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Abstract 

ASTRE is a program transformation system whose central parts are partial comple- 
tion procedures. A description of ASTRE and scripts of many examples show that such 
a system allows a minimum of intervention from the user and provides all the theorem 
proving abilities that are required for a good transformation system. 

1 Program transformation and rewriting 

Dershowitz [7,9] has shown how the completion procedure can be applied to program trans- 
formation by automatizing the instanciation, folding and unfolding processes originated by 
Burstall and Darlington [4]. But no attempt has been made to apply the completion to 
design a program transformation system. 

We think that program transformation can take its place in software design only if the 
transformation process is automated as much as possible. Moreover the program trans- 
formation process requires theorem proving abilities such as ground convergence proofs, 
induction proofs, sufficient completness, that can be easily provided by completion proce- 
dures and other term rewriting system techniques. 

The system Focus [21,22] uses rewriting and overlappings but it does not use completion 
procedures. The main reason is that a completion procedure is doing too much for the 
purpose of the transformation. That is why ASTRE limits the completion process and uses 
"partial completion proceduresn. Justification of this point of view has been done in [3]. In 
this paper, our goal is to present ASTRE and examples of program transformation using 
ASTRE. 

2 Basic notions and notations 

A program is presented by a set of equalities (or equations). An operational semantics can 
be given to functions defined by equations by using term rewriting systems. 

An equation is a pair of terms s = t. We will denote by T ( C ,  X) the set of terms built 
with the variables X and the functions symbols of the signature C. V(t) denotes the set of 
the variables oft .  The set of ground terms or terms without variables is denoted by T ( C ) .  

'This research was conducted at the Oregon Graduate Institute of Science and Technology, Beaverton, 
OR 97005 



Given a binary relation, 4, +* is the reflexive transitive closure of +. ++* is its reflexive 
and symmetric transitive closure. A relation + is noetherian or (strongly) terminating if 
there is no infinite sequence tl + t2 -. .. A relation + is confluent if +* o -t*E+* o +*, 
where o denotes the composition of relations. 

t l p  is the subterm of t at the position p. The replacement of the subterm t l p  in t by 
the term u is denoted by t[p c u]. 

A rule is an oriented pair of terms 1 + r. We must have V(r) C V(1). A term rewriting 
system is a set of rules. Given a term rewriting system R, the rewriting relation --+R is a 
binary relation in T(C, X). s +R t if there exists a rule 1 r in R, a position p in s, a 
substitution a such that a(1) = s l p  and t = s[p < -a(r)]. A term t is in normal form if it 
is irreducible. 

A term rewriting system is terminating if the relation -,R is noetherian, confluent 
if the relation + R  is confluent, and convergent if it is both confluent and terminating. 
Convergence ensures existence and unicity of the normal form of every term. 

Critical pairs are produced by overlaps of two redexes in a same term. A non-variable 
term t' and a term t overlap if there exists a non-variable position p in t such that t l p  and t' 
are unifiable. Let g -, d and 1 -, r be two rules such that 1 and g overlap at the position p 
with the most general unifier a. The overlapped term a(g) produces the critical pair (p, q) 
defined by p = a(g[p < -TI) and q = a(d). A critical pair is convergent if p and q reduce to 
the same term. 

The completion pmedure [14] was introduced as a means at deriving convergent term- 
rewriting systems used as procedures for deciding the validity of identities (the word prob- 
lem) in a given equational theory. The procedure generates new rewrite rules to  resolve 
ambiguities resulting from existing rules that overlap. These new rules are produced by 
non-convergent critical pairs. 

A completion procedure can fail because it is unable to  orient an equation into a rule 
without losing the termination property of the system. However, non-orientable equations 
may sometimes be used for reduction anyway, because their instances can be oriented. This 
idea is basic t o  the unfailing completion procedure [2, 11. It uses the notion of ordered 
rewriting which does not require that an equation always be used from left to right. An 
ordered rewriting system is a set of equations together with a reduction ordering >, i.e. a 
well-founded, monotonic and stable. An ordered rewriting system can be denoted (E ,  >). 
When the equations in E can be oriented with >, we usually call them rules. The ordered 
rewriting relation using (E, >) is the rewriting relation +E> where E > denotes the set of all 
the orientable instances of E. This allows us to extend the notion of critical pairs to ordered 
critical pairs and to  extend the completion process to  an unfailing completion process, i.e. 
a completion that cannot fail. The outcome of the unfailing completion procedure, when it 
does not loop, is either a (ground) convergent term rewriting system R when all equations 
are rules or a ground convergent ordered rewriting system (E,  >) when some equations 
remain unordered. By ground convergence, we mean termination and confluence on ground 
terms. Obviously, convergence implies ground convergence. 

Given a ground convergent term rewriting system R, a term t is ground (or inductively) 
reducible with R if all its ground instances are R reducible. 

An equation s = t is an inductive theorem (or inductive consequence) of E if for any 
ground substitution a, a(s) = a(t). 

We consider programs presented in a specification S = (C, E )  by a set of equations 
E. We consider the case when the set of functions in the signature C can be split into a 
set of constructors C and a set of defined functions D. The definition of functions of D 



is suficiently complete with mspect to C ,  i.e. it produces no junk, if every ground term is 
provably equal to  a constructor term, which is a term built only with constructors. 

In its operational point of view, the program is presented by a term rewriting system R 
for the specification (C, R). Computation of a (ground) term in T(C) is done by rewriting. 
The operationally complete definition of a function f w.r.t C is when for all ground term 
f ( t l , .  . . , t ,) ,  there exists a constructor term s such that 

3 ASTRE, a system for program transformation 

ASTRE has been written in CAML [lo]. The implementation uses largely all the functions 
CAML provided by the system ORME [18, 191 

A functional language like CAML can be considered as a good specification language 
and it is easy to  translate a program written in a pure functional language into a set of first 
order equations. Let us consider a simple CAML program to  computes permutations which 
can be found in [12]: 
Example 1 

let rec permut = 
let perms 1 x = map (cons x) (permut (discard(x 1)) 

where rec discard x = function 
a -> a 
1 y : : ys -> if (x=y) then ys 

else y::discard(x,ys) 
in function U -> [a] 

I1 -> flatten (map(perms 1) 1) 
where rec flatten = function 

-> U 
1x::xs -> x Q flatten(xs);; 

By transforming the higher order functions, it can be written as a set of first-order equations: 

discard(x, )=[I 
discard(x,y::ys)= if (x=y) then ys 

else y::discard(x,ys) 
perms(1 ,XI= map,cons(x,permut (discard(x ,1) ) 
permut(l)=if null(1) then [[I] 

else flatten(map,perms(l,l)) 

ASTRE considers a program of a function f presented by the set of equalities E in the 
specification S = (C, E) .  f is a distinguished function in the set of function symbols of 
C we call main symbol for the transformation. ASTRE considers the case when the set of 
functions in the signature C can be split into a set of constructors C and a set of defined 
functions D. ASTRE transforms the program o f f  presented by the set of equalities E into 
a program of f presented by a set of equalities E'. 

The presentation of a program by a set of equalities E is a term rewriting system R 
whose rules are the equalities in E directed from left t o  right. For example, the program 
for permutations is the following term rewriting system: 



discard(x,U) -> El 
discard(x,y : :ys) -> if (x=y) then ys 

else y: :discard(x,ys) 
perms(1,x) -> map~cons(x,permut(discard(x,l))) 
pemut(1) -> if null(1) then [Ell 

else flatten(map,perms (1.1) ) 

The result of computation of a (ground) term like permut([l; 2; 31) is obtained by (ground) 
rewriting in the (ground) normal form: 

[[l; 2; 31; [I; 3; 21; [2; 1; 31; 12; 3; I]; [3; 1; 21; [3; 2; 111. 

