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Abstract 
We consider a new class of optimization heuristics which combine local 

searches with stochastic sampling methods, allowing one to iterate local 
optimization heuristics. We have tested this on the Euclidean Traveling 
Salesman Problem, improving 3-opt by over 1.6% and Lin-Kernighan by 
1.3%. 

I Introduction 

Given N cities labeled by i = 1, N ,  separated by distances d i j ,  the Traveling 
Salesman Problem (TSP) consists in finding the shortest tour, i.e., the shortest 
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closed path visiting every city exactly once. To be specific, we will consider the 
symmetric TSP where dij = dji, but our method generalizes to the asymmetric 
case also. The problem of finding the optimal tour is a difficult one as the TSP is 
NP complete. There are a number of exact methods that are guaranteed to find 
the exact optimum in a bounded number of steps. These include branch and 
bound methods, and plane-cutting methods. See Lawler et. al, for an overview 
[9]. These methods have progressed tremendously in the last ten years, so that 
instances with N of several thousand have been solved to  optimality [14]. In 
such algorithms, as well as in many practical situations, it is useful to also have 
nearly optimal solutions. These are typically obtained by heuristic approaches 
which do not guarantee that the optimal solution will be found. There are many 
of these heuristic methods for the TSP: tour construction, local search [lo, 111, 
simulated annealing [8, 11, genetic algorithms [13], etc. In this note, we present 
a methodology for improving local search methods, and this leads to a new 
heuristic for the TSP that, in particular, surpasses Lin-Kernighan (L-K) [ll] .  

2 Local Opt Searches 

In a local opt search method, one first defines a notion of neighborhood (i.e., a 
topology) on the set of all tours. For instance, one might define the neighbor- 
hood of a tour, T, to be all those tours which can be obtained by changing a t  
most k edges of T. A tour is said to be locally optimal if no tour in its neighbor- 
hood is shorter than it. One can search for local k-opt tours by starting with 
a random tour TI and constructing a sequence of tours TI, Tz,  ... Each tour 
is obtained from the previous one by performing a k-change, i.e., by deleting k 
links and reconnecting the loose ends so as to still have a tour. The k-change 
is required to decrease the length of the tour. Eventually the process stops be- 
cause one has reached a tour for which there is no possible improvement under 
a k-change. Lin [lo] studied the case of k=2 and k=3, and showed that one 
could get quite good tours quickly. In order to find the globally optimal tour, 
he suggested repeating the search from random starts many times until one 
was confident all the locally optimal tours had been found. Perhaps the most 
widely referred to optimization heuristic is the Lin-Kernighan algorithm. It is 
a variable-k neighborhood search, and it is the benchmark against which most 
heuristics are tested. It  is significantly better than %opt: on average L-K-opt 
tours are shorter than %opt tours, and for a given instance of the TSP, there 
are many fewer L-K-opt tours than there are %opt tours. Generally, one can 
parameterize the number of local-opt tours by ezp(c~N), and then cr for %opt is 
larger than for L-K-opt. Because of this exponential growth with N ,  finding the 
globally optimal tour by repeated random starts becomes unmanageable at large 
N for any local search method. If one is limited to a few hours on a worksta- 
tion, searching for all %opt (resp. L-K) local-opt tours becomes unmanageable 
at N FZ 80 (resp. N M 200). 



Given that one really does want to tackle larger problems, there are two 
natural approaches. First, one can try to extend the neighborhood which L-K 
considers, just as L-K extended the neighborhood given by 3-changes. Second, 
instead of sampling the local opt tours in a random way (as is done by repeatedly 
using random starts), it might be better to obtain locally optimal tours using 
a biased sampling which would favor the shorter tours. Our algorithm does 
both these things and indeed beats L-K. Furthermore, the general methodology 
can be used to combine arbitrary local search methods with stochastic sampling 
methods, leading to an improvement over both underlying algorithms. 

