedence it attempts to generate, It is the
case for the program for permutations given in example 1. A script is given in annexe 9.2.
It is easy to see that the program for permutations is not strongly terminating.

5 UNFAIL ASTRE

The transformation process is based on a partial unfailing completion. Ordered critical pairs
are computed between the new definitions provided by the user and the program presented
by the set of (ground convergent) rules R. Simplifications by rewriting are performed. The
axioms provided by the user at any time during the completion process are overlapped with
the rules of R and are used for simplification.

5.1 Orderings

Once again, a complete reduction ordering must be provided to the completion procedure
which uses it for simplification and computation of ordered critical pairs. The transforma-
tion is obtained by the ordered critical pairs between the definition of a new symbol and
the program presented by the system R.

The orientation of the rules that is required for getting the desired overlaps is contradic-
tory with the "automatic rpo" we defined for the verification of the ground convergence in
Section 4. For the example 2, the definition FILTER(C0NC- ALL(%)) = CONCFIL(x)
is oriented from right to left by the "automatique rpo". However it is the opposite orien-
tation that brings overlaps with the definition of CONC-ALL. The critical pairs coming
from these overlaps leads to the desired recursive and complete definition of CONCFIL.

A recursive path ordering or a polynomial ordering are available in option. They are
used in the transformation step in the examples 9.3 and 9.4 in annexe. The advantadge
of the recursive path ordering is its incrementality. The user can define the precedence
along the verification of ground convergence and he can continue during the transformation
process. It is relatively easy to find a total precedence when the recursive path ordering
works but it can be more difficult to find polynomial interpretations. Moreover, it is difficult
for the user to take care of the definition of the ordering before or during the transformation
process, and these two orderings are largely insufficient for the purpose of the transformation
process.

Hopefully, the user knows how to orient equations to get the desired overlaps or the
desired simplification. He can give directions on how to orient the equations along with the
transformation process under the option 'manual orientation". So doing the user must be
careful not to introduce possibilities of loops in rewriting. The system could try to infer a
recursive path ordering from directions given by the user but this is not yet implemented
in ASTRE.

5.2 Termination of the transformation step

An unfailing completion does not fail but it can loops. However, in this case, the transfor-
mation is done before the completion process terminates.

A transformation step can be considered as terminated when the completion procedure
has generated:

1. a recursive and operationally complete definition of the new symbol introduced by the
user,

2. and an operationally complete definition of the main symbol invoking this new symbol,

3. and when these definitions are enough simplifed.

Obviously, the last requirement depends only on the judgement of the user. The comple-
tion process may continue to generate equational consequences (critical pairs) which may
eventually simplify the definitions. If the definitions of the symbols in C are operationally
complete and if the orientation is well chosen, an operationally complete definition of the
new symbol will be automatically generated by the completion process. However, this
definition is useful for the transformation only if it is recursive and if this simplifies the
definition of the other symbols. We have seen that appropriate axioms can be supplied to
help fulfilling these goals. There can be two cases, either the transformation will not succeed
to reach these goals, or it will, if we wait enough to let it generates the required equations.
The requirements 1 and 2 above could be automatically checked using a test of sufficient
completness citeKapur-Narendran-Zhang87,Kounalis90. But the user must finally decide
whether or not to quit the process.

5.3 User's tasks

At this point, we can summarize the role of the user during the transformation process.
The user must:

provide the axioms that are necessary to simplify the definitions and get a recursive
definition of the new symbol,

chose the orientation of the equations to get the right overlaps and the right simplifi-
cations,

and, eventually, decide to quit the completion process.

This requires a good knowledge about the properties of the functions invoked and a clear
goal for the transformation and it is not always obvious. The transformation process must
be flexible enough to allow the user to undo. Sometimes the user may have some doubts
about the orientation of an equation El simply because the transformation has not yet
generated the equation E2 which could be subsumed or simplified by El oriented in a
certain direction. When asked for the orientation of El, the user can let it undefined.
However, when he understands how to orient it for the purpose of the transformation, he
then can interrupt temporarily the completion process to ask for considering the orientation
of the equations that has been let undefined. He can also through away some equations
that seems to be useless if he judges that the presence of these equations will slow down the
transformation process by generating more useless equational consequences. These features
gives the user full control of the transformation process and a lot of flexibility on the degree
of partiality of the completion process invoked for the transformation. The counterpart is
that it increases the responsability of the user. An example of a transformation using these
features is given in annexe 9.5.

5.4 Automatique deletion

Let us now consider the result after the termination of the partial completion process. The
axioms added by the user, some of the equations or rules generated during the transforma-
tion are not part of the presentation of the program R' result of the transformation. If the
transformation succeeds, this program is an operationally complete definition of the main
symbol invoking the new symbol which is itself defined by a recursive and operationally

complete definition. The program must be a constructor system. ASTRE eliminates auto-
matically the non constructor rules and the constructor rules that are not invoked in the
definition of the main symbol. However, the present implementation of the "automatique
deletion" can be insufficient. For the example in annexe 9.5, the automatique deletion let
the two rules:

Which one of these two rules is contained in the definition of the function G? The decision
can be done by extracting an operationally complete and recursive definition of G. An
automatic extraction would use a test of sufficient completness. This is not done automat-
ically in the current implementation. The user must chose the last few rules that need to
be deleted.

5.5 Ground Convergence of the result

We know that:

If the transformation process has been controlled by a recursive path ordering or
by a polynomial ordering and if nothing has been deleted, R' is obviously ground
convergent.

I f R is ground convergent and if R' give an operationally complete definition of the
main symbol, R' is ground convergent by a result proved in [16] and recall in [3].
Therefore, if the deletion is correct, then R' gives an operationally complete definition
of the main symbol, and thus, R' is ground convergent.

However, in the absence of a test of sufficient completness, the verification of the ground
convergence of R' is given as an option to the user.

At the end of the transformation step, the user is asked for another transformation step.
The examples in annexes 9.6 and 9.9 three transformation steps. ASTRE can be used to
transform large programs.

6 AC ASTRE

Let us consider the particular case when the transformation requires the associativity and
the commutativity axioms of some function symbols.
Example 4

For example let suppose that we have a function definition DOT which computes
C;,(,,,)(z; * yi) and we use it to define a function SUMDOT which computes Bi=(l,n)(xi *
y ;) + C ; = (l , n) (~ ; * v;). The presentation of the program is:

SUMDOT could be computed as C;,(l,n)((xi * y ;) + (u; * v;)) . The transformation requires
the associativity and the commutativity of +.