The correctness of the transformation is ensured when R and R' are ground convergent. 
Weaker sufficient conditions for the correctness of the transformation involve properties such 
as the (operationally) sufficient completness of the specifications S and S' [3]. ASTRE can 
verify the ground convergence of R and R' by using an unfailing completion procedure. 

The transformation process also involves a (partial) unfailing completion procedure. The 
original code of an unfailing completion procedure is borrowed from the system ORME. It 
is described in [18, 191. 

For the transformation, the user provides definitions of new function symbols. 
Example 2 

For example, a transformation of permut can be initiated by introducing the new defi- 
nition: 

The result of the transformation process given by ASTRE is then: 

[<<permut(xi)->IF(null(xl), [Dl ,fmp(xl,xi))>>; 
<<discard(xl ,x2: :x3))->IF((xl=x2) ,x3,x2: :di~card(xl ,x3)))>>; 
<<discard(xl, q )->[I >>; 
<<map~cons(x1,x2::x3))->(xl::x2)::map,cons~x1,~3~~~~; 
<<rnap,cons(xl,U)->U>>; 
<<fmp(xi, [I)->[]>>; 
<<fmp(xl, (x2: :x3)) 

- > 
(map-cons (x2,   null (discard(x2 ,xi) ) , 1 , 
fmp(discard(x2,xl) ,discard(x2,xi)))) Q fmp(x1 ,x3)) 
>>I 

This corresponds to  the CAML program: 

let pemut = function 
[I->CU1 
1-> 

let rec discard x = function 
-> U 

/y::ys -> if (x=y) then ys 
else y::discard(x,ys) 

in let fmp(x,y) = match y with q -> U 
ly: :ys -> (map (cons y) (if null(discard y XI) 



then Cfll 
else fmp(discard(y ,XI ,diecard(y A)))) 

Q fmp(x,ys) 
in fmp(1,l) ; ; 

The transformation process gives a direct recursive definition of the function f mp. 

Most of the time, properties of functions are required for the simplification of the defi- 
nition. For the example above, the transformation will give 

if the user does not supply the axiom: 

in the middle of the transformation process. 
In ASTRE, the user can provide these properties interractively at any time during the 

transformation process which is very useful for simplification properties. In fact, ASTRE 
asks the user: 

ADD A LEMMA? ANSWER YES or NO. 

at each new loop of the completion process. 
Moreover, properties of functions are often required for the synthesis of new recursive 

definitions as shown by the following example: 
Example 3 

The input for the transformation is: 
<<CONC,ALL(NIL) -> NIL>> 
<<CONC,ALL(C(x,xs)) ->(ALL(x) Q CONC,ALL(xs))>> 
<<FILTER(NIL) -> NIL>> 
<<FILTER(C(x,xs)) -> IF(ISSIG(x) ,C(X,FILTER(XS)) ,FILTER(XS) I>>  
<<SIGPERM(x) -> FILTER(CONC,ALL(X) )>> 

,and the axiom given by the user is: 

,and the definition of a new symbol is: 

the result of the transformation is: 



without the axiom about the endomorphism of FILTER, 
the result of the transformation would have been: 

Generally, the transformation process as well as the verification of the ground conver- 
gence of the programs relies upon an unfailing completion procedure. 

4 Ground Convergence 

The verification of the ground convergence of the program is offered as an option to the user. 
ASTRE uses the ER-COMPLETION procedure implemented in ORME for the verification 
of ground convergence. It is described in.  [18, 191. 

It requires a complete reduction ordering i.e. an ordering that is total on ground terms. 
This condition is fulfilled by an ordering based on polynomial interpretations [17, 51, called 
polynomial ordering, or by a recursive path ordering [6] based upon a precedence which is 
total on function symbols. These two kind of complete reduction orderings are available in 
ASTRE. 

When the user choses the polynomial ordering, he must provide the polynomial inter- 
pretations before entering in the verification of the ground convergence. 

When the user choses the recursive path ordering, the total precedence can be provided 
interractively during the completion process. Recall that ASTRE requires from the user 
the list of the constructor symbols. This allows us to get automatically an initialization 
of the total precedence by putting the constructors at the bottom of the precedence. This 
way, there are few interractions with the user. 

Moreover, the programs are mostly presented as constructor systems. 

Definition 1 A constructor system is a set of constructor equations. Constructor equations 
are of the form: f (t l , .  ., 5 , )  = t where t E T ( F ,  V ) ,  f E D,  ti, i = 1, n E T ( C ) .  These 
equations must be oriented as (constructor) rules of a term rewriting system from left to 
right. 

When the program is presented by a constructor system, a total precedence of the symbols 
for the recursive path ordering is derived automatically by ASTRE. This is provided by the 
option "automatique rpo". You can find in annexe 9.1 the script of the verification of the 
ground convergence of the presentation of the program for the example 1. The "automatique 
rpo" can fail because it finds a circuit in the precedence it attempts to generate, It is the 
case for the program for permutations given in example 1. A script is given in annexe 9.2. 
It is easy to see that the program for permutations is not strongly terminating. 



5 UNFAIL ASTRE 

The transformation process is based on a partial unfailing completion. Ordered critical pairs 
are computed between the new definitions provided by the user and the program presented 
by the set of (ground convergent) rules R. Simplifications by rewriting are performed. The 
axioms provided by the user at any time during the completion process are overlapped with 
the rules of R and are used for simplification. 

5.1 Orderings 

Once again, a complete reduction ordering must be provided to the completion procedure 
which uses it  for simplification and computation of ordered critical pairs. The transforma- 
tion is obtained by the ordered critical pairs between the definition of a new symbol and 
the program presented by the system R. 

The orientation of the rules that is required for getting the desired overlaps is contradic- 
tory with the "automatic rpo" we defined for the verification of the ground convergence in 
Section 4. For the example 2, the definition FILTER(C0NC- ALL(%)) = CONCFIL(x) 
is oriented from right to left by the "automatique rpo". However it is the opposite orien- 
tation that brings overlaps with the definition of CONC-ALL. The critical pairs coming 
from these overlaps leads to the desired recursive and complete definition of CONCFIL. 

A recursive path ordering or a polynomial ordering are available in option. They are 
used in the transformation step in the examples 9.3 and 9.4 in annexe. The advantadge 
of the recursive path ordering is its incrementality. The user can define the precedence 
along the verification of ground convergence and he can continue during the transformation 
process. It is relatively easy to find a total precedence when the recursive path ordering 
works but it can be more difficult to find polynomial interpretations. Moreover, it is difficult 
for the user to  take care of the definition of the ordering before or during the transformation 
process, and these two orderings are largely insufficient for the purpose of the transformation 
process. 

Hopefully, the user knows how to  orient equations to  get the desired overlaps or the 
desired simplification. He can give directions on how to  orient the equations along with the 
transformation process under the option 'manual orientation". So doing the user must be 
careful not to introduce possibilities of loops in rewriting. The system could try to infer a 
recursive path ordering from directions given by the user but this is not yet implemented 
in ASTRE. 

5.2 Termination of the transformation step 

An unfailing completion does not fail but it can loops. However, in this case, the transfor- 
mation is done before the completion process terminates. 

A transformation step can be considered as terminated when the completion procedure 
has generated: 

1. a recursive and operationally complete definition of the new symbol introduced by the 
user, 

2. and an operationally complete definition of the main symbol invoking this new symbol, 

3. and when these definitions are enough simplifed. 



