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Abstract 

We introduce a new class of Markov chain Monte Carlo search pro- 
cedures, leading to more powerful optimizat~on methods than simulated 
annealing. The main idea is to embed deterministic local search tech- 
niques into stochastic algorithms. The Monte Carlo explores only local 
optima, and it is able to make large, global changes, even at low tempera- 
tures, thus overcoming large barriers in configuration space. We test these 
procedures in the case of the Traveling Salesman Problem. The embedded 
local searches we use are 3-opt and Lin-Kernighan. The large change or 
step consists of a special kind of 4-change followed by local-opt minimiza- 
tion. We test this algorithm on a number of instances. The power of the 
method is illustrated by solving to optimality some large problems such 
M the LIN318, the ATbT532, and the RAT783 problems. For even larger 
instances with randomly distributed cities, the Markov chain procedure 
improves %opt by over 1.6%~~ and Lin-Kernighan by 1.3%, leading to a 
new best heuristic. 



1 Introduction 
The Traveling Salesman Problem (TSP) is probably the most well-known mem- 
ber of the wider field of Combinatorial Optimization (CO) problems. These are 
optimization problems where the set of feasible solutions (trial solutions which 
satisfy the constraints of the problem but are not necessarily optimal) is a finite, 
though usually very large set. The number of feasible solutions grows as some 
combinatoric factor such as N! where N characterizes the size of the problem. 
One technique for solving these problems is exhaustive search of all feasible sc+ 
lutions. This method, however, has time complexity typically growing as N! 
and so is not a viable technique for problems of interesting size. 

One might ask whether there are much faster techniques than exhaustive 
search. Among optimization problems in general, the TSP is a member of 
the set NP-complete. This is a class of difficult optimization problems whose 
time complexity is probably exponential [I]: even the most clever algorithms 
suffer from this time growth. The members of NP-complete are related so that 
if a polynomial time algorithm were found for one problem, polynomial time 
algorithms would exist for all members of NP-complete. All CO problems can 
be formulated as optimizing an objective function (e.g., the length) subject to 
constraints (e.g., legal tours). It  has often been the case that progress on the 
TSP has led to progress on other CO problems and on more general optimization 
problems. In this way, the TSP is a playground for the study of NP-complete 
problems. Though the present work concentrates on the TSP, a number of our 
ideas are general and apply to all optimization problems. 

The most significant issues occur as one tries to find extremely good or exact 
solutions to the TSP. Many algorithms exist which are fast and find feasible 
solutions which are within a few percent of the optimum length. In this paper 
we present algorithms which will usually find exact solutions to substantial 
instances of the TSP, for example, up to N - 1000. 

In a general instance of the TSP one is given N "cities" and a matrix dij 
giving the distance or cost function for going from city i to j. Without loss of 
generality, the distances can be assumed positive. A "tour" consists of a list of 
N cities, tour[i], where each city appears once and only once. In the TSP, the 
problem is to find the tour with the minimum "length," where length is defined 
to be the sum of the lengths along each step of the tour, 

and tour[N] is identified with tour[O] to make it periodic. Most common in- 
stances of the TSP have a symmetric dij matrix; we will hereafter focus on this 
case, which also is in NP-complete. 



2 Overview of Algorithms for the TSP 
Before presenting the details of our work, we discuss the main methods employed 
for the TSP. This helps to show where this work fits in and also provides some 
needed background. 

There are a number of exact methods (i.e., which are guaranteed to find the 
exact optimum in a bounded number of steps) for solving the TSP. One family 
consists of the Branch and Bound algorithm of Held and Karp [2, 31 and its 
derivatives [4]. These algorithms attempt to prove that sets of links belong or 
do not belong to the optimal tour, using bounds from, for example, minimal 
spanning trees. There exist transformations on the distance matrix which leave 
the relative ranking of all tours unaffected but which change the spanning tree 
sub-problems. One then maximizes over these transformations, obtaining the 
tightest possible spanning tree bound, causing the branch and bound tree to 
prune most rapidly. Though the pruning is dramatic, branch and bound is still 
an exponential (in N) algorithm. 

To date, the most effective exact methods are the cutting-plane or facet- 
finding algorithms [5, 61. These use an integer linear programing formulation 
of the TSP. Roughly speaking, various constraints are added to a linear pro- 
gramming problem until the solution found is a legal tour. The performance of 
these methods are strongly dependent on the kinds of constraints that are added 
and they are still to some extent an art form, In the last ten years, these exact 
methods have been pursued so vigorously that it is now possible to exactly solve 
problems with several hundred cities 16, 71. The state of the art algorithms are 
quite complex, with codes on the order of 9000 lines. 