If we use the UNFAIL ASTRE, 27 equations are generated before the equation which
will simplify the definition of SD in a recursive definition (see example in annexe 9.7).
For each of these equations, the user will be asked for orientation in the mode "manual
orderingn. It can be a long and overwhelming task.

ASTRE provides for this case a transformation step based on an associative and com-
mutative completion procedure [20]. The user asks for the mode AC ASTRE. AC ASTRE
uses the ANS-AC-completion provided by ORME. The competion procedure uses associa-
tive and commutative unification algorithm in place of the syntactic unification algorithm
t o generate critical pairs. Associative and commutative matching is used t o apply rules. For
the example of SUMDOT, AC ASTRE gives the result directly (see example in annexe 9.8).

There is some drawbacks in using an associative and commutative completion procedure.
It is not an unfailing completion and therefore all equations must be oriented. It is less
flexible. A way out is given by AC ASTRE which provides t o the user a garbage t o postpone
the orientation of some equations or to through away unorientable equations. So doing, we
get back the flexibility. Another point is that the orderings that are applicable t o associative
and commutative rewriting are few. Polynomial ordering is compatible with associativity
and commutativity [5] but the recursive path ordering is not. Practically, it is not very
important because we mostly use the option "manual orientation" for the transformation
process.

7 Utilisation of ASTRE

Let us consider an example. We want a program to compute the list of the prefixes of a
given list.

The programmer write the following CAML program:

(*I
Value REPEATL : ('a list -> 'a l ist l i s t)

CAML,system(hd>
REPEATL(C1;2;3;41)=[[I] ; C11 ; [I] ; [ill
I *I
l e t REPEATL(1) =

l e t rec REP = function
(1 , n) - > n
1 (1,x: :xs)->[hd(l)l : :REP(l,xs)

i n REP(1,l);;
(* I
Value ZIP : ('a list * 'b l ist -> ('a * 'b) l i s t)
ZIP([1;2;3;41; C5;6;7;81)=[(1,5) ; (2 ,6); (3,7) ; (4,911
I *)
l e t rec ZIP=function

(a, u) - > n
I (x: :xs) , (y: :ys)->(x,y) : : Z ~ ~ (x s , y s) ; ;

(*I
Value CONS-NIL : ('a l ist list -> 'a l ist l i s t)

I *)
let CONS-NIL x = 0::~;;
(* I
Value PREFIXES : ('a list -> 'a list list list)
CCONS,NIL,REPEATL,ZIP),
CAML-systemCmap,o)

I *I
let rec PREFIXES = function

n->cni
I x : : xs-> let CONS=pref ix : :

in let PREF=CONS,NIL o (map CONS) o ZIP
in PREF(REPEATL(x: :xs) ,PREFIXES(xs)) ; ;

The presentation of this program by a system of first order equations is:

ASTRE verifies the ground convergence by "automatique rpo". We can transform the
definition of PREF by introducing a new symbol P P for the composition (MAP- CO N S o
Z I P) . This yields to a first transformation step:

PREFIXES TRANSFORMATION
Eureka-rules
[<<MAP~c~Ns(ZIP(X~,X~))->PP(X~,X~)>>]
ADD A LEMMA?? ANSWER YES or RETURN
<<C(C(xl,x2),PP(x3,x4)) = PP(C(x1,x3),C(x2,x4))>>
ANSWER PLEASE > < UNDEF or QUIT
<
ADD A LEMMA?? ANSWER YES or RETURN
<<PP(NIL,NIL) = NIL>>
ANSWER PLEASE > < UNDEF or QUIT
AUTOMATIQUE DELETION
[i <<PP(NIL,NIL)->NIL>>;
2 <<PREFIXES(C(X~,X~))

->C(NIL ,PP(C(C(HD(C(xl ,x2) ,NIL) ,REP(C(xi ,x2) ,x2)) ,PREFIXES(X~) ;

3 c<RE~(xi ,C(x3,x2) 1->C(C(HD(xi) ,NIL) ,REP(xl,x2))>>;
4 <<REP(xi,NIL)->NIL>>;
5 <<pREFIXES(NIL) ->C(NIL ,NIL)>> ;
6 <<PP(C(xi ,x3) ,c(x~,x~))->C(C(X~,X~) ,PP(x~,x~))>>]

We can now slightly generalize the subterm REP(C(x1, x2), 22)) in the right-hand side of
the definition of PREFIXES(C(xl,x2)). We introduce the new symbol G for

REP(C(x, y), z) = G(x, z).

The variable y disappears in the left-hand side. The user can be aware that the tail y is
useless in the definition of REP. This yields to a second transformation step:

PREFIXES TRANSFOWATION
Eureka-rules
[<<REP(C(xl ,x2) ,x3)->G(x1 ,x3)>>]
ADD A LEMMA?? ANSWER YES or RETURN
<<G(xl,NIL) = NIL>>
ANSWER PLEASE > < UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETURN
<<G(x~ ,C(x2,x3)) = C(C(HD(C(xl,x4)) ,NIL) ,G(xi,x3))>>
ANSWER PLEASE > < UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETURN
YES
<<HD(C(xl,x2))=xl>>
ANSWER PLEASE > < UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETURN
ADD A LEHMA?? ANSWER YES or RETURN
AUTOMATIQUE DELETION
[I <<G(xl,NIL)->NIL>>;
2 <<PREFIXES(C(XI ,X~))->C(NIL,PP(C(C(X~ ,NIL) ,G(xl ,x2)) ,PREFIXES(X~))I>>;
3 <<PP(NIL,NIL)->NIL>>;
4 <<PREFIXES(NIL)->~(NIL,NIL)>> ;
5 <<~~(~(x1,x3),~(x2,x4))-~c~c(xl*x2)~PP~x3,x4~~~~;
6 <<~(x1,C(x2,x3))->C(~(xl,~IL) ,G(xi,x3))>>]

Recall that in a term rewriting system, for a rule I -+ r, we must have V(r) C V(Z) (see
Section 2). In the middle of the transformation, the user provides the axiom HD(C(x, y)) =
x which allows the correct orientation of the definition of G(x1, C(x2,23)). Now the program
does not invoke the function HD.