Obviously, the last requirement depends only on the judgement of the user. The comple- 
tion process may continue to  generate equational consequences (critical pairs) which may 
eventually simplify the definitions. If the definitions of the symbols in C are operationally 
complete and if the orientation is well chosen, an operationally complete definition of the 
new symbol will be automatically generated by the completion process. However, this 
definition is useful for the transformation only if it is recursive and if this simplifies the 
definition of the other symbols. We have seen that appropriate axioms can be supplied to 
help fulfilling these goals. There can be two cases, either the transformation will not succeed 
to  reach these goals, or it  will, if we wait enough to let it generates the required equations. 
The requirements 1 and 2 above could be automatically checked using a test of sufficient 
completness citeKapur-Narendran-Zhang87,Kounalis90. But the user must finally decide 
whether or not to  quit the process. 

5.3 User's tasks 

At this point, we can summarize the role of the user during the transformation process. 
The user must: 

provide the axioms that are necessary to simplify the definitions and get a recursive 
definition of the new symbol, 

chose the orientation of the equations to  get the right overlaps and the right simplifi- 
cations, 

and, eventually, decide to quit the completion process. 

This requires a good knowledge about the properties of the functions invoked and a clear 
goal for the transformation and it is not always obvious. The transformation process must 
be flexible enough to allow the user to undo. Sometimes the user may have some doubts 
about the orientation of an equation El  simply because the transformation has not yet 
generated the equation E2  which could be subsumed or simplified by El oriented in a 
certain direction. When asked for the orientation of El, the user can let it undefined. 
However, when he understands how to orient it for the purpose of the transformation, he 
then can interrupt temporarily the completion process to ask for considering the orientation 
of the equations that has been let undefined. He can also through away some equations 
that seems to be useless if he judges that the presence of these equations will slow down the 
transformation process by generating more useless equational consequences. These features 
gives the user full control of the transformation process and a lot of flexibility on the degree 
of partiality of the completion process invoked for the transformation. The counterpart is 
that it increases the responsability of the user. An example of a transformation using these 
features is given in annexe 9.5. 

5.4 Automatique deletion 

Let us now consider the result after the termination of the partial completion process. The 
axioms added by the user, some of the equations or rules generated during the transforma- 
tion are not part of the presentation of the program R' result of the transformation. If the 
transformation succeeds, this program is an operationally complete definition of the main 
symbol invoking the new symbol which is itself defined by a recursive and operationally 



complete definition. The program must be a constructor system. ASTRE eliminates auto- 
matically the non constructor rules and the constructor rules that are not invoked in the 
definition of the main symbol. However, the present implementation of the "automatique 
deletion" can be insufficient. For the example in annexe 9.5, the automatique deletion let 
the two rules: 

Which one of these two rules is contained in the definition of the function G? The decision 
can be done by extracting an operationally complete and recursive definition of G. An 
automatic extraction would use a test of sufficient completness. This is not done automat- 
ically in the current implementation. The user must chose the last few rules that need to 
be deleted. 

5.5 Ground Convergence of the result 

We know that: 

If the transformation process has been controlled by a recursive path ordering or 
by a polynomial ordering and if nothing has been deleted, R' is obviously ground 
convergent. 

I f  R is ground convergent and if R' give an operationally complete definition of the 
main symbol, R' is ground convergent by a result proved in [16] and recall in [3]. 
Therefore, if the deletion is correct, then R' gives an operationally complete definition 
of the main symbol, and thus, R' is ground convergent. 

However, in the absence of a test of sufficient completness, the verification of the ground 
convergence of R' is given as an option to the user. 

At the end of the transformation step, the user is asked for another transformation step. 
The examples in annexes 9.6 and 9.9 three transformation steps. ASTRE can be used to 
transform large programs. 

6 AC ASTRE 

Let us consider the particular case when the transformation requires the associativity and 
the commutativity axioms of some function symbols. 
Example 4 

For example let suppose that we have a function definition DOT which computes 
C;,(,,,)(z; * yi) and we use it to define a function SUMDOT which computes Bi=(l,n)(xi * 
y ; )  + C ; = ( l , n ) ( ~ ;  * v;). The presentation of the program is: 

SUMDOT could be computed as C;,(l,n)((xi * y ; )  + (u; * v; ) ) .  The transformation requires 
the associativity and the commutativity of +. 



If we use the UNFAIL ASTRE, 27 equations are generated before the equation which 
will simplify the definition of SD in a recursive definition (see example in annexe 9.7). 
For each of these equations, the user will be asked for orientation in the mode "manual 
orderingn. It  can be a long and overwhelming task. 

ASTRE provides for this case a transformation step based on an associative and com- 
mutative completion procedure [20]. The user asks for the mode AC ASTRE. AC ASTRE 
uses the ANS-AC-completion provided by ORME. The competion procedure uses associa- 
tive and commutative unification algorithm in place of the syntactic unification algorithm 
t o  generate critical pairs. Associative and commutative matching is used t o  apply rules. For 
the example of SUMDOT,  AC ASTRE gives the result directly (see example in annexe 9.8). 

There is some drawbacks in using an associative and commutative completion procedure. 
It is not an unfailing completion and therefore all equations must be oriented. It is less 
flexible. A way out is given by AC ASTRE which provides t o  the user a garbage t o  postpone 
the orientation of some equations or to  through away unorientable equations. So doing, we 
get back the flexibility. Another point is that the orderings that are applicable t o  associative 
and commutative rewriting are few. Polynomial ordering is compatible with associativity 
and commutativity [5] but the recursive path ordering is not. Practically, it is not very 
important because we mostly use the option "manual orientation" for the transformation 
process. 

7 Utilisation of ASTRE 

Let us consider an example. We want a program to  compute the list of the prefixes of a 
given list. 

The programmer write the following CAML program: 

(*I 
Value REPEATL : ( 'a  list -> 'a  l ist  l i s t )  

CAML,system(hd> 
REPEATL( C1;2;3;41 )=[[I] ; C11 ; [I] ; [ill 
I *I 
l e t  REPEATL(1) = 

l e t  rec REP = function 
( 1 , n ) - > n  
1 (1,x:  :xs)->[hd(l)l : :REP(l,xs) 

i n  REP(1,l);; 
( * I  
Value ZIP : ( 'a  list * 'b l ist  -> ( 'a  * 'b) l i s t )  
ZIP([1;2;3;41; C5;6;7;81)=[(1,5) ; (2 ,6);  (3,7) ; (4,911 
I *) 
l e t  rec ZIP=function 

(a, u ) - > n  
I (x: :xs) , (y: :ys)->(x,y)  : : Z ~ ~ ( x s , y s )  ; ; 

(*I 
Value CONS-NIL : ( 'a  l ist  list -> 'a l ist  l i s t )  



I *) 
let CONS-NIL x = 0::~;; 
(* I 
Value PREFIXES : ('a list -> 'a list list list) 
CCONS,NIL,REPEATL,ZIP), 
CAML-systemCmap,o) 

I *I 
let rec PREFIXES = function 

n->cni 
I x : : xs-> let CONS=pref ix : : 

in let PREF=CONS,NIL o (map CONS) o ZIP 
in PREF(REPEATL(x: :xs) ,PREFIXES(xs)) ; ; 

The presentation of this program by a system of first order equations is: 

ASTRE verifies the ground convergence by "automatique rpo". We can transform the 
definition of PREF by introducing a new symbol P P  for the composition (MAP- CO N S o 
Z I P ) .  This yields to a first transformation step: 