There are also many approximate or heuristic algorithms. These obtain good 
solutions in a (relatively) small amount of time but do not guarantee that the 
optimal solution will be found. 

There is a class of heuristic algorithms which simply directly construct tours 
by some rule. The simplest of these is the trivial "greedy" aIgorithm which goes 
as follows. Start with some (randomly selected) city. Now take as the first link 
of the tour the step from this city to its closest neighbor. From the second city, 
step to the nearest city which still has not yet appeared in the tour. Continue 
in this fashion until no cities remain. The final step is from the last city to the 
first city. The tours which greedy produces look reasonable for the most part, 
except for a few long links which come from the end of the process, when few 
cities remain and it is difficult to find a cloeby, untaken city. 

Once greedy or something like it has given one a vaguely reasonable tour, the 
idea naturally presents itself to look for ways to improve a given tour. This leads 
to the class of "local search" algorithms. These methods sequentially construct 
a chain of tours: usually the ith tour is constructed from the ( i  - 1)th tour 
by changing some number of links. Local search algorithms demand that the 
tour strictly improve as one goes from one tour to the next - that is, the tours 
are constructed so as to decrease the length at each step. The most effective 



such algorithms are those of Lin [8] and Lin and Kernighan (91. Lin starts with 
the idea of a k-change: take the current tour and remove k different links from 
it. Now re-connect the dangling sections in a new way so as to again achieve 
a legal tour. A tour is considered to be "k-optn if no k-change exists which 
decreases the length of the tour. Lin's algorithm begins with a random tour 
and applies 2 and Bchanges until one reaches a %opt (and also Zopt) tour. He 
found that the %opt heuristic was quite powerful: for a problem of moderate size 
(N = 48), %opt from a random start had a non-negligible probability (- 5%) 
of hitting the exact optimum. Therefore by taking many random starts, he was 
almost certain to find the exact optimum for problems of this size. Lin also tried 
higher k-changes but decided that they were not worthwhile, though it should 
be realized that this conclusion depends on the speed of the k-opt algorithm for 
k > 3. If a fast algorithm can be found for k > 3, it may very well be worthwhile 
to go to 4opt  or beyond. 

Lin and Kernighan improved on these ideas by both speeding up the 3- 
opt process and also by including some of the higher-order k-changes. In their 
algorithm, the order of a change is not pre-determined, rather k is increased 
until a stopping criterion is satisfied. Thus many kinds of k-changes and all 
Schanges are included. In practice, there are many ways to choose the stopping 
criteria, and the best codes are rather involved. The Lin and Kernighan method 
is a powerful heuristic and is considered to be the benchmark against which all 
other heuristics are compared. Surprisingly, there have not been significant 
improvements in performance of local search algorithms since the work of Lin 
and Kernighan which goes back to 1973. 

Local search algorithms tend to get trapped in local minima of the objec- 
tive function. They proceed downhill for a while, making much progress, but 
then stop. In order to make more progress, many links would have to be si- 
multaneously changed in a single k-change, for some large value of k. Another 
class of algorithms is possible in which one relaxes the strict downhill restriction 
of the chain of tours and actually lets the tour length (occasionally) increase. 
In this way, one can hope that the tour will climb out from the current local 
minimum and cross over a barrier to a better solution. We call this class of 
algorithms "iterative sampling." This class includes simulated annealing and 
genetic algorithms. 

In simulated annealing [lo, 111, the uphill moves are accomplished by intro- 
ducing a "temperature" and updating the system according to the Metropolis 
rule. A trial move is made for instance, by applying a 2 or Bchange to the 
current tour; if this gives a downhill change, it is always accepted, while an 
uphill move is accepted with conditional probability e-ALIT.  AL is the change 
in the length due to the trial move and T is the temperature, a free parameter 
which controls the typical size of AL. One thus constructs what is called a 
"Markov chainn of tours. Markov chains are distinguished from more general 
types of chains by the requirement that the ith tour is constructed strictly from 
the (i - 1)th tour (and not, for instance, from both the (i - 1) and (i - 2) tours). 