The definition of P R E F I X E S can still be improved. The subterm

C(C(x1, NIL), G(xl,x2))

is nothing else but an unfolding of G(x1, C(x1, x2)). We can try a generalization of

We introduce the new symbol K for PP(G(x, u), v) = K(x, v). The variable u does not
occur in the right-hand side. The script of the corresponding third transformation step is
in annexe 9.9. The user quits the completion when a complete definition of K is generated.
After (automatique) deletion, the result is:

This corresponds to the short CAML program:

let rec PREFIXES=function
a->cni
Ix: :xs-> let rec K = function

(x, n)->a
I (x,y: :ys)-> (Cx] : :y): :K(x,ys)

in : :K(x,PREFIXES(xs)) ; ;

8 Conclusion

ASTRE shows that completion procedures can be basis of reasonable transformation sys-
tems. However, work about orderings compatible with the transformation process would
be useful.

ASTRE can be improved. It could ensure more theorem proving abilities such as induc-
tive proofs [23,16] for the inductive axioms the user provides during the completion process
or test for sufficient completness [13, 151 for proving the correctness of the transformation.
This test could allows ASTRE to advise the user when the transformation step is possibly
terminated.

Our goal is to minimalize the intervention of the user. We could improve ASTRE by
providing a "replayn like in the system Focus [22]. The idea is to automatize completely
a transformation which acts like a previous one. For this purpose, more work in studying
strategies for transformations will be helpful. These strategies can be derived from the
theorems on higher order functions like map f o map g = map(f o g) .

ASTRE is restricted to equational specifications. We could consider conditional specifi-
cations [l l , 241. Even in the case of an equational specification, conditional rewriting would
be particularly useful when we want to introduce cases for the transformation.

I would like to thank Dick Kieburz, Claude Kirchner, Helene Kirchner, Pierre Lescanne,
who provided me with encouragements and support, Pierre Lescanne who gave me access
to the system ORME, Dick Kieburz for wise advices and examples.

9 Annexes

9.1 Ground Convergence by automatique rpo

Here follows the script of the verification of the ground convergence of an initial program
for the example 2:

GETTING THE SYSTEM
<<CONC,ALL(NIL) = NIL>>
<<CONC,ALL(C(x ,xs) I= (ALL(x) Q CONC-ALL(xs))>>
<<FILTER(NIL)=NIL>>
<<EILTER(C(X ,xs)) = IF(ISSIG(x) ,C(X ,FILTER(X~)) ,EILTER(xs))>>
<<SIGPERM(x) = FILTER(CONC,ALL(X)) >>

GETTING THE CONSTRUCTORS
C NIL
GROUND CONVERGENCE
ORDERINGS
<I> : incremental-rpo
<2> : manual
<3> : automatique rpo
<4> : polynomial
type 1 or 2 or 3 or 4
3
WARNING
O is not a constructor or a defined symbol
WARNING
ALL is not a constructor or a defined symbol
WARNING
IF is not a constructor or a defined symbol
WARNING
ISSIG is not a constructor or a defined symbol
Successful Completion
---------------- -

EQUATIONS

RULES
[I <<CONC,ALL(C(xl ,x2) 1-> (ALL(x1) O CONC-ALL(x2)) >> ;
2 <<FILTER(NIL)->NIL>>;
3 <<CONC,ALL(NIL)->NIL>>;
4 <<SIGPERH(xl)->FILTER(CONC-ALL(xl))>>;
5 <<FILTER(c(x~ ,x2))->IF(ISSIG(xl) ,C(xl ,FILTER(x~)) ,FILTER(x2))>>I

9.2 Failure of the automatique rpo

Here follows the script of an attempt to verify the ground convergence which fails with a
circuit in the total precedence infered by the option "automatique rpo":

GETTING THE SYSTEM
<<map,cons(x,NIL)=NIL>>
<<map,cons(x ,C(y,ys))=C(C(x,y) ,map-cons (x,ys)) >>
<<discard(x,NIL)=NIL>>
<<discard(x,C(y,ys))=IF(eq(x,y) ,ys,C(y ,discard(x,ys))
<<flatten(NIL)=NIL>>
<<flatten(C(x,xs))= (x O flatten(xs1
<<permut(l)=~~(null(1),~(~~~,~~L),flatten((map,pems (1,1))))>>
<<perms(x,l)=map~cons(x,pemut(diacard(x,l~) I>>
<<map,perms(li ,NIL) =C(NIL,NIL)>>
<<map,perms(li ,~(x,xs))=C(perms(x,ll), (map-pems(l1 ,xs)))>>
GETTING THE CONSTRUCTORS
C NIL
GROUND CONVERGENCE

ORDERINGS
<I> : incremental-rpo
<2> : manual
<3> : automatique rpo
<4> : polynomial
type 1 or 2 or 3 or 4
3
The ordering rpo for constructor system gives a circuit in the precedence:
Ground convergence is not verified.
Your equations are considered as rules.

9.3 Transformation by recursive path ordering

Here follows the sript of a transformation using a recursive path ordering for the ground
convergent system:

The recursive path ordering used to verify the ground convergence can be incremented for
the transformation step: The new definition is given by the user. Then, it is oriented by
the recursive path ordering:

<<L(x Q y)=LA(x,y)>>
GIVE A PRECEDENCE FOR: L LA
ANSWER PLEASE > < = QUIT
<
<<(xl Q x2),LA(xl,x2)>>
GIVE A PRECEDENCE FOR: Q LA
ANSWER PLEASE > < = QUIT
>

The interractions with the user during the transformation step are considerably reduced.

LA TRANSFORHATION
Eureka-rules
[<<L((xl Q x2))->LA(x1 ,x2)>>1
Added Lemmas

you will be asked at each step if you want to add a lemma
ADD A LEMMA?? ANSWER YES or RETURN
EQUATIONS
[1 <<LA(NIL,x~)=L(x~)>>]
RULES
[I <<(NIL Q x1)->xi>>;
2 <<L(NIL)->ZERO>>;
3 <<L(C(x2,xl))->(uN + L(xi))>>;
4 <<(C(xl,x2) 0 x3)->C(x1, (x2 Q x3))>>;