PREFIXES TRANSFORMATION 
Eureka-rules 
[<<MAP~c~Ns(ZIP(X~,X~))->PP(X~,X~)>>] 
ADD A LEMMA?? ANSWER YES or RETURN 
<<C(C(xl,x2),PP(x3,x4)) = PP(C(x1,x3),C(x2,x4))>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 
ADD A LEMMA?? ANSWER YES or RETURN 
<<PP(NIL,NIL) = NIL>> 
ANSWER PLEASE > < UNDEF or QUIT 
AUTOMATIQUE DELETION 
[i <<PP(NIL,NIL)->NIL>>; 
2 <<PREFIXES(C(X~,X~)) 

->C(NIL ,PP(C(C(HD(C(xl ,x2) ,NIL) ,REP(C(xi ,x2) ,x2)) ,PREFIXES(X~) ; 

3 c<RE~(xi ,C(x3,x2) 1->C(C(HD(xi) ,NIL) ,REP(xl,x2))>>; 
4 <<REP(xi,NIL)->NIL>>; 
5 <<pREFIXES(NIL) ->C(NIL ,NIL)>> ; 
6 <<PP(C(xi ,x3) ,c(x~,x~))->C(C(X~,X~) ,PP(x~,x~))>>] 



We can now slightly generalize the subterm REP(C(x1, x2), 22)) in the right-hand side of 
the definition of PREFIXES(C(xl,x2)).  We introduce the new symbol G for 

REP(C(x, y), z )  = G(x, z).  

The variable y disappears in the left-hand side. The user can be aware that the tail y is 
useless in the definition of REP.  This yields to a second transformation step: 

PREFIXES TRANSFOWATION 
Eureka-rules 
[<<REP(C(xl ,x2) ,x3)->G(x1 ,x3)>>] 
ADD A LEMMA?? ANSWER YES or RETURN 
<<G(xl,NIL) = NIL>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETURN 
<<G(x~ ,C(x2,x3)) = C(C(HD(C(xl,x4)) ,NIL) ,G(xi,x3))>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETURN 
YES 
<<HD(C(xl,x2))=xl>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETURN 
ADD A LEHMA?? ANSWER YES or RETURN 
AUTOMATIQUE DELETION 
[I <<G(xl,NIL)->NIL>>; 
2 <<PREFIXES(C(XI ,X~))->C(NIL,PP(C(C(X~ ,NIL) ,G(xl ,x2)) ,PREFIXES(X~) )I>>; 
3 <<PP(NIL,NIL)->NIL>>; 
4 <<PREFIXES(NIL)->~(NIL,NIL)>> ; 
5 <<~~(~(x1,x3),~(x2,x4))-~c~c(xl*x2)~PP~x3,x4~~~~; 
6 <<~(x1,C(x2,x3))->C(~(xl,~IL) ,G(xi,x3))>>] 

Recall that in a term rewriting system, for a rule I -+ r, we must have V(r) C V(Z) (see 
Section 2). In the middle of the transformation, the user provides the axiom HD(C(x, y)) = 
x which allows the correct orientation of the definition of G(x1, C(x2,23)). Now the program 
does not invoke the function HD. 

The definition of P R E F I X E S  can still be improved. The subterm 

C(C(x1, NIL), G(xl,x2)) 

is nothing else but an unfolding of G(x1, C(x1, x2)). We can try a generalization of 

We introduce the new symbol K for PP(G(x, u), v) = K(x, v). The variable u does not 
occur in the right-hand side. The script of the corresponding third transformation step is 
in annexe 9.9. The user quits the completion when a complete definition of K is generated. 
After (automatique) deletion, the result is: 



This corresponds to  the short CAML program: 

let rec PREFIXES=function 
a->cni 
Ix: :xs-> let rec K = function 

(x, n)->a 
I (x,y: :ys)-> (Cx] : :y): :K(x,ys) 

in : :K(x,PREFIXES(xs)) ; ; 

8 Conclusion 

ASTRE shows that completion procedures can be basis of reasonable transformation sys- 
tems. However, work about orderings compatible with the transformation process would 
be useful. 

ASTRE can be improved. It could ensure more theorem proving abilities such as induc- 
tive proofs [23,16] for the inductive axioms the user provides during the completion process 
or test for sufficient completness [13, 151 for proving the correctness of the transformation. 
This test could allows ASTRE to advise the user when the transformation step is possibly 
terminated. 

Our goal is to  minimalize the intervention of the user. We could improve ASTRE by 
providing a "replayn like in the system Focus [22]. The idea is to automatize completely 
a transformation which acts like a previous one. For this purpose, more work in studying 
strategies for transformations will be helpful. These strategies can be derived from the 
theorems on higher order functions like map f o map g = map( f o g ) .  

ASTRE is restricted to  equational specifications. We could consider conditional specifi- 
cations [ l l ,  241. Even in the case of an equational specification, conditional rewriting would 
be particularly useful when we want to introduce cases for the transformation. 

I would like to thank Dick Kieburz, Claude Kirchner, Helene Kirchner, Pierre Lescanne, 
who provided me with encouragements and support, Pierre Lescanne who gave me access 
to  the system ORME, Dick Kieburz for wise advices and examples. 

9 Annexes 

9.1 Ground Convergence by automatique rpo 

Here follows the script of the verification of the ground convergence of an initial program 
for the example 2: 

GETTING THE SYSTEM 
<<CONC,ALL(NIL) = NIL>> 
<<CONC,ALL(C(x ,xs) I=  (ALL(x) Q CONC-ALL(xs) )>> 
<<FILTER(NIL)=NIL>> 
<<EILTER(C(X ,xs) ) = IF(ISSIG(x) ,C(X ,FILTER(X~)) ,EILTER(xs) )>> 
<<SIGPERM(x) = FILTER(CONC,ALL(X) ) >> 



GETTING THE CONSTRUCTORS 
C NIL 
GROUND CONVERGENCE 
ORDERINGS 
<I> : incremental-rpo 
<2> : manual 
<3> : automatique rpo 
<4> : polynomial 
type 1 or 2 or 3 or 4 
3 
WARNING 
O is not a constructor or a defined symbol 
WARNING 
ALL is not a constructor or a defined symbol 
WARNING 
IF is not a constructor or a defined symbol 
WARNING 
ISSIG is not a constructor or a defined symbol ..................... ..................... 
Successful Completion 
---------------- - 

EQUATIONS 

RULES 
[I <<CONC,ALL(C(xl ,x2) 1-> (ALL(x1) O CONC-ALL(x2) ) >> ; 
2 <<FILTER(NIL)->NIL>>; 
3 <<CONC,ALL(NIL)->NIL>>; 
4 <<SIGPERH(xl)->FILTER(CONC-ALL(xl))>>; 
5 <<FILTER(c(x~ ,x2) )->IF(ISSIG(xl) ,C(xl ,FILTER(x~)) ,FILTER(x2) )>>I 

9.2 Failure of the automatique rpo 

Here follows the script of an attempt to verify the ground convergence which fails with a 
circuit in the total precedence infered by the option "automatique rpo": 

GETTING THE SYSTEM 
<<map,cons(x,NIL)=NIL>> 
<<map,cons(x ,C(y,ys) )=C(C(x,y) ,map-cons (x,ys)) >> 
<<discard(x,NIL)=NIL>> 
<<discard(x,C(y,ys))=IF(eq(x,y) ,ys,C(y ,discard(x,ys)) 
<<flatten(NIL)=NIL>> 
<<flatten(C(x,xs))= (x O flatten(xs1 
<<permut(l)=~~(null(1),~(~~~,~~L),flatten((map,pems (1,1))))>> 
<<perms(x,l)=map~cons(x,pemut(diacard(x,l~ ) I>>  
<<map,perms(li ,NIL) =C(NIL,NIL)>> 
<<map,perms(li ,~(x,xs))=C(perms(x,ll), (map-pems(l1 ,xs)))>> 
GETTING THE CONSTRUCTORS 
C NIL 
GROUND CONVERGENCE 



ORDERINGS 
<I> : incremental-rpo 
<2> : manual 
<3> : automatique rpo 
<4> : polynomial 
type 1 or 2 or 3 or 4 
3 
The ordering rpo for constructor system gives a circuit in the precedence: 
Ground convergence is not verified. 
Your equations are considered as rules. 