If the trial moves satisfy a certain symmetry property (we will return to this 
later) then a tour of length L will appear with probability proportional to e'LIT. 
The exact optimum is the single most likely configuration to appear, but this is 
counter-acted by the fact that there is such a large number of tours even slightly 
above the optimum. This means that with simulated annealing the system will 
almost always be in a sub-optimal tour. To fight this, one attempts to drive the 
system towards the true optimum by slowly lowering the temperature T, and 
this is termed annealing. If the annealing is done "sufficientlyn slowly, one is 
guaranteed to find the true optimum if one waits long enough, but this is almost 
impossible to achieve in practice. See Bentley and Johnson for an an extensive 
comparison of the above heuristics [12]. 

Another type of iterative sampling algorithm is the class of -called "ge- 
netic algorithms" [13, 14, 151. Here one starts with an ensemble of tours which 
Ucompete:n the best tours replicate and the worst tours are eliminated. To cre- 
ate new kinds of tours, one applies "mutationsn such as random k-changes and 
Ucross-oversn where two or more tours are in some way put together to create a 
new tour. This approach has not yet been systematically explored and probably 
can be significantly improved. 

A very different approach has generated much interest recently - the neural 
network approach of Hopfield and Tank [16]. In this method, the constraint of 
"legal" tours is not strictly enforced during the computation. (Note that this 
also occurs in cutting-plane algorithms.) In practice, the method has not yet 
been successful at solving problems of size 40 or greater [17]. 

In Section 3, we introduce a class of Markov chains in which each step is 
produced by a "kick" followed by a local search optimization. The local search 
method is described in section 4 and a number of other program optimizations 
are given in section 5. Section 6 presents our results of local search timings and 
the application of the entire method to a number of solved Euclidean TSPs. 
Some background material on the density of tours of the TSP is given in Ap- 
pendix A, and Appendix B discusses some properties of Markov chains. 

3 Large-Step Markov Chains 
The algorithms of Lin and Lin-Kernighan are powerful because they consider 
many possible changes to a tour. This means that the 'local-opt' criterion is 
rather stringent, and only a very small subset of all possible tours are generated. 
Furthermore, the length of such tours are typically near the optimum. In this 
section we show how to combine this good feature of the local search method 
with Markov chains so as to produce a more powerful type of Monte Carlo 
procedure than the standard simulated annealing method. 

Throughout this paper we will concentrate on TSP's using a two dimensional 
Euclidean metric, that is, the dij elements correspond to distances in a plane, 
but our methodology does not depend on this. The density of "statesn (i.e., 



tours) away from the optimum of a TSP instance increases rapidly as a function 
of length. As discussed in Appendix A, the density of states (i.e., tours) near 
the optimum is a rapidly rising function because distant parts of the tour can be 
modified almost independently. This independence then leads to a combinatoric 
factor in the number of tours away from the optimum. 

If an algorithm samples all these states it will not find the optimal solution 
for problems of significant size: the density of states strongly biases the system 
away from the optimum, and the odds of actually hitting the optimum become 
negligible. The first thing to do to make the TSP more manageable is to thin 
the set of tours to be considered. This is what the local search algorithms do. 

77476 78638 79800 80962 82124 83286 

Tour Length 

Figure 1: Binned density of 3- opt tours for a random-scatter N = 100 Euclidean 
TSP in two dimensions. The curve is the prediction of the model described in 
Appendix A. The histogram contains 6138 distinct 3-opt tours - these were 
found by running the large-step Monte Carlo at  high T for a long time. 

Figure 1 shows the (binned) density of $opt tours for a particular instance 
of a 100 city TSP (the cities were randomly scattered in a square and the curve 



is from the model given in Appendix A). The striking feature here is that the 
distribution falls off very quickly below a few percent from the minimum length. 
In fact, even in this range, the density of 3-opt tours is much smaller than the 
density of all tours. One can say the Lin and Lin-Kernighan algorithms are effec- 
tive because they dramatically reduce the size of the search space. Empirically, 
it appears that the set of all the %opt tours are sampled relatively flatly: each 
%opt tour appears with similar probability if one begins with random starts. In 
particular, there is no strong bias towards the optimum. This is not surprising, 
since there is nothing built into the algorithm which would produce this bias, 
apart from the fact that %opt tours are fairly close to the optimum length. For 
small N, the set of %opt tours is manageable and the algorithms can actually 
find the optimum by repeated trials, which almost amounts to enumeration. 