5 <<L((xi Q x2))->LA(xl ,x2)>>1
EQUATIONS
[l <<(UN + LA(X~ ,~~))=LA(c(x~,x~) ,x2)>>]
RULES
[l <<(C(xl*x2) Q x3)->~(xi,(x2 Q x3))>>;
2 <<(NIL Q xi)->xl>>;
3 <<L(NIL)->ZERO>>;
4 <<L(C(x2,xl))->(UN + L(xi))>>;
5 <<L((xl Q x2))->LA(xl,x2)>>;
6 <<LA(NIL,x~)->L(x~)>>]
<cLA(xl,x2) ,LA(c(x~,x~) ,x2)>>
GIVE A STATUS FOR LA
ANSWER PLEASE LR RL QUIT
LR
ADD A LEHMA?? ANSWER YES or RETURN
ADD A LEHMA?? ANSWER YES or RETURN
= = = = = = = I = 1 0 3 I = D I D I I I I

Successful Completion
= = = = = = 1 3 0 = l l l l = D I I I ' I

EQUATIONS
[I
RULES
[1 <<~~(N1L,xl)->L(xl)>>;
2 <<(C(xi,x2) Q x3)->C(xi,(x2 Q x3))>>;
3 <<(NIL O xi)->xi>>;
4 <<L(NIL)->ZERO>>;
5 <<~(~(x2,xl))->(uN + L(xi))>>;
6 <<L((xl Q x2))->LA(xi ,x2)>>;
7 <<LA(C(x3,xl) ,x2)->(UN + LA(x1 ,x2))>>1
RESULT OF THE DELETION
[<<LA(NIL,x~)->L(x~)>> ;
<<L(NIL)->ZERO>>;
<<L(c(x~,x~))->(uN + L(x~))>>;
<<~~(C(x3,xl) ,x2)->(UN + L~(x1 ,x2))>>1

9.4 Transformation by polynomial ordering

Here follows the script of a transformation using a polynomial ordering for the system:

The axiom for the transformation is:

and the new definition is:

The user must give the interpretations of the symbols:

The transformation requires no intervention of the user:

D TRANSFORMATION
Eureka-rules
[<<(xi + xi)->DD(xi)>>l
Added Lemmas
[<<(xi + S(x2))->S((xl + x2))>>1
you will be asked at each step if you want to add a lemma
ADD A LEMMA?? ANSWER YES or RETURN
EQUATIONS
[i <<DD(ZERO)=ZERO>>I
RULES
[I <<(ZERO + xi)->xi>>;
2 <<(S(xl) + x2)->S((xi + x2))>>;
3 <<D(xi)->DD(xi)>>;
4 <<(xi + S(x2))->S((xi + x2))>>;
5 <<(xi + xi)->DD(xi)>>l
EQUATIONS
[i <<S(S(DD(X~)))=DD(S(X~))>~~
RULES
[i <<(S(xl) + x2)->S((xi + x2))>>;
2 <<(ZERO + xi)->xi>>;
3 <<D(xl)->DD(xi)>>;
4 <<(xi + S(x2))->S((xi + x2))>>;
5 <<(xi + xi)->DD(xl)>>;
6 <<DD(ZERO)->ZERO>>]
ADD A LEMMA?? ANSWER YES or RETURN
ADD A LEMMA?? ANSWER YES or RETURN
.....................

Successful Completion
.....................

EQUATIONS

RULES
[i <<DD(ZERO)->ZERO>>;
2 <<(xi + S(x2))->S((xi + x2))>>;
3 <<D(xi)->DD(xl)>>;
4 <<(S(xi) + x2)->S((xi + x2))>>;
5 <<(ZERO + xi)->xi>>;
6 <<(xi + xi)->DD(xi)>>;
7 <<DD(s(x~))->s(s(DD(x~)))>>]
RESULT OF THE DELETION
[<<DD(ZERO) ->ZERO>> ;
<<D(xi)->DD(xi)>> ;
<<DD(s(x~>)->s(s(DD(x~)))>>I

9.5 Quit by the user

Here follows the transformation of the program:

The transformation process loops and will be interrupted by the user. The user will also
let the orientation of an equation undefined till he knows he needs it for simplifying the
definition of the main symbol.

F TRANSFORMATION
Eureka-rules
[<<(xi * F(x2))->G(x~,x~)>>]
Added Lemmas
[<<((xi * x2) * x3)->(xi * (x2 * x3))>>1
We have removed the displays from the script and let only the interaction for orientation
by the user.

<<G(xl,ZERO) = ZERO>>
ANSWER PLEASE > < UNDEF or QUIT
>
<cG(xi,S(x2)) = (G(xi,x2) + F(xi))>>
ANSWER PLEASE > < UNDEF or QUIT
(* The user is not sure how he wants to direct the above equation *)
UNDEF
<<(xi * S(ZER0)) = G(ZERO,xl)>>
ANSWER PLEASE > < UNDEF or QUIT
<
<<(xi * G(x2,S(x2))) = G(~(x2) ,xi)>>
ANSWER PLEASE > < UNDEF or QUIT
<
(* At this stage the display is:*)
EQUATIONS
[i cc~(x1 ,S(x2))=(G(xl ,x2) + F(xi))>>;
2 <<(xi * G(x2,~3))=G(x2,(xl * x3))>>;
3 <<(xi * (F(x2) * x3))=(G(x2,x1) * x3)>>1
RULES
[i <<((xi * x2) * x3)->(xi * (x2 * x3))>>;
2 <<F(s (x~)) ->G(x~ ,s (x~))>> ;
3 <<F(ZERO)->S(ZERO)>> ;
4 <<(S(xi) * x2)->((xi * x2) + x2)>>;
5 <<(ZERO * xi)->ZERO>>;
6 <<(S(xl) + x2)->S((xi + x2) I>>;
7 <<(ZERO + xi)->xi>>;