3 Markov Chains and Simulated Annealing 
Given that any local search method will stop in one of the many locally optimal 
solutions, it may be useful to find a way for the search to continue by temporar- 
ily allowing the tour length to increase. This leads to the popular method of 
simulated annealing [8, 11. Simulated annealing is a general purpose algorithm 
suitable for many optimization problems. It is based on using what is called a 
Markov chain to sample solutions iteratively and stochastically. For the case of 
the TSP, one starts by constructing a sequence of tours TI, Tz, etc ... Each step 
of this chain is obtained by doing a k-change (moving to a neighboring tour). 
Usually, k is 2 or 3. If the tour length decreases, the change is accepted; if the 
tour length increases, the change is rejected with some probability (in which case 
one simply "repeats" the old tour at  that step). This stochastic construction 
of a sequence of T's can be viewed as an extension of the above local search to 
include "noisiness." Because increases in the tour length are possible, this chain 
never stops. For many such Markov chains, it is possible to show that given 
enough time, the chain will visit all tours, and that for very long chains, the 
T's appear with a calculable probability distribution. Markov chains are closely 
inspired by physical models where the chain construction procedure is called a 
Monte Carlo. The stochastic accept/reject part simulates a random fluctuation 
due to temperature effects, and the temperature is a parameter which measures 
the amount of bias. To avoid wasting time sampling bad solutions, one decreases 
the temperature with time according to an annealing schedule, and this is why 
the algorithm is called simulated annealing. 

If the temperature is taken to zero too fast, the effect is essentially the 
same as setting the temperature to zero immediately, and then the chain gets 
trapped forever at a locally optimal solution just as in local searches. There are 
theoretical results on how slowly the annealing has to be done to be sure that 
one reaches the global optimum, but in practice the required running times are 
astronomical. Nevertheless, simulated annealing is a standard method which is 
competitive for a number of optimization problems [4, 5, 61. For the TSP, it is 
significantly slower than Lin-Kernighan, but it has the advantage that one can 
run for long times and slowly improve the quality of the solutions, eventually 



getting better results than L-K. (See for instance the studies of Johnson et. al. 
[4].) The improvement is due t o  the better sampling of the short length tours: 
tours which are not near the minimum length are ignored. Simulated annealing 
tries t o  improve an already very good tour, one which probably has many links 
in common with the exact optimum. The standard Lin-Kernighan algorithm, 
by contrast, continually restarts from scratch, throwing away possibly useful 
information. 

4 Iterated Local Opt 
In this section, we show how to combine the advantages of local search heuristics 
with stochastic sampling methods. Although the methodology is general, we 
explain our approach in the context of the TSP only. 

A drawback of simulated annealing is that it does not take advantage of 
local opt heuristics. This means that instead of sampling local opt tours as does 
multiple runs of L-K, the Markov chain of simulated annealing samples all tours. 
It would be a great advantage to  be able t o  restrict the sampling t o  the local 
opt tours only. Then the bias provided by the Markov chain would enable one 
to  sample the shortest local opt tours more efficiently than by using repeated 
random starts of local opt. To do this, one has to  find a way to go from one 
local opt tour, T,, to another local opt tour, Tn+l, and this is the heart of our 
procedure. We propose to  do a change on T,, which we call a "kick." This 
can be a random pchange, but we will choose something smarter than that 
as explained at the end of this section. Follow this kick by the local opt tour 
improvement heuristic until a new local opt tour, A,, is reached. Then accept 
or reject A, depending on the increase or decrease in tour length compared to 
T,. The result is T,+l. Since there are often many changes in going from T, to 
T(n+ll, we call this method a "large-step markov chain." I t  can also be called 
"iterated local opt," but i t  should be realized that the difficulty is precisely in 
finding a way to iterate! The algorithm is far better than the small step Markov 
chain methods like simulated annealing because the acceptlreject procedure is 
not implemented on the intermediate tours which are almost always of longer 
length. Instead, the acceptlreject happens only after the system has returned 
to a local minimum. The method directly steps from one local minimum to  
another. 