However, for large N, the set of %opt (and more generally, locally optimal) 
tours itself becomes too large to enumerate. To improve the efficiency of the 
algorithm, we need to bias the sampling of locally optimal tours towards tours of 
shorter length. By using a Markov chain it is possible to sample the set in a more 
intelligent way. The idea is to construct locally optimal tours from previous ones, 
not from random starts. Such an algorithm superficially resembles simulated 
annealing (there is an accept/reject step and an analogue of temperature) but 
the important difference is that one restricts the tours in the chain to be locally 
optimal. 

Let us now schematically present our algorithm. To be specific, we will 
consider the local opt procedure to be %opt, but the methodology applies to 
any local opt, in particular Lin-Kernighan. Suppose the current tour is %opt. 
Figure 2 is a schematic representation of the objective function versus tours; 
the %opt tours are at local minima of this function. The goal is to construct a 
Monte Carlo step (a step in the Markov chain from the ith tour to the (i + 1)th 
tour) which goes directly from local minimum to local minimum, biased towards 
shorter lengths. We accomplish this in the following way. Starting at the current 
3-opt tour (labeled Start  in Figure 2), we give the tour a large "kick", taking it 
to Intermediate .  We will describe in more detail later what we use for the kick - 
for now it can be thought of as a randomly selected k-change for some k > 3. We 
now apply an efficient %opt procedure to Intennediaie .  This brings us to a new 
local minimum, labeled Tr ia l  in figure 2 .  So far we have stepped from one 3-opt 
tour to another. We do not merely accept this new tour, however, since we wish 
to bias towards short lengths: we apply an acceptlreject procedure to Trial .  If 
the length has decreased, Trial  is accepted and becomes the new current tour. If 
the length has increased, it is accepted with conditional probability e-*&IT; if 
the acceptance test fails, the tour is returned to Star t .  This forms one step of the 
Markov chain. This procedure is repeated many times, exploring local-opt tours 
in a biased way. In particular, one expects to sample more often the local-opt 
tours of shortest lengths than with algorithms which sample the locally optimal 
tours randomly. 

This algorithm gives rise to a large-step Markov Chain because after the kick 



A Intermediare 

Length 

Tour Space - 
Figure 2: Schematic representation of the objective function and of the tour 
modification procedure used in the large-step Markov chain. 

and local-opt are applied, typically many links have been changed. If we take 
as the metric of the TSP the number of links by which two tours differ, we may 
say that Trial is often quite "far" from Start. Large-step Markov Chains are 
powerful because they can reduce the auto-correlation time of the Markov chain 
and the search space is explored rapidly. Appendix B discusses these points 
in greater depth. It is important to realize that finding a practical large-step 
Markov Chain is not a simple matter. After all, we could have taken as the large 
step simply a k-change for some large value of k. The performance, however, 
would be terrible since a randomly selected k-change would just take Start to 
a random location in the space of all tours; Tn'al would then almost always be 
rejected. Furthermore, it is essential to employ a very good tour improvement 
method so as to bring us not only to a new tour, but to a new, high quality tour. 
Our approach is reminiscent of the "spin wave" moves suggested by Ceperly and 
Kalos for physics Monte Carlos [18]. For an efficient algorithm, the choice of the 
large step must be specifically tailored to the problem at hand, which is why we 
have chosen a specific kind of "kick" which is well suited for the TSP. 

Another way of thinking of the advantage of large-step versus small-step 
Monte Carlo (e.g., simulated annealing) is the following. In going from one local- 
opt solution to another by some number of link changes, a barrier (i.e., a longer 
tour) is encountered. In a small step Monte Carlo, the intermediate tour with 
larger length must first be accepted in order to proceed. If one wants to sample 



very near the optimal length, this forces the "temperature" to be low, leading to 
a very low acceptance of such intermediate steps: the algorithm thus gets stuck 
for exponentially long times in valleys of the objective function. The large steps 
allow one to climb over some of the barriers and have the accept/reject test only 
after having returned to a valley. Thus large steps should be constructed so that 
barriers are easily jumped over. In effect, the objective function landscape has 
been smoothed and many of the ridges have been eliminated. This shows up 
quite dramatically during our runs: even at very low T, near the optimum, the 
large-step Monte Carlo continues to explore new tours. It is very effective a t  
avoiding trapping. 

Figure 3: Example of a double-bridge kick (shown in dashed lines). The bridges 
rearrange the connectivity of the tour on large scales. 