8 <<(xi * F(x2))->G(x2,x1)>>;
9 <<G(xl,ZERO)->ZERO>>;
10 <<G(ZERO,xi)->(xi * S(ZERO))>>;
11 <<G(S(x2) ,xi)->(xi * G(x2,S(x2)))>>1
<<(xi * G(x2,x3)) = G(x2,(x1 * x3))>>
ANSWER PLEASE > < UNDEF or QUIT
>
(* By orienting the above equation from left to right, a eimplification
of the rule 11 in a tail recursive definition can be done:
11 ccG(S(x2) ,xl)->G(x2, (xi * S(x2)))>>*)
<<(xl * (F(x2) * x3)) = (G(x2,xl) * x3)>>
ANSWER PLEASE > < UNDEF or QUIT
(* The user does not know how to orient the above equation *)
UNDEF
ADD A LEMMA?? ANSWER YES or RETURN
YES
Give the Lemma in between parenthesis
(* This lemma allows to simplify the rule 10 *)
<<(xi * S(ZERO))=xl>>
ANSWER PLEASE > < UNDEF or QUIT
>
(* Now the display is: *)
EQUATIONS
[l <<G(xl,S(x2))=(G(xi,x2) + F(xi))>>;
2 <<(xi * (F(x2) * x3))=(G(x2,x1) * x3)>>;
3 <<G(xl,((x2 * x3) + x3))=(G(xl,(x2 * x3)) + G(xl,x3))>>]
RULES
[l cc(S(x1) * x2)->((xi * x2) + x2)>>;
2 <<(ZERO * x1)->ZERO>>;
3 <<(S(xl) + x2)->S((x1 + x2))>>;
4 <<(ZERO + xi)->xi>>;
5 <<(xl * F(x2))->G(x2,x1)>>;
6 <<(xi * S(ZER0))->xl>>;
7 <<G(zERo,x~)->(x~ * s(zERo))>>;
8 <<F(ZERO)->S(ZERO)>>;
9 <<~(S(x1))->G(x1,S(x1))>>;
10 <<((xi * x2) * x3)->(xi * (x2 * x3))>>;
11 <<G(xl,ZERO)->ZERO>>;
12 <<G(s(x~) ,xl)->G(x2, (xl * S(x2)))>>;
13 <<(xi * G(x2,x3))->G(x2,(x1 * x3))>>]
ccG(xi,((x2 * x3) + x3)) = (G(xl,(x2 * x3)) + G(xi,x3))>>
ANSWER PLEASE > < UNDEF or QUIT
(* The user could quit the completion
but he wants to reconsider the equation I*)
QUIT
Do you want to continue the step changing the equations? answer YES or NO
YES
Do you want to delete some equations YES or NO

YES
Give the numbers of the equations you want t o dele te
Separate the numbers by a space
2 3
<<G(xl,S(x2)) = (G(xl,x2) + F(xl))>>
ANSWER PLEASE > < UNDEF or QUIT
<
(* The completion generates now a few equations t h a t a re useless f o r
t h e transformation: *)
<<(xl * (G(x2,x3) * x4)) = (G(x2,(xi * x3)) * x4)>>
ANSWER PLEASE > < UNDEF or QUIT
UNDEF
<<(xi * ZERO) = G(x2,(x1 * ZERO))>>
ANSWER PLEASE > < UNDEF or QUIT
<
<<(xi * (x2 * ZERO)) = G(x3,(xl * (x2 * ZERO)))>>
ANSWER PLEASE > < UNDEF or QUIT
<
<<((xl * ZERO) + ZERO) = G(x2,((xl * ZERO) + ZERO))>>
ANSWER PLEASE > < UNDEF o r QUIT
<
<<(xi + S(ZER0)) = S(xl)>>
ANSWER PLEASE > < UNDEF or QUIT
>
<<G(xl,((x2 * S(x1)) + S(x1))) = (G(xl,(x2 * S(x1))) + G(xi,S(xl)))>>
ANSWER PLEASE > < UNDEF or QUIT
UNDEF
<<G(xl,S(ZERO)) = F(xi)>>
ANSWER PLEASE > < UNDEF or QUIT
(* A d i r ec t def in i t ion of F(x) has been generated. The
transformation is terminated
but the completion w i l l continue forever generating useless equations*)
QUIT
RESULT OF THE DELETION
[I <<G(xl,ZERO)->ZERO>>;
2 <<(S(xi) * x2)->((xi * x2) + x2)>>;
3 <<(ZERO * x1)->ZERO>>;
4 <<(S(xi) + x2)->S((x1 + x2))>>;
5 <<(ZERO + xi)->xi>>;
6 <<(xi * S(ZER0))->xl>>;
7 <<G(ZERO,xl)->xl>>;
8 <<G(S(x2) ,xl)->G(x2, (xl * S(x2)))>>;
9 <<(xl + S(ZER0))->S(xl)>>;
10 <<F(xl)->G(xl ,S(ZERO))>>]
Do you want t o dele te some ru les YES or NO
YES
1 6 9
EQUATIONS

RULES
[l <<(S(xl) * x2)->((xl * x2) + x2)>>;
2 <<(ZERO * x1)->ZERO>>;
3 <<(S(xi) + x2)->S((xl + x2))>>;
4 <<(ZERO + xi)->xi>>;
6 <<G(ZERO,xi)->xi>>;
6 <<G(S(x2),xl)->G(x2,(xl * S(x2)))>>;
7 <<F(xI)->G(x~ ,S(ZERO))>>I

9.6 Three transformation steps

GETTING THE SYSTEM
GETTING THE CONSTRUCTORS
C NIL
GROUND CONVElZGENCE
WARNING
IF is not a constructor or a defined symbol
WARNING
ISSIG is not a constructor or a defined symbol
===='==========I=DIDD

Successful Completion
RULES
[l <<REPEAT(~~,C(~~,~~))->C(~~,REPEAT(R(~~),X~~~~~;
2 <<(C(xi,x2) Q x3)->C(x1, (x2 Q x3))>>;
3 <<SIGPERM(xl)->FILTER(CONCALL(xl))>>;
4 <<REPEAT(xl,NIL)->NIL>>;
5 <<FILTER(NIL)->NIL>>;
6 <<R(NIL)->NIL>>;
7 <<CONCALL(NIL)->NIL>>;
8 <<(NIL Q xi)->xi>>;
9 <<ALL(xl)->REPEAT(xl ,xi)>>;
10 <<R(C(x2,xl))->(xi Q C(x2,NIL))>>;
11 <<CONCALL(C(xl,x2))->(REPEAT(xl,xl) Q CONCALL(X~))>>;
12 <<FILTER(C(X~ ,x2))->IF(ISSIG(xl) ,C(xl ,FILTER(x~)) ,FILTER(X~))>>I
The main symbol is: SIGPERM
SIGPERM TRANSFORMATION
Eureka-rules
[<<FILTER(CONCALL(X~))->CONCFIL(X~)>>~
Added Lemmas
[<<FILTER((xl O x2))->(F1LTER(xl) Q FILTER(X~))>>I
you will be asked at each step if you want to add a lemma
ADD A LEMMA?? ANSWER YES or RETURN
<<CONCFIL(NIL) = NIL>>
ANSWER PLEASE > < UNDEF or QUIT
>
<< (FILTER(REPEAT(x1 ,xl)) Q CONCFIL(X~)) CONCFIL(C(X~ ,x2)) >>