9.3 Transformation by recursive path ordering 

Here follows the sript of a transformation using a recursive path ordering for the ground 
convergent system: 

The recursive path ordering used to verify the ground convergence can be incremented for 
the transformation step: The new definition is given by the user. Then, it is oriented by 
the recursive path ordering: 

<<L(x Q y)=LA(x,y)>> 
GIVE A PRECEDENCE FOR: L LA 
ANSWER PLEASE > < = QUIT 
< 
<<(xl Q x2),LA(xl,x2)>> 
GIVE A PRECEDENCE FOR: Q LA 
ANSWER PLEASE > < = QUIT 
> 

The interractions with the user during the transformation step are considerably reduced. 

LA TRANSFORHATION 
Eureka-rules 
[<<L((xl Q x2) )->LA(x1 ,x2)>>1 
Added Lemmas 

you will be asked at each step if you want to add a lemma 
ADD A LEMMA?? ANSWER YES or RETURN 
EQUATIONS 
[1 <<LA(NIL,x~)=L(x~)>>] 
RULES 
[I <<(NIL Q x1)->xi>>; 
2 <<L(NIL)->ZERO>>; 
3 <<L(C(x2,xl))->(uN + L(xi))>>; 
4 <<(C(xl,x2) 0 x3)->C(x1, (x2 Q x3))>>; 



5 <<L((xi Q x2))->LA(xl ,x2)>>1 
EQUATIONS 
[l <<(UN + LA(X~ ,~~))=LA(c(x~,x~) ,x2)>>] 
RULES 
[l <<(C(xl*x2) Q x3)->~(xi,(x2 Q x3))>>; 
2 <<(NIL Q xi)->xl>>; 
3 <<L(NIL)->ZERO>>; 
4 <<L(C(x2,xl))->(UN + L(xi))>>; 
5 <<L((xl Q x2))->LA(xl,x2)>>; 
6 <<LA(NIL,x~)->L(x~)>>] 
<cLA(xl,x2) ,LA(c(x~,x~) ,x2)>> 
GIVE A STATUS FOR LA 
ANSWER PLEASE LR RL QUIT 
LR 
ADD A LEHMA?? ANSWER YES or RETURN 
ADD A LEHMA?? ANSWER YES or RETURN 
= = = = = = = I = 1 0 3 I = D I D I I I I  

Successful Completion 
= = = = = = 1 3 0 = l l l l = D I I I ' I  

EQUATIONS 
[I 
RULES 
[1 <<~~(N1L,xl)->L(xl)>>; 
2 <<(C(xi,x2) Q x3)->C(xi,(x2 Q x3))>>; 
3 <<(NIL O xi)->xi>>; 
4 <<L(NIL)->ZERO>>; 
5 <<~(~(x2,xl))->(uN + L(xi))>>; 
6 <<L((xl Q x2))->LA(xi ,x2)>>; 
7 <<LA(C(x3,xl) ,x2)->(UN + LA(x1 ,x2))>>1 
RESULT OF THE DELETION 
[<<LA(NIL,x~)->L(x~)>> ; 
<<L(NIL)->ZERO>>; 
<<L(c(x~,x~))->(uN + L(x~))>>; 
<<~~(C(x3,xl) ,x2)->(UN + L~(x1 ,x2))>>1 

9.4 Transformation by polynomial ordering 

Here follows the script of a transformation using a polynomial ordering for the system: 

The axiom for the transformation is: 

and the new definition is: 



The user must give the interpretations of the symbols: 

The transformation requires no intervention of the user: 

D TRANSFORMATION 
Eureka-rules 
[<<(xi + xi)->DD(xi)>>l 
Added Lemmas 
[<<(xi + S(x2))->S((xl + x2))>>1 
you will be asked at each step if you want to add a lemma 
ADD A LEMMA?? ANSWER YES or RETURN 
EQUATIONS 
[i <<DD(ZERO)=ZERO>>I 
RULES 
[I <<(ZERO + xi)->xi>>; 
2 <<(S(xl) + x2)->S((xi + x2))>>; 
3 <<D(xi)->DD(xi)>>; 
4 <<(xi + S(x2))->S((xi + x2))>>; 
5 <<(xi + xi)->DD(xi)>>l 
EQUATIONS 
[i <<S(S(DD(X~)))=DD(S(X~))>~~ 
RULES 
[i <<(S(xl) + x2)->S((xi + x2))>>; 
2 <<(ZERO + xi)->xi>>; 
3 <<D(xl)->DD(xi)>>; 
4 <<(xi + S(x2))->S((xi + x2))>>; 
5 <<(xi + xi)->DD(xl)>>; 
6 <<DD(ZERO)->ZERO>>] 
ADD A LEMMA?? ANSWER YES or RETURN 
ADD A LEMMA?? ANSWER YES or RETURN 
..................... 

Successful Completion 
..................... 

EQUATIONS 

RULES 
[i <<DD(ZERO)->ZERO>>; 
2 <<(xi + S(x2))->S((xi + x2))>>; 
3 <<D(xi)->DD(xl)>>; 
4 <<(S(xi) + x2)->S((xi + x2))>>; 
5 <<(ZERO + xi)->xi>>; 
6 <<(xi + xi)->DD(xi)>>; 
7 <<DD(s(x~))->s(s(DD(x~)))>>] 
RESULT OF THE DELETION 
[<<DD(ZERO) ->ZERO>> ; 
<<D(xi)->DD(xi)>> ; 
<<DD(s(x~>)->s(s(DD(x~)) )>>I 



9.5 Quit by the user 

Here follows the transformation of the program: 

The transformation process loops and will be interrupted by the user. The user will also 
let the orientation of an equation undefined till he knows he needs it  for simplifying the 
definition of the main symbol. 

F TRANSFORMATION 
Eureka-rules 
[<<(xi * F(x2) )->G(x~,x~)>>] 
Added Lemmas 
[<<((xi * x2) * x3)->(xi * (x2 * x3))>>1 
We have removed the displays from the script and let only the interaction for orientation 
by the user. 