For the "kick" we have chosen the particular type of 4change drawn in 
Figure 3. It consists of a pair of improper 2-changes. Each improper 2-change 
is a "bridge," i.e., it takes a legal, connected tour into two disconnected parts. 
The combination of both bridges, of course, must be chosen so as to produce a 
legal final tour. The motivation for this type of kick is evident from the figure 
- it allows a peninsula to hop from one place in the tour to another without 
much of an increase in the tour length. Obviously this is just one choice for 
the kick but we have found it to be an effective way of getting the Monte Carlo 
to rapidly explore the space of local-opt tours. The double-bridge kick enables 
largescale changes in the current tour to take place. The double bridges can be 
generated randomly, or with some bias towards allowing nearby peninsulas to 



hop as in Figure 3. The important point is that the double-bridge move irr the 
simplest move which cannot be built from the composition of a local sequence 
of 2 and 3-changes. 

The ideas of this section are quite general. For any optimization problem 
for which powerful local search methods or other heuristics are known, one can 
incorporate these into large-step Monte Carlos which generate only interesting 
feasible solutions and also bias the sampling of these solutions towards the true 
optimum. We are aware of one previous work which uses large step Markov 
chains [19]. In that reference, the authors present a method for finding the 
ground states of proteins, but they did not consider it to be a general optimiza- 
tion method. In addition, they had rather limited success with their method, 
perhaps because their large step was not very suited to their problem. Note also 
that, contrary to their claim, their algorithm does not satisfy detailed balance, 
so the Boltzmann distribution is not obtained. 

Lack of Detailed Balance 
In the case of standard simulated annealing, the trial moves which one feeds 
to the acceptlreject part of the Metropolis procedure appear with symmetric 
probabilities. That is, if T A - . ~  is the probability of the trial move A -+ B (before 
one applies the acceptlreject test), then TA-B = TB-.A. This, combined with 
the form of the Metropolis acceptlreject procedure leads to a total transition 
probability which has the property of "detailed balance." This ensures that 
the system asymptotically reaches thermal equilibrium (the ensemble reaches a 
steady state) and that the states are populated with probability proportional 
to e-LfT (the Boltzmann distribution). The algorithm is thus closely analogous 
to a physical system in thermal equilibrium. 

This is not the case for the large-step Monte Carlo. T ~ t a r t - ~ r i a l  is the 
probability that the move Start + Trial in figure 2 is attempted. There is 
no reason for the inverse trial move, Trial + Start, to appear with the same 
probability. Thus the algorithm does not satisfy detailed balance and there is no 
direct physical (statistical mechanical) analogue of the large-step Monte Carlo. 
The sampling of the tours is biased towards the optimum, but not necessarily 
by the Boltzmann factor e-=IT.  

4 Fast Local Searches 
Fundamental to the large-step Monte Carlo is an efficient local search proce- 
dure. The Lin-Kernighan algorithm takes a tour to 3-opt and beyond because 
it includes some of the higher-order k-changes. It is very fast: checking that a 
tour is L-K opt takes on the order of N operations. This is to be contrasted 
with the k-opt algorithms introduced by Lin which require O(Nk) steps. More 
recently, an O(N) check-out time approximation to 3-local-opt was presented 



[20] as a heuristic way of getting close to 3-opt quality tours. The purpose of 
this section is to show that 3-opt can, with no approximation, be realized so that 
check-out time is O(N) rather than O(N3) as is commonly used by practitioners 
in the field (41. The running time for our fast %opt is similar to Lin-Kernighan 
restricted to 2 and 3 changes giving rise to %opt tours. A pwible advantage 
of the algorithm below is that the method generalizes to all "connected" graphs 
for any k. 

We begin with the case of 2-opt which consists of improving a tour until its 
length cannot be decreased by any 2-changes. If a 2-change leads to a decrease 
of the tour length, we implement the exchange and this requires inverting and 
re-writing part of the tour. This single 2-change costs an amount of computation 
time, d(N), which depends on the quality of the current tour. If the current 
tour is very bad, for instance, a random tour, d(N) is proportional to N. For 
"good" tours, d(N) can be much less, proportional to Na with a < 1. Let us 
suppose from now on that the tour is "reasonable," for example it was obtained 
by "kicking" a 3-opt tour as is the case in our large-step Monte Carlo. 

To find a 2-change which decreases the tour length, we must consider all 
pairs of links for a possible exchange. NaYvely, this requires O(N2) steps, but in 
fact it is silly to consider pairs of links which are very far apart in the physical 
space of the problem. Figure 4 shows such an example. Intuitively, it is clear 
that the %change obtained by cutting the two marked links will increase rather 
than decrease the length. 