ANSWER PLEASE > < UNDEF or QUIT
<
ADD A LEIMA?? ANSWER YES or RETURN
ADD A LEMHA?? ANSWER YES or RETURN

Successful Completion

RESULT OF THE DELETION
[I <<CONCFIL(NIL)->NIL>>;
2 <<FILTER(C(xl,x2)) ->IF(ISSIG(xl) ,C(xi ,FILTER(x2)) ,FILTER(x2)) >> ;
3 <<R(C(x2,x1))->(xi Q C(x2,NIL))>>;
4 <<(NIL Q xi)->xi>>;
5 <<R(NIL)->NIL>>;
6 <<FILTER(NIL)->NIL>>;
7 <<REPEAT(xl,NIL)->NIL>>;
8 <<SIGPERM(xl)->CONCFIL(xl)>> ;
9 <<(C(xl,x2) Q x3)->~(xi,(x2 Q x3))>>;
10 <<REPEAT(X~,C(X~,~~))->C(X~ ,REPEAT(R(xl) ,x3))>>;
11 <<CONCFIL(C(xl ,x2))->(FILTER(REPEAT(x~ , X I) Q CONCFIL(X~))>>I
Another transformation etep? YES or NO
YES
SIGPERM TRANSFORMATION
Eureka-rules
[<<FILTER(REPEAT(X~ ,x2))->SIGROT(xl ,x2)>>1
Added Lemmas
U
you will be asked at each step if you want to add a lemma
ADD A LEMMA?? ANSWER YES or RETURN
<<SIGROT(xl,NIL) = NIL>>
ANSWER PLEASE > < UNDEF or QUIT
>
<<SIGROT(xl,C(x2,x3))
= IF(ISSIG(x1) ,C(x1 ,SIGROT(R(xl) ,x3)) ,SICROT(R(xl) ,x3)
ANSWER PLEASE > < UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETURN
ADD A LEHMA?? ANSWER YES or RETURN
Successful Completion
P I P I P f I I I I 3 f D l t D I I I I I

RESULT OF THE DELETION
[I <<SIGROT(xl ,NIL)->NIL>> ;
2 <<R(C(x2,xl))->(xi Q C(x2,NIL))>>;
3 <<(NIL Q x1)->xl>>;
4 <<CONCFIL(NIL)->NIL>>;
5 <<R(NIL)->NIL>>;
6 <<SIGPERM(xl) ->CONCFIL(xl) >> ;
7 <<(C(xl,x2) Q x3)->C(x1, (x2 Q x3))>>;

8 <<CONCFIL(C(X~ ,x2))-> (SIGROT(x1 ,xl) O CONCFIL(x2))>> ;
9 <<SIGROT(xl ,C(x2,x3)

->IF(ISSIG(xi) ,C(x1 ,SIGROT(R(xl) ,x3)) ,SIGROT(R(xl) ,x3))>>I
Another transformation step? YES or NO
YES
SIGPERn TRANSFORnATION
Eureka-rules
[<<(sIGROT(X~ ,x2) Q x3) ->SR(xl ,x2,x3)>>]
Added Lemmas
[<<(IF(xi,x2,x3) Q x4)->IF(xi,(x2 O x4),(x3 O x4))>>1
you will be asked at each step if you want to add a lemma
ADD A LEMMA?? ANSWER YES or RETURN
<<xl = SR(x2,NIL,xI)>>
ANSWER PLEASE > < UNDEF or QUIT
<
<<sR(x~ ,C(x2 ,x3) ,x4)
= IF(ISSIG(x1) ,C(x1 ,SR(R(xl) ,x3,x4)) ,sR(R(x~) ,x3 ,x4)
ANSWER PLEASE > < UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETURN
ADD A LEMMA?? ANSWER YES or RETURN
Successful Completion
RESULT OF THE DELETION
[l <<SR(x2,NIL,xi)->xi>>;
2 <<(C(xl,x2) O x3)->C(xl,(x2 Q x3))>>;
3 <<(NIL Q x1)->xi>>;
4 <<SIGPERH(X~)->CONCFIL(X~)>>;
5 <<cONCFIL(NIL)->NIL>>;
6 <<R(NIL)->NIL>>;
7 <<~(C(x2,xi))->(xi Q C(x2,NIL))>>;
8 <<cONCFIL(C(X~ ,x2)) ->SR(xl ,XI ,CONCFIL(X~) I>> ;
9 <<~R(xl ,C(x2 ,x3) ,x4)

->IF(ISSIG(xl) ,C(x1 ,s~(R(xl) ,x3,x4)) ,SR(R(X~) ,x3,x4))>>1
Another transformation step? YES or NO
N 0

9.7 Associativity and Commutativity by UNFAIL ASTRE

For the system:

The script of the transformation in the mode unfailing is:

SUMDOT TRANSFORMATION

Eureka-rules
[<<(DoT(x~,x~,x~) + DOT(x4,x5,x3))->~~(x1,x2,x4,x5,x3)>>]
Added Lemmas
[<<(xl + x2)=(x2 + xi)>>]
[<<(ZERO + xi)->xi>>;
<<((xl + x2) + x3)->(xi + (x2 + x3))>>]
ADD A LEHMA?? ANSWER YES or RETURN
<<SD(xl,x2,~3,~4,ZER0) = ZERO>>
ANSWER PLEASE > < UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETUFlN
<<
(DOT(xl,x2,x3) + ((I(xl,S(x3)) * I(x2,S(x3))) + (DOT(x4,x5,x3)
+ (I(x4,S(x3)) * I(x5,S(x3)))))) = SD(xl,x2,~4,~5,S(x3))>>
ANSWER PLEASE > < UNDEF or QUIT
<
(* The unfailing completion generates 27 equations before finding
the simplification rules:*)
<<(DOT(xi,x2,x3) + (x4 + (DOT(x5,x6,x3) + x7)))
= (SD(x5,~6,xl,x2,~3) + (x4 + x7))>>
ANSWER PLEASE > < UNDEF or QUIT
>
(*Now the display is:*)
EQUATIONS
[l
2 <<(xi + x2)=(x2 + xi)>>;
3 <<(DOT(xl,x2,x3) + SD(x4,~5,~6,~7,x3))

=(SD(xl,x2,~4,~5,~3) + DOT(x6,x7,x3))>>;
4 <<(DOT(xl,x2,x3) + (SD(x4,x5,x6,~7,~3) + x8))