At this point, let us mention that this method is no longer a true simulated 
annealing algorithm. That is, the algorithm does NOT correspond to the simu- 
lation of any physical system undergoing annealing. The reason is that a certain 
symmetry property, termed detailed balance, is not satisfied by the large-step 
algorithm. One consequence of this is that the "temperature" parameter used 
in the accept/reject procedure no longer plays the role of a true physical tem- 
perature - instead it  is merely a parameter which controls the bias towards the 
optimum. 



Mre have found that in practice, the above methodology provides an efficient 
sampling of the local opt tours. There are a number of criteria which need 
to be met for the biased sampling of the Markov chain to  be more efficient 
than plain random sampling. These conditions are satisfied for the TSP, and 
more generally will be so whenever local search heuristics are useful. Let us 
stress that this large step Markov chain approach is extremely general, being 
applicable to  any optimization problem where one has local search heuristics. I t  
enables one t o  get a performance which is at  least as good as local search, with 
substantial improvements over that if the sampling can be biased effectively. 
Finally, although the method is general, i t  can be adapted to  match the problem 
of interest through the choice of the kick. We will now discuss how we have 
choosen the kick for the TSP. 

Consider the case where the local search method is bop t .  If we used a kick 
consisting of a 3-change, 3-opt would very often simply bring us back t o  the 
starting tour with no gain. Thus it is probably a good idea to  use at least a 
4-change for the kick when the local search is %opt. For more general local 
search algorithms, a likely choice for the kick is a k-change which does not 
occur in the local search. Interestingly, it turns out that there is one kick choice 
which is both natural and effective for 2-opt, %opt, and L-K. To see this, it is 
useful to go back to the work of Lin and Kernighan. In their paper, they define 
"sequential" changes, and they also show that if a tour can be improved, one 
can force all the partial gains during the k-change to be positive. A consequence 
of this is that the check-out time for sequential k-changes can be completed in 
O ( N )  steps. It is easy to  see that all 2 and 3 changes are sequential, and that 
the first non-sequential change occurs a t  k=4 (figure 2 of the Lin and Kernighan 
paper). We call this graph a "double-bridge" change because of what it does 
to  the tour. First it does a 2-change which disconnects the tour; then it does a 
second 2-change which reconnects the two parts by creating a bridge. Both of 
the 2-changes are bridges in their own way, and the double-bridge change is the 
only non-sequential bchange which cannot be obtained by composing changes 
which are both sequential and leave the tour connected. Thus the double bridge 
is the most natural kick choice for any local search method which considers 
only sequential changes. L-K is of this type: all allowed changes are sequential. 
I t  considers many changes with k greater than 3, but it misses double-bridges. 
Thus one expects that most of what remains in excess length using L-K might be 
removed with our extension. The results below indicate that this is indeed the 
case. Note that if we included this double-bridge change in the definition of the 
neighborhood for a local search (that is, extending the L-K heuristic), check-out 
time would require O(N2) steps (essentially a factor N for each bridge). Rather 
than doing this change as part of the local search, we include such changes 
stochastically as our kick. 

We have implemented iterated local opt using "double-bridges" for the kicks, 
and %opt and L-K for the local searches. The pseudo-code for the algorithm 
appears in Table 1. 



input instance (N and dij) 
input temperature 
input M 
input Tini t  

TI = localopt( znit ) 
do i=l  to M 

Bi = doubleBridge( Ti ) 
Ai = localopt( Bi ) 
Ti+l = Ai or Ti+l =Ti 

input the instance 
for accept/rejec t 
length of Markov chain 
starting tour 
TI is first element of chain 
generate chain 
apply kick 
opt the result 
accept/reject step 

Table 1: A pseudo-code specification of the large-step markov chain algorithm. 