Figure 4: A candidate pair (dashed lines) for a 2-change. Clearly, this 2-change 
cannot decrease the tour length. 



By making this idea precise one arrives at a fast Zopt aleorithm. To do this, 
we need additional data structures which specify which citles are close to any 
given city. For simplicity, consider using N2 storage space to do this; for lar e P problems, one can store say the 20 nearest neighbors only, or to be complete y 
rigorous, a tree data structure can be constructed. Let the c ~ t ~ e s  be labeled by 
an index which goes from 0 to N - 1. The tour is represented by a mapping 
from tour entries to city labels. This is simply the t our  array: 

tour[j] = i ;  /* c i t y  i i s  the  j t h  c i t y  i n  the tour */ 

The neighborhood array is defined by: 

nbhdCi1 Cjl = k; /* c i t y  k is tho j t h  c loaost  c i t y  t o  c i t y  i */ 

This array is found by sorting each row of the distance matrix. This is done 
once and for all at the beginning of a run. To efficient1 keep track of where the 

by: 
r cities are in the current tour, we introduce the which-s ot data structure defined 

cities[i] .which-slot = j ;  /* c i t y  i is currently the  j t h  c i t y  i n  the  tour */ 

This structure must be updated as the tour changes; updating which-slot is a 
similar amount of work to updating the tour itself. Finally, there are two more 
necessary data items. min-link is defined as the minimum size any link can 
take. This is easily found once at  the beginning of a run by simply finding the 
minimum value of dij over all i and j. marl ink is defined to be the value of the 
largest link in the current tour. This quantity must be dynamically updated 
(this can be done incrementally and with few operations). 

f o r  (n-1 -;a-1 <i;++n-1) { /* loop through tour s l o t s  */ 
m-1 = ( n-1 - 1 + I ) % i ;  
f o r  ( j -2  4; j-2 <I-1 ;++j,2) { 

c-2 = nbhd[n-11 Cj-21; 
n-2 = cities[c-21 . ~ h i c h , s l o t ;  /* n-2 goes out from c i t y  tourCn-11 */ 
m-2 = ( n-2 - 1 + B ) % I; 
if ( d[tour[n-111 [tour[n-2]l+dn,link > 

d[tour[m,l]] Ctour Cn-l]]+nax-link ) { 
break ; /* out o f  j-2 loop; go t o  next n-1 */ 

3 
/* t r y  the move */ 
/* if move accepted, break out o f  j-2 loop and go t o  next n-1 */ 

3 

Table 1: The pseudo-code for fast 2-opt. 

C-style pseudo-code for the efficient 2-opt is shown in Table 1. The meaning 
of nl, ml,  nz, and mz is shown in figure 5. The crucial step is the if statement. 
The quantity on the left hand side of the expression within the if forms a lower 
bound on the new length; the quantity on the right hand side is an upper bound 



on the old length. Moreover, the right side is a constant within the enclosing 
loop while the left hand side is monotonically increasing because of the way 
n2 is constructed. Therefore, when these bounds paas each other we can stop 
considering nl as a possible starting point for a 2-change and can go on to the 
next nl .  

Figure 5: Labels used in the pseud6code for a 2-change. The two links, (ml, nl) 
and (mz, nz) are exchanged for two other links. 

The time complexity of this 2-opt algorithm depends on the quality of the 
current tour through d(N), an a priori unknown function. At this point, we 
can only discuss the N dependence of the "check-outn period [8] which is the 
time it takes to verify that a tour is 2-opt. (We referred to this time at the 
begining of this section.) The check-out time is f(N)N, where the N comes 
from the outer loop of the algorithm: all slots are tried at least once. The 
function f(N) represents the average number of cities within a sphere of radius 
(marlink-man-link) of city tour[nl]. As N grows, one expects (at least for 
random scatter TSPs) that this is a very slowly growing function of N. The 
simplest way to see this is by considering the "scaledn TSP problem, where the 
cities are randomly scattered in a square of size 0 x f l  and the length of 
a good tour is proportional to N. In this case, the typical size of each link in 
a good tour is of order 1. As N grows, one can have a city density fluctuation 
which causes max-link to grow slowly as a function of N. If maz-link were a 
constant, the number of cities within a sphere of radius maz-link-min-link would 
be a constant and f (N)  would be constant. This is not always the case, however, 
so f(N) may be slowly growing. All this depends on the fact that during the 
%-opt iteration the tour is "reasonablen - i.e., that (max-link-min-lank) is small. 
This is true during the large-step Monte Carlo and later we will give timings. 