<<G(xl,ZERO) = ZERO>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
<cG(xi,S(x2)) = (G(xi,x2) + F(xi))>> 
ANSWER PLEASE > < UNDEF or QUIT 
(* The user is not sure how he wants to direct the above equation *) 
UNDEF 
<<(xi * S(ZER0)) = G(ZERO,xl)>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 
<<(xi * G(x2,S(x2))) = G(~(x2) ,xi)>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 
(* At this stage the display is:*) 
EQUATIONS 
[i cc~(x1 ,S(x2))=(G(xl ,x2) + F(xi))>>; 
2 <<(xi * G(x2,~3))=G(x2,(xl * x3))>>; 
3 <<(xi * (F(x2) * x3))=(G(x2,x1) * x3)>>1 
RULES 
[i <<((xi * x2) * x3)->(xi * (x2 * x3))>>; 
2 <<F(s (x~ ) ) ->G(x~ ,s (x~ ) )>> ;  
3 <<F(ZERO)->S(ZERO)>> ; 
4 <<(S(xi) * x2)->((xi * x2) + x2)>>; 
5 <<(ZERO * xi)->ZERO>>; 
6 <<(S(xl) + x2)->S( (xi + x2) I>>; 
7 <<(ZERO + xi)->xi>>; 



8 <<(xi * F(x2))->G(x2,x1)>>; 
9 <<G(xl,ZERO)->ZERO>>; 
10 <<G(ZERO,xi)->(xi * S(ZERO))>>; 
11 <<G(S(x2) ,xi)->(xi * G(x2,S(x2)))>>1 
<<(xi * G(x2,x3)) = G(x2,(x1 * x3))>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
(* By orienting the above equation from left to right, a eimplification 
of the rule 11 in a tail recursive definition can be done: 
11 ccG(S(x2) ,xl)->G(x2, (xi * S(x2)))>>*) 
<<(xl * (F(x2) * x3)) = (G(x2,xl) * x3)>> 
ANSWER PLEASE > < UNDEF or QUIT 
(* The user does not know how to orient the above equation *) 
UNDEF 
ADD A LEMMA?? ANSWER YES or RETURN 
YES 
Give the Lemma in between parenthesis 
(* This lemma allows to simplify the rule 10 *) 
<<(xi * S(ZERO))=xl>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
(* Now the display is: *) 
EQUATIONS 
[l <<G(xl,S(x2))=(G(xi,x2) + F(xi))>>; 
2 <<(xi * (F(x2) * x3))=(G(x2,x1) * x3)>>; 
3 <<G(xl,((x2 * x3) + x3))=(G(xl,(x2 * x3)) + G(xl,x3))>>] 
RULES 
[l cc(S(x1) * x2)->((xi * x2) + x2)>>; 
2 <<(ZERO * x1)->ZERO>>; 
3 <<(S(xl) + x2)->S((x1 + x2))>>; 
4 <<(ZERO + xi)->xi>>; 
5 <<(xl * F(x2))->G(x2,x1)>>; 
6 <<(xi * S(ZER0))->xl>>; 
7 <<G(zERo,x~)->(x~ * s(zERo))>>; 
8 <<F(ZERO)->S(ZERO)>>; 
9 <<~(S(x1))->G(x1,S(x1))>>; 
10 <<((xi * x2) * x3)->(xi * (x2 * x3))>>; 
11 <<G(xl,ZERO)->ZERO>>; 
12 <<G(s(x~) ,xl)->G(x2, (xl * S(x2)))>>; 
13 <<(xi * G(x2,x3))->G(x2,(x1 * x3))>>] 
ccG(xi,((x2 * x3) + x3)) = (G(xl,(x2 * x3)) + G(xi,x3))>> 
ANSWER PLEASE > < UNDEF or QUIT 
(* The user could quit the completion 
but he wants to reconsider the equation I*) 
QUIT 
Do you want to continue the step changing the equations? answer YES or NO 
YES 
Do you want to delete some equations YES or NO 



YES 
Give the  numbers of the  equations you want t o  dele te  
Separate the  numbers by a space 
2 3 
<<G(xl,S(x2)) = (G(xl,x2) + F(xl))>> 
ANSWER PLEASE > < UNDEF or  QUIT 
< 
(* The completion generates now a few equations t h a t  a re  useless f o r  
t h e  transformation: *) 
<<(xl * (G(x2,x3) * x4)) = (G(x2,(xi * x3)) * x4)>> 
ANSWER PLEASE > < UNDEF or  QUIT 
UNDEF 
<<(xi * ZERO) = G(x2,(x1 * ZERO))>> 
ANSWER PLEASE > < UNDEF or  QUIT 
< 
<<(xi * (x2 * ZERO)) = G(x3,(xl * (x2 * ZERO)))>> 
ANSWER PLEASE > < UNDEF or  QUIT 
< 
<<((xl * ZERO) + ZERO) = G(x2,((xl * ZERO) + ZERO))>> 
ANSWER PLEASE > < UNDEF o r  QUIT 
< 
<<(xi + S(ZER0)) = S(xl)>> 
ANSWER PLEASE > < UNDEF or  QUIT 
> 
<<G(xl,((x2 * S(x1)) + S(x1))) = (G(xl,(x2 * S(x1))) + G(xi,S(xl)))>> 
ANSWER PLEASE > < UNDEF or  QUIT 
UNDEF 
<<G(xl,S(ZERO)) = F(xi)>> 
ANSWER PLEASE > < UNDEF or  QUIT 
(* A d i r ec t  def in i t ion of F(x) has been generated. The 
transformation is terminated 
but the  completion w i l l  continue forever generating useless equations*) 
QUIT 
RESULT OF THE DELETION 
[I <<G(xl,ZERO)->ZERO>>; 
2 <<(S(xi) * x2)->((xi * x2) + x2)>>; 
3 <<(ZERO * x1)->ZERO>>; 
4 <<(S(xi) + x2)->S((x1 + x2))>>; 
5 <<(ZERO + xi)->xi>>; 
6 <<(xi * S(ZER0))->xl>>; 
7 <<G(ZERO,xl)->xl>>; 
8 <<G(S(x2) ,xl)->G(x2, (xl * S(x2)))>>; 
9 <<(xl + S(ZER0))->S(xl)>>; 
10 <<F(xl)->G(xl ,S(ZERO))>>] 
Do you want t o  dele te  some ru les  YES or  NO 
YES 
1 6 9  
EQUATIONS 



RULES 
[l <<(S(xl) * x2)->((xl * x2) + x2)>>; 
2 <<(ZERO * x1)->ZERO>>; 
3 <<(S(xi) + x2)->S((xl + x2))>>; 
4 <<(ZERO + xi)->xi>>; 
6 <<G(ZERO,xi)->xi>>; 
6 <<G(S(x2),xl)->G(x2,(xl * S(x2)))>>; 
7 <<F(xI)->G(x~ ,S(ZERO))>>I 

9.6 Three transformation steps 

GETTING THE SYSTEM 
GETTING THE CONSTRUCTORS 
C NIL 
GROUND CONVElZGENCE 
WARNING 
IF is not a constructor or a defined symbol 
WARNING 
ISSIG is not a constructor or a defined symbol 
===='==========I=DIDD 

Successful Completion ..................... ..................... 
RULES 
[l <<REPEAT(~~,C(~~,~~))->C(~~,REPEAT(R(~~),X~~~~~; 
2 <<(C(xi,x2) Q x3)->C(x1, (x2 Q x3))>>; 
3 <<SIGPERM(xl)->FILTER(CONCALL(xl))>>; 
4 <<REPEAT(xl,NIL)->NIL>>; 
5 <<FILTER(NIL)->NIL>>; 
6 <<R(NIL)->NIL>>; 
7 <<CONCALL(NIL)->NIL>>; 
8 <<(NIL Q xi)->xi>>; 
9 <<ALL(xl)->REPEAT(xl ,xi)>>; 
10 <<R(C(x2,xl))->(xi Q C(x2,NIL))>>; 
11 <<CONCALL(C(xl,x2))->(REPEAT(xl,xl) Q CONCALL(X~))>>; 
12 <<FILTER(C(X~ ,x2))->IF(ISSIG(xl) ,C(xl ,FILTER(x~)) ,FILTER(X~) )>>I 
The main symbol is: SIGPERM 
SIGPERM TRANSFORMATION 
Eureka-rules 
[<<FILTER(CONCALL(X~))->CONCFIL(X~)>>~ 
Added Lemmas 
[<<FILTER((xl O x2))->(F1LTER(xl) Q FILTER(X~) )>>I 
you will be asked at each step if you want to add a lemma 
ADD A LEMMA?? ANSWER YES or RETURN 
<<CONCFIL(NIL) = NIL>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
<< (FILTER(REPEAT(x1 ,xl)) Q CONCFIL(X~) ) CONCFIL(C(X~ ,x2) ) >> 