=(SD(xl,x2,~4,~5,~3) + (DOT(x6,x7,x3) + x8))>>;
5 <<(SD(xl,x2,~3,~4,~5) + DOT(x6,x7,x5))

=(DOT(x3,x4,x5) + SD(x6,~7,xl,x2,~5))>>;
6 <<(DOT(xl,x2,x3) + ((I(x1 ,S(x3)) * I(x2,S(x3)))

+ (x4 + (DOT(x5,x6,x3) + (I(x5,S(x3)) * I(x6,S(x3)))))))
= (S D (X ~ , X ~ , X ~ , X ~ , X ~) + ((I(x5,S(x3)) * I(x6,S(x3)))
+ ((I(xl,S(x3)) * I(x2,S(x3))) + x4)))>>1

RULES
C1 <<((xi + x2) + x3)->(xi + (x2 + x3))>>;
2 <<(ZERO + x1)->xi>>;
3 <<DOT(xl ,x2,S(x3))->(DOT(x1 ,x2,x3) + (I(x1 ,S(x3)) * I(x2,S(x3))))>>;
4 <<DOT(xl,x2,ZERO)->ZERO>>;
5 <<SUMDOT(x1,x2,x4,x5,x3)->SD(x1,x2,x4,x5,~3~~>;
6 <<(DOT(xl,xZ,x3) + DOT(x4,x5,x3))->SD(x1,x2,x4,x5,x3)>>;
7 <<SD(X~,X~,X~,X~,ZERO)->ZERO>>;
8 <<(DOT(xl,x2,~3) + (DOT(x4,x5,x3) + ~6))->(SD(xl,x2,~4,~5,~3) + x6)>>;
9 <<(DOT(xl,x2,~3) + (x4 + DOT(x5,x6,x3)))->(SD(x5,x6,xl,x2,x3) + x4)>>;
10 <<SD(X~,X~,X~,X~,S(X~))

(*SD is recursive the transformation can be stopped*)
QUIT
AUTOIATIQUE DELETION
[l <<(ZERO + xi)->xi>>;
2 <<~UMDOT(xl,x2,x4,x5,x3)->SD(x1,x2,~4,x5,x3)>>;
3 <<SD(~~,~~,X~,~~,ZERO)->ZERO>>;
4 <<SD(xl,x2,~4,~5,S(x3))

-> (SD(x4,~5,xl,x2,~3) + ((I(xi,S(x3)) * I(x2,S(x3)))
+ (I(x4,S(x3)) * I(x5,S(x3)))))>>;

5 <<(xi + ZERO)->xl>>]
(*After deletion of the rules 1 and 5 by the user, the result is:*)
[I <<~UMDOT(x1,x2,x4,x5,x3)->SD(x1,x2,~4,~5,~3~>>;
2 <<SD(X~,X~,X~,X~,ZERO)->ZERO>>;
3 <<SD(xl,x2,~4,~5,S(x3)) -> (SD(x4,~5,xl,x2,x3)

+ ((1(xl,S(x3)) * I(x2,S(x3))) + (I(x4,S(x3)) * I(x5,S(x3)))))>>1

9.8 Transformation by AC ASTRE

The program of the example in Section 9.7 above is transformed by AC ASTRE:

<<DOT(x,y,S(n))=(DOT(x,y,n) + (I(x,S(n))*I(y,S(n))))>>
<<DOT(x,y,ZERO)=ZERO>>
<<SUMDOT(x,y ,u,v,n)e(DOT(x,y,n)+DOT(u,v,n))>>
Iode Associatif -Commutat if
Give the associative and commutative operators
+
SUMDOT AC TRANSFORMATION
Eureka-Rules
(DOT(xl,x2,x3) + DOT(x4,x5,x3))=SD(x1,x2,x4,x5,x3)
Other-Lemmas
(xi + ZERO)=xl
(DOT(xi,x2,x3) + DOT(x4,x5,x3)) = ~D(xl,x2,x4,~5,~3)
ANSWER PLEASE > < = UNDEF or QUIT
>
(xl + ZERO)=xi
ANSWER PLEASE > < = UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETURN or QUIT
ADD A LEMMA?? ANSWER YES or RETURN or QUIT
ADD A LEMMA?? ANSWER YES or RETURN or QUIT
ADD A LEMMA?? ANSWER YES or RETURN or QUIT

ADD A LEMMA?? ANSWER YES or RETURN or QUIT
~~(x1,x2,x3,x4,ZERO) = ZERO
ANSWER PLEASE > < = UNDEF or QUIT
>
(((I(xi,S(x2)) * I(x3,S(x2))) + (I(x4,S(x2)) * I(x5,S(x2))))

+ SD(X~,X~,X~,X~,X~))
= SD(X~,X~,X~,X~,S(X~))
ANSWER PLEASE > < = UNDEF or QUIT
<
(((I(xl,S(xZ)) * I(x3,S(x2))) + (I(x4,S(x2)) * I(x5,S(x2))))

+ SD(X~,X~,X~,X~,X~))
= (((1(xl,S(x2)) * I(x3,S(x2))) + (I(x4*S(x2)) * I(x5,S(x2))))

+ SD(xl,x3,~4,~5,~2))
ANSWER PLEASE > < = UNDEF or QUIT
QUIT
RESULT OF THE DELETION
[I <<SD (xi ,x2 ,x3 ,x4 ,ZERO) ->ZERO>> ;
2 <<SD(xi,x3,~4,~5,S(x2)) -> ((I(xl,~(x2)) * I(x~,s(x~)))

+ (I(x4,S(x2)) * I(x5,S(x2))) + SD(x4,~5,xl,x3,x2))>>;
3 <<~~~~0~(x1,x2,x3,x4,x5)->S~(x1,x2,x3,x4,x5~~~~

9.9 Third transformation step for the program Prefixes

PREFIXES TRANSFORMATION
Eureka-rules
[<<PP(G(xi ,x2) ,x3)->K(xl ,x3)>>1
ADD A LEMMA?? ANSWER YES or RETURN
<<K(xl,x2) = PP(NIL,x2)>>
ANSWER PLEASE > < UNDEF or QUIT
<
ADD A LEMMA?? ANSWER YES or RETURN
<<K(xl,NIL) = NIL>>
ANSWER PLEASE > < UNDEF or QUIT
>
ADD A LEMMA?? ANSWER YES or RETURN
<<K(x1 ,x2) = PP(C(C(x1 ,NIL) ,G(xl ,x3)) ,x2)>>
ANSWER PLEASE > < UNDEF or QUIT
<