The above discussion is easily extended to fopt; naively, the check-out time 
takes O(N3) steps, but for a reasonable tour it is silly to consider cases where 
the three links are far apart. If we label the three links to be broken as (ml, nl), 
(mz, nz) and (m3, n3), there are two topologically different ways to reconnect 
the points to make a legal tour. Table 2 gives the pseud~code for the case 
depicted in figure 6. As in 2-opt, there are branches which give early exits from 



Figure 6: Labels used in the pseudo-code for a 3-change. The three links, 
(ml, nl),  (mz, nz), and (ma, n3) are exchanged for three other links. 

the loops. There are several of these corresponding to the tighter bounds which 
can be found as more of the potential 3-change is constructed. The meaning 
of the various indices is shown in figure 6. The time complexity for check-out 
can again be written as f(N)N, where now f(N) counts the average number of 
cities within a sphere of radius 2.(marlink-min-link) of city tour[ml]. Again, 
f (N) has a weak dependence on N and can be measured. The time complexity 
for the overall %opt procedure will be discussed in section 6 (see figure 8). 

Though we used the Euclidean planar TSP to motivate this algorithm, noth- 
ing actually depends on it. The triangle inequality is not needed; the algorithm 
given above works for any symmetric d i j .  It is fast whenever dij is such that any 
given city only has relatively few near neighbors (e.g., not all N cities equidis- 
tant!). Then f (N)  is nearly constant: one can implement 2 and Sopt  so that 
the check-out time is O(N) .  

The extension to k-opt with k > 3 is not straightforward. In the language 
of Lin and Kernighan, for k > 3, there exist 'non-sequential' or 'disconnected' 
k-changes. See figure 2 of their paper. Indeed, at k = 4, a new type of edge 
exchange appears. It consists of a 4-change made out of two improper 2-changes. 
These are nothing but the double-bridge moves which we use for the kick in the 
large-step Monte Carlo. For such Cchanges, there is no locality bound which 
constrains the two bridges to be near each other. This is a feature which many 
k-changes share for k > 3. To understand this, consider constructing a k- 
change sequentially. First, break one link, creating two free cities, 1 and 2, 
and a dangling link on each. Choose a new city, 3, and connect it to one of 
the dangling links. Now break one of the old links at city 3 so that there are 
again a total of two dangling links and two free cities. Continue in this manner. 
At every stage of this construction, there are two dangling links attached to 
cities involved in the k-change. At some time, the two dangling links are joined 
together. If this occurs at the last step, we call the resulting k-change sequential 
or "connected;" otherwise, it is called "disconnected." Note that all legal 2 and 



f o r  <n,lrO;n,l<I;++hl) < /* loop through t o u r  s l o t s  */ 
m - l = ( n - 1 - l + I ) % I ;  
f o r  ( j-2 rO;j,2 Cl-l;++j,2) < 

c-2 = nbhdlm-11 Cj-21; 
n-2 = cities[c,2] .which-slot; /* n-2 goes out  from c i t y  tour[m,ll */ 
m-2 = ( n-2 - 1 + 8 ) % W; 
if ( d[tour b-111 [tour [n,2]]+2+lin,link 

> d[tour[lcl]] [tour [n , l ] ]+2*ru , l i  ) < 
break ; /* out of j-2 loop;  go t o  next n-1 */ 

> 
if ( d[tour b-111 [tour [n,2]]+2*~in,link 

> d[tour[.cl]] [tour[n,l]]4[tour[m,2]] [tour[n,2l]+mu,link ) { 
cont inue; /* t o  next j-2 value */ 

l 
f o r  (j-3 -0; j-3 <I-1 ;++j,3) < 

c-3 = nbhd Cn-11 [j-31; 
n-3 = cities[c,3] .which-slot; /* n-3 goes out  from c i t y  tour[n,l]*/ 
i f  ( d[tour[m-I]] [tour[n,2]]+d[tour[n-11 [tour[n,3]]~in,link > 

d[tour[m,i]] [tour [n,l]]+d[tour[1,2]] [tour[n,2]] +mu-link ) 1 
break; /* out  of j-3 loop; go t o  next j-2 */ 

l 
/* t r y  t h e  move */ 
/* if move accepted,  break out  of j-3, j-2 loopa.  go t o  next n-1 */ 

1 
1 

1 

Table 2: The pseudecode for fast 3-opt. 