ANSWER PLEASE > < UNDEF or QUIT 
< 
ADD A LEIMA?? ANSWER YES or RETURN 
ADD A LEMHA?? ANSWER YES or RETURN 

Successful Completion 

RESULT OF THE DELETION 
[I <<CONCFIL(NIL)->NIL>>; 
2 <<FILTER(C(xl,x2)) ->IF(ISSIG(xl) ,C(xi ,FILTER(x2)) ,FILTER(x2)) >> ; 
3 <<R(C(x2,x1))->(xi Q C(x2,NIL))>>; 
4 <<(NIL Q xi)->xi>>; 
5 <<R(NIL)->NIL>>; 
6 <<FILTER(NIL)->NIL>>; 
7 <<REPEAT(xl,NIL)->NIL>>; 
8 <<SIGPERM(xl)->CONCFIL(xl)>> ; 
9 <<(C(xl,x2) Q x3)->~(xi,(x2 Q x3))>>; 
10 <<REPEAT(X~,C(X~,~~))->C(X~ ,REPEAT(R(xl) ,x3))>>; 
11 <<CONCFIL(C(xl ,x2) )->(FILTER(REPEAT(x~ , X I )  Q CONCFIL(X~) )>>I 
Another transformation etep? YES or NO 
YES 
SIGPERM TRANSFORMATION 
Eureka-rules 
[<<FILTER(REPEAT(X~ ,x2))->SIGROT(xl ,x2)>>1 
Added Lemmas 
U 
you will be asked at each step if you want to add a lemma 
ADD A LEMMA?? ANSWER YES or RETURN 
<<SIGROT(xl,NIL) = NIL>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
<<SIGROT(xl,C(x2,x3)) 
= IF(ISSIG(x1) ,C(x1 ,SIGROT(R(xl) ,x3)) ,SICROT(R(xl) ,x3) 
ANSWER PLEASE > < UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETURN 
ADD A LEHMA?? ANSWER YES or RETURN ..................... ..................... 
Successful Completion 
P I P I P f I I I I 3 f D l t D I I I I I  

RESULT OF THE DELETION 
[I <<SIGROT(xl ,NIL)->NIL>> ; 
2 <<R(C(x2,xl))->(xi Q C(x2,NIL))>>; 
3 <<(NIL Q x1)->xl>>; 
4 <<CONCFIL(NIL)->NIL>>; 
5 <<R(NIL)->NIL>>; 
6 <<SIGPERM(xl) ->CONCFIL(xl) >> ; 
7 <<(C(xl,x2) Q x3)->C(x1, (x2 Q x3))>>; 



8 <<CONCFIL(C(X~ ,x2) )-> (SIGROT(x1 ,xl) O CONCFIL(x2) )>> ; 
9 <<SIGROT(xl ,C(x2,x3) 

->IF(ISSIG(xi) ,C(x1 ,SIGROT(R(xl) ,x3)) ,SIGROT(R(xl) ,x3) )>>I 
Another transformation step? YES or NO 
YES 
SIGPERn TRANSFORnATION 
Eureka-rules 
[<<(sIGROT(X~ ,x2) Q x3) ->SR(xl ,x2,x3)>>] 
Added Lemmas 
[<<(IF(xi,x2,x3) Q x4)->IF(xi,(x2 O x4),(x3 O x4))>>1 
you will be asked at each step if you want to add a lemma 
ADD A LEMMA?? ANSWER YES or RETURN 
<<xl = SR(x2,NIL,xI)>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 
<<sR(x~ ,C(x2 ,x3) ,x4) 
= IF(ISSIG(x1) ,C(x1 ,SR(R(xl) ,x3,x4)) ,sR(R(x~) ,x3 ,x4) 
ANSWER PLEASE > < UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETURN 
ADD A LEMMA?? ANSWER YES or RETURN ..................... ..................... 
Successful Completion ..................... ..................... 
RESULT OF THE DELETION 
[l <<SR(x2,NIL,xi)->xi>>; 
2 <<(C(xl,x2) O x3)->C(xl,(x2 Q x3))>>; 
3 <<(NIL Q x1)->xi>>; 
4 <<SIGPERH(X~)->CONCFIL(X~)>>; 
5 <<cONCFIL(NIL)->NIL>>; 
6 <<R(NIL)->NIL>>; 
7 <<~(C(x2,xi))->(xi Q C(x2,NIL))>>; 
8 <<cONCFIL(C(X~ ,x2) ) ->SR(xl ,XI ,CONCFIL(X~) I>> ; 
9 <<~R(xl ,C(x2 ,x3) ,x4) 

->IF(ISSIG(xl) ,C(x1 ,s~(R(xl) ,x3,x4)) ,SR(R(X~) ,x3,x4))>>1 
Another transformation step? YES or NO 
N 0 

9.7 Associativity and Commutativity by UNFAIL ASTRE 

For the system: 

The script of the transformation in the mode unfailing is: 

SUMDOT TRANSFORMATION 



Eureka-rules 
[<<(DoT(x~,x~,x~) + DOT(x4,x5,x3))->~~(x1,x2,x4,x5,x3)>>] 
Added Lemmas 
[<<(xl + x2)=(x2 + xi)>>] 
[<<(ZERO + xi)->xi>>; 
<<((xl + x2) + x3)->(xi + (x2 + x3))>>] 
ADD A LEHMA?? ANSWER YES or RETURN 
<<SD(xl,x2,~3,~4,ZER0) = ZERO>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETUFlN 
<< 
(DOT(xl,x2,x3) + ((I(xl,S(x3)) * I(x2,S(x3))) + (DOT(x4,x5,x3) 
+ (I(x4,S(x3)) * I(x5,S(x3)))))) = SD(xl,x2,~4,~5,S(x3))>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 
(* The unfailing completion generates 27 equations before finding 
the simplification rules:*) 
<<(DOT(xi,x2,x3) + (x4 + (DOT(x5,x6,x3) + x7))) 
= (SD(x5,~6,xl,x2,~3) + (x4 + x7))>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
(*Now the display is:*) 
EQUATIONS 
[l 
2 <<(xi + x2)=(x2 + xi)>>; 
3 <<(DOT(xl,x2,x3) + SD(x4,~5,~6,~7,x3)) 

=(SD(xl,x2,~4,~5,~3) + DOT(x6,x7,x3))>>; 
4 <<(DOT(xl,x2,x3) + (SD(x4,x5,x6,~7,~3) + x8)) 

=(SD(xl,x2,~4,~5,~3) + (DOT(x6,x7,x3) + x8))>>; 
5 <<(SD(xl,x2,~3,~4,~5) + DOT(x6,x7,x5)) 

=(DOT(x3,x4,x5) + SD(x6,~7,xl,x2,~5))>>; 
6 <<(DOT(xl,x2,x3) + ((I(x1 ,S(x3)) * I(x2,S(x3))) 

+ (x4 + (DOT(x5,x6,x3) + (I(x5,S(x3)) * I(x6,S(x3))))))) 
= ( S D ( X ~ , X ~ , X ~ , X ~ , X ~ )  + ((I(x5,S(x3)) * I(x6,S(x3))) 
+ ((I(xl,S(x3)) * I(x2,S(x3))) + x4)))>>1 