- ADD A LEMMA?? ANSWER YES or RETURN
ADD A LEMMA?? ANSWER YES or RETURN
ADD A LEMMA?? ANSWER YES or RETURN

<c~(xl,x2) = K(x3,x2)>>
ANSWER PLEASE > < UNDEF or QUIT
UNDEF
<<K(x2,NIL) = NIL>>
ANSWER PLEASE > < UNDEF or QUIT
>
<<K(x2,NIL) = K(x4,NIL)>>
ANSWER PLEASE > < UNDEF or QUIT
UNDEF
<<K(x4,NIL) = NIL>>
ANSWER PLEASE > < UNDEF or QUIT
>
<<K (x4 ,NIL) = K(x2 ,NIL) >>
ANSWER PLEASE > < UNDEF or QUIT
UNDEF
ccK(x1 ,x2) = K(x1 ,x2)>>
ANSWER PLEASE > < UNDEF or QUIT
UNDEF
<<K(xi,x2) = K(xi,x2)>>
ANSWER PLEASE > < UNDEF or QUIT
UNDEF
ADD A LEMMA?? ANSWER YES or RETURN
ccc(C(C(x1,NIL) ,x2) ,K(xl,x3)) = K(xl,C(x2,~3))>>
ANSWER PLEASE > < UNDEF or QUIT
<
ADD A LEHMA?? ANSWER YES or RETURN
<<PP(c(C(X~,NIL) ,NIL) ,x2) = K(xl,x2)>>
ANSWER PLEASE > < UNDEF or QUIT
QUIT
AUTOMATIQUE DELETION
i <<PREFIXES(NIL)->C(NIL ,NIL)>> ;
2 <<PREFIXES(C(~~,~~))->C(NIL,K(~~,PREFIXES~X~~~~~~;
3 <<K(xl ,NIL)->NIL>>;
4 <<~(xl,C(x2,~3))->C(C(C(xl ,NIL) ,x2) ,K(x~ ,~3))>>1

References

[I] L. Bachmair. Proofs methods for equational theories. PhD thesis, University of Illinois,
Urbana-Champaign, 1987. Revised version, August 1988.

[2] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In Proceed-
ings of the colloquium on the resolution of Equations in Algebmic Structures, 1987.

(31 F. Bellegarde. Program Transformation and Rewriting . In Pmeedings of the fourth
conference on Re-ting Techniques and Applications, Springer Verlag, Lecture Notes
in Computer Science 488, pages 226-239, Como, Italy, 1991.

[4] R. M. Burstall and J. Darlington. A Transformation System For Developing Recursive
Programs. Journal of the Association for Computing Machinery, 24, pages 44-67,1977.

[5] A. BenCherifa and P. Lescanne. Termination of Rewriting Systems by polynomial
interpretations and its implementation. Science of Computer Progmmming, 9:137-160,
1987.

[6] N. Dershowitz. Termination. In Pmeedings of the first Confewnce on Rewriting Tech-
niques and Applications, Springer Verlag, Lecture Notes in Computer Science 202,
pages 180-224, Dijon, France, 1985.

[7] N. Dershowitz. Synthesis By Completion. Proceedings of the Ninth International Joint
Confemnce on Artificial Intelligence, pages 208-214, Los Angeles, 1985.

[8] N. Dershowitz. Computing with rewrite systems. Information and Control, 65(2/3):122-
157,1985.

[9] N. Dershowitz. Completion and its Applications. Resolution of Equations in Algebraic
Structures, Academic Press, New York, 1988.

[lo] Projet FORMEL. The CAML Reference Manual. Technical Report, INRIA-ENS,
March 1989.

[ll] H. Ganzinger, A completion procedure for conditional equations, Pmeedings First
International Workshop on Conditional Term Rewriting Systems, S. Kaplan and J.
P. Jouannaud, editors, Lecture Notes in Computer Science 308, pages 62-83, Orsay,
France, 1987.

[12] G. Huet, Formal Structures for Computation and Deduction, Technical Report, INRIA,
May 1986.

1133 D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and related prop-
erties of term rewriting systems. Acta Infonnatica, 24:395-415, 1987.

[14] D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebras. In J.
Leech, editor, Computational Problems in Abstract algebra, pages 263-297, Pergamon
Press, Oxford, U. K.,1970.

[15] E. Kounalis, Testing for Inductive (C0)-Reducibility. In Pmeedings of the 15th Inter-
national Colloquium on Trees in Algebra and Progmmming, Lecture Notes in Computer
Science 431, pages 221-238, 1990.

[16] E. Kounalis, M. Rusinowitch. Mechanizing Inductive Reasoning. In Pmeedings of the
eight National Confemnce on Artificial Intelligence, AAAI-90, 1990.

[17] D.S. Lankford. On proving term rewriting systems are Noetherian, Memo MTP-3,
Mathematic Department, Louisiana Tech. University, Ruston, LA, May 1979. (Revised
October 1979).

[18] P. Lescanne, Completion Procedures as Transition Rules + Contro1,In Proceedings
of the Colloquium Cumnt Concept In Programming Languages, TAPSOFT, Springer
Verlag, Lectures Notes in Computer Science 351, pages 28-41, Barcelone, Spain, 1989.

[19] P. Lescanne, Implementation of completion by Transition Rules + Contro1:ORME.
In 2nd Intern. Workshop Algebmic and Logic Progmmming, Springer Verlag, Lecture
Notes in Computer Science 463, pages 262-269,1990.

[20] G. E. Peterson and M. E. Stickel, Complete sets of reductions for some equational
theories, J. of the association for Computing Machinery, 28(2), pages 233-264, 1981.

[21] U. S. Reddy. Transformational derivation of programs using the Focus system. In Sym-
posium Pmctical Software Development Environments, pages 163-172, ACM, December
1988.

[22] U. S. Reddy, Formal methods in transformational derivation of programs. In Proceed-
ings of the ACM Intern. Workshop on Automatic Software Design, AAAI, 1990.

[23] U. S. Reddy, Term Rewriting Induction. In Pmeedings of the Conference of Automated
Deduction, 1990.

[24] H. Zhang and J. L. Remy, Contextual rewriting. In Proceedings of the First Intena-
tional Conference in Rewriting Techniques and Applications, Springer Verlag, Lecture
Notes in Computer Science 202, pages 46-62, Dijon, France, 1985.