There is some freedom in how one chooses the double-bridges. The simplest 
procedure is to do that selection at  random. First, choose two bonds at  random, 
and do the corresponding Zchange which disconnects the tour. Second, choose 
again at random two other bonds. If the corresponding %-change reconnects 
the tour, one has a double-bridge and one is done. If not, start over, choosing 
another first bridge. We use this procedure with one modification: we accept 
only bridges shorter than some given length. This constraint guarantees that 
the kick will not increase the tour length too much, and thus it tends to increase 
the acceptance rate of the large step Markov chain. Nevertheless, we have found 
in practice that the performance of the iterated local opt is not sensitive to this 
maximum length as long as it is at  least a few times the average nearest-neighbor 
length. Note that almost all the CPU time is spent doing the local opt, so the 
selection of a kick can be quite involved without slowing down the algorithm. 

5 Results 
We first implemented the large step Markov chain with the local search being 
3-opt. We generated TSP instances by randomly generating N points in a 
unit square. For N up to 200, we were able to determine the optimal tour 
using a branch and bound program. We then ran the large step Markov chain 
algorithm. In all cases, it found the optimal tour rather quickly. The average 
time for finding the optimum had some variation from instance to instance, so 
we have averaged our times over our instances. For N=100, the optimum was 
found on average in a bit over two minutes on a SUN-3, while for N=200, the 
average time was 1.7 hours. For larger instances, we used problems which had 
been solved to optimality by other groups. We ran our program on the Lin- 
318 instance solved to optimality by Crowder and Padberg [3]. Our iterated 
%opt found the optimal tour on each of five separate runs, with an average 
time of 19 hours on the SUN-3. We also ran on the AT&T-532 instance solved 



to  optimality by Padberg and Rinaldi [14]. By using a post-reduction method 
inspired by tricks explained in the Lin-Kernighan paper, the program found the 
optimum solution in 94 hours (Martin [12]). Repeated runs of ordinary %opt 
from random starts did not solve the Lin-318 nor the AT&T-532 problems to 
optimality even with significantly more CPU time. 

It is of interest to ask what is the expected excess tour length for very 
large problems using our method. We have run on large instances of cities 
randomly distributed in the unit square. Ordinary 3-opt gives an average length 
3.6% above the Held-Karp lower bound, whereas the iterated %opt leads to an 
average of less than 2.0% above that bound. Thus we see that without much 
more algorithmic complexity, our use of double-bridges improves %opt very 
significantly. 

In our preprint [12], we suggested that such a dramatic improvement should 
also carry over to the case where L-K is used instead of %opt. Johnson [7], Cook 
et. al. [2], and ourselves have now investigated the improvement of iterated L- 
K over repeated L-K. Their implementation of the large step algorithm differs 
slightly from ours: they do not impose any constraints on the double-bridges, 
choosing them randomly, and they take the temperature to  be zero. In all im- 
plementations, iterated L-K is much better than ordinary L-K; it is able to find 
the solution to Lin-318 in minutes, and the solution to AT&T-532 in an hour 
on a SUN-Sparcstation. (Again, L-K repeated from random starts was unable 
to solve these problems to optimality.) At the TSP-90 conference held at Rice 
University in April 1990, we ran on a 783 city instance provided by the con- 
ference organizers. Our code found the optimum in 6 hours on a Sparcstation, 
while the code of Johnson and that of Cook, Applegate and Chvatal found this 
optimum even faster. Finally, for large instances (randomly distributed cities 
in a square), Johnson [7] finds that iterated L-K leads to an average excess 
length of 0.84% above the Held-Karp bound. Previously it was expected that 
the exact optimum was 1% or more above the Held-Karp bound, but iterated 
L-K disproves this conjecture. 

One of the most interesting results of these experiments is that for "mod- 
erate" sized problems (such as the AT&T 532 or the 783 instance mentioned 
above), no "annealing" seems to be necessary. Just setting the temperature to 
zero (no uphill moves at all) gives an algorithm which can often find the exact 
optimum. The implication is that, for the large step Markov chain algorithm, 
the effective tour length landscape has one or only a few local minima! Almost 
all of the L-K local minima have been modified to  saddle points by extending 
the neighborhoods of the tours. 
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