RULES 
C1 <<((xi + x2) + x3)->(xi + (x2 + x3))>>; 
2 <<(ZERO + x1)->xi>>; 
3 <<DOT(xl ,x2,S(x3))->(DOT(x1 ,x2,x3) + (I(x1 ,S(x3)) * I(x2,S(x3))))>>; 
4 <<DOT(xl,x2,ZERO)->ZERO>>; 
5 <<SUMDOT(x1,x2,x4,x5,x3)->SD(x1,x2,x4,x5,~3~~>; 
6 <<(DOT(xl,xZ,x3) + DOT(x4,x5,x3))->SD(x1,x2,x4,x5,x3)>>; 
7 <<SD(X~,X~,X~,X~,ZERO)->ZERO>>; 
8 <<(DOT(xl,x2,~3) + (DOT(x4,x5,x3) + ~6))->(SD(xl,x2,~4,~5,~3) + x6)>>; 
9 <<(DOT(xl,x2,~3) + (x4 + DOT(x5,x6,x3)))->(SD(x5,x6,xl,x2,x3) + x4)>>; 
10 <<SD(X~,X~,X~,X~,S(X~)) 



(*SD is recursive the transformation can be stopped*) 
QUIT 
AUTOIATIQUE DELETION 
[l <<(ZERO + xi)->xi>>; 
2 <<~UMDOT(xl,x2,x4,x5,x3)->SD(x1,x2,~4,x5,x3)>>; 
3 <<SD(~~,~~,X~,~~,ZERO)->ZERO>>; 
4 <<SD(xl,x2,~4,~5,S(x3)) 

-> (SD(x4,~5,xl,x2,~3) + ((I(xi,S(x3)) * I(x2,S(x3))) 
+ (I(x4,S(x3)) * I(x5,S(x3)))))>>; 

5 <<(xi + ZERO)->xl>>] 
(*After deletion of the rules 1 and 5 by the user, the result is:*) 
[I <<~UMDOT(x1,x2,x4,x5,x3)->SD(x1,x2,~4,~5,~3~>>; 
2 <<SD(X~,X~,X~,X~,ZERO)->ZERO>>; 
3 <<SD(xl,x2,~4,~5,S(x3)) -> (SD(x4,~5,xl,x2,x3) 

+ ((1(xl,S(x3)) * I(x2,S(x3))) + (I(x4,S(x3)) * I(x5,S(x3)))))>>1 

9.8 Transformation by AC ASTRE 

The program of the example in Section 9.7 above is transformed by AC ASTRE: 

<<DOT(x,y,S(n))=(DOT(x,y,n) + (I(x,S(n))*I(y,S(n))))>> 
<<DOT(x,y,ZERO)=ZERO>> 
<<SUMDOT(x,y ,u,v,n)e(DOT(x,y,n)+DOT(u,v,n))>> 
Iode Associatif -Commutat if 
Give the associative and commutative operators 
+ 
SUMDOT AC TRANSFORMATION 
Eureka-Rules 
(DOT(xl,x2,x3) + DOT(x4,x5,x3))=SD(x1,x2,x4,x5,x3) 
Other-Lemmas 
(xi + ZERO)=xl 
(DOT(xi,x2,x3) + DOT(x4,x5,x3)) = ~D(xl,x2,x4,~5,~3) 
ANSWER PLEASE > < = UNDEF or QUIT 
> 
(xl + ZERO)=xi 
ANSWER PLEASE > < = UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETURN or QUIT 
ADD A LEMMA?? ANSWER YES or RETURN or QUIT 
ADD A LEMMA?? ANSWER YES or RETURN or QUIT 
ADD A LEMMA?? ANSWER YES or RETURN or QUIT 



ADD A LEMMA?? ANSWER YES or RETURN or QUIT 
~~(x1,x2,x3,x4,ZERO) = ZERO 
ANSWER PLEASE > < = UNDEF or QUIT 
> 
(((I(xi,S(x2)) * I(x3,S(x2))) + (I(x4,S(x2)) * I(x5,S(x2)))) 

+ SD(X~,X~,X~,X~,X~)) 
= SD(X~,X~,X~,X~,S(X~)) 
ANSWER PLEASE > < = UNDEF or QUIT 
< 
(((I(xl,S(xZ)) * I(x3,S(x2))) + (I(x4,S(x2)) * I(x5,S(x2)))) 

+ SD(X~,X~,X~,X~,X~)) 
= (((1(xl,S(x2)) * I(x3,S(x2))) + (I(x4*S(x2)) * I(x5,S(x2)))) 

+ SD(xl,x3,~4,~5,~2)) 
ANSWER PLEASE > < = UNDEF or QUIT 
QUIT 
RESULT OF THE DELETION 
[I <<SD (xi ,x2 ,x3 ,x4 ,ZERO) ->ZERO>> ; 
2 <<SD(xi,x3,~4,~5,S(x2)) -> ((I(xl,~(x2)) * I(x~,s(x~))) 

+ (I(x4,S(x2)) * I(x5,S(x2))) + SD(x4,~5,xl,x3,x2))>>; 
3 <<~~~~0~(x1,x2,x3,x4,x5)->S~(x1,x2,x3,x4,x5~~~~ 

9.9 Third transformation step for the program Prefixes 

PREFIXES TRANSFORMATION 
Eureka-rules 
[<<PP(G(xi ,x2) ,x3)->K(xl ,x3)>>1 
ADD A LEMMA?? ANSWER YES or RETURN 
<<K(xl,x2) = PP(NIL,x2)>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 
ADD A LEMMA?? ANSWER YES or RETURN 
<<K(xl,NIL) = NIL>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
ADD A LEMMA?? ANSWER YES or RETURN 
<<K(x1 ,x2) = PP(C(C(x1 ,NIL) ,G(xl ,x3)) ,x2)>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 

- ADD A LEMMA?? ANSWER YES or RETURN 
ADD A LEMMA?? ANSWER YES or RETURN 
ADD A LEMMA?? ANSWER YES or RETURN 



<c~(xl,x2) = K(x3,x2)>> 
ANSWER PLEASE > < UNDEF or QUIT 
UNDEF 
<<K(x2,NIL) = NIL>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
<<K(x2,NIL) = K(x4,NIL)>> 
ANSWER PLEASE > < UNDEF or QUIT 
UNDEF 
<<K(x4,NIL) = NIL>> 
ANSWER PLEASE > < UNDEF or QUIT 
> 
<<K (x4 ,NIL) = K(x2 ,NIL) >> 
ANSWER PLEASE > < UNDEF or QUIT 
UNDEF 
ccK(x1 ,x2) = K(x1 ,x2)>> 
ANSWER PLEASE > < UNDEF or QUIT 
UNDEF 
<<K(xi,x2) = K(xi,x2)>> 
ANSWER PLEASE > < UNDEF or QUIT 
UNDEF 
ADD A LEMMA?? ANSWER YES or RETURN 
ccc(C(C(x1,NIL) ,x2) ,K(xl,x3)) = K(xl,C(x2,~3))>> 
ANSWER PLEASE > < UNDEF or QUIT 
< 
ADD A LEHMA?? ANSWER YES or RETURN 
<<PP(c(C(X~,NIL) ,NIL) ,x2) = K(xl,x2)>> 
ANSWER PLEASE > < UNDEF or QUIT 
QUIT 
AUTOMATIQUE DELETION 
i <<PREFIXES(NIL)->C(NIL ,NIL)>> ; 
2 <<PREFIXES(C(~~,~~))->C(NIL,K(~~,PREFIXES~X~~~~~~; 
3 <<K(xl ,NIL)->NIL>>; 
4 <<~(xl,C(x2,~3))->C(C(C(xl ,NIL) ,x2) ,K(x~ ,~3))>>1 
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