3 changes are connected. 
The fast algorithm explained for 2 and 3-opt can be extended to connected- 

k-opt. At each step in the construction of a connected k-change, the new city 
can be chosen in a neighborhood of the city which it reconnects to. One can 
put a bound on the size of this neighborhood in the same way as we did for 2 
and %changes. This leads to an algorithm for which check-out time grows as 
f(N)N, and the tours generated are optimal under connected k-changes. 

It is much more difficult to deal with the disconnected k-changes. There 
seems to be no O(N) algorithm for such k-changes. One role played by these 
k-changes is to change the large-scale connectivity of the tour. Perhaps instead 
of doing these changes explicitly as in a local search algorithm, it is more effi- 
cient to sample them stochastically. This is what our large-step Monte Carlo 
does. The choice of the double-bridge as the kick was made for this reason. 
Thus our algorithm can be viewed as a simple implementation of a large-step 
Monte Carlo where kicks consisting of disconnected k-changes (which encourage 
global connectivity changes, the double-bridge being the simplest such move) 
are followed by a local search sub-algorithm such as 2, &opt, k-connected-opt, 
or G K .  



Let us mention here how the Lin-Kernighan algorithm also achieves a check- 
out time proportional to f (N) N (this f need not be the same as the one above). 
Note that if we restrict the Lin-Kernighan algorithm to k-changes for k 5 3, 
then all possible 2 and 3 changes are considered. The Lin-Kernighan algorithm 
can be O(N) for check-out time because it considers a class k-changes which are 
connected. Using the notation of [9], suppose there exists a k-change for which 
the total gain is positive: 

k 

where gi is the gain achieved in the ith exchange. Lin and Kernighan show 
that there always exists a cyclic permutation of the indices such that the partial 
sums of the g's are also positive. Thus one can impose this as a constraint on 
the search. This leads to a bound when choosing each new exchange, having a 
similar effect to our locality bounds. 

5 More Tricks 
In this section we present some additional optimizations to the large-step Monte 
Carlo algorithm which allow it to run fast and better explore the space of local- 
opt tours. We describe the optimizations in the framework of 3-opt, but exten- 
sions to other local searches are straightforward. 

The Hash Table 
Lets suppose that one has an instance with N not too large and that one wants 
to be confident that one has found the optimal solution. This means that as the 
Monte Carlo proceeds (at low temperatures), Sopt  tours very near the optimum 
should be visited many times. Rather than verify again and again that a tour 
is Sopt,  one can use the well known device of a hash table [21] to store locally 
opt tours which have previously been visited. If the lookup can be made fast, 
the hash table can be continually queried as to whether or not the current tour 
is a member of the table (i.e., has this tour been seen before and is it %opt?). 
If the answer is yes, an early exit from the loops of the %opt algorithm can be 
taken. 

A hashing function which maps tours to locations in the hash table should 
scatter similar tours. That is, two tours which differ even by only a few links 
should map to different locations in the table. Other useful properties for the 
hash function are invariance under cyclic permutations of the tour (it doesn't 
matter which of the N cities is considered to be the "first" city in the tour) 
and mirror symmetry (invariance under reversal of the tour orientation). To 
accomplish this, we construct a table of N2 random integers, rij, where we 
associate each ri, with the link l i j ,  which is one of the N2 links which may 



appear in the tour. To properly represent the links, we symmetrize the random 
number table, so that rij = rji (we are working with a symmetric di j ) .  For a 
given tour, a useful hash function is given by the following: 

A means bitwise XOR. We use a hash table of 216 entries and the lowest 16 
bits of H form the index into this data structure. The function H has the 
aforementioned properties and does a good job of scattering tours uniformly 
across the hash table. At each place in the hash table we store the full (all the 
bits) hash value, H ,  plus the length of the tour. If a tour is known to be 3-opt, 
an entry is made in the table at  the corresponding index. When the table is 
queried, to get a "match," both the H and the tour length must match. If the 
query says there is a match, the current tour has been seen before and is %opt. 
Both H and the tour length can be computed incrementally as the current tour 
changes. This means that H and the tour length are always available and the 
query into the hash table is a fast operation. In our program, we can query the 
hash table every time the tour changes at all and if the answer is "match" we 
immediately exit the %opt loops. The hash table forms a repository for all the 
known 3-opt tours for this instance of a TSP and is valuable in speeding up the 
search. 

As defined, this procedure does have a finite probability of making a mistake 
(matching H's and tour lengths for different tours). We have ignored this since 
it is extremely unlikely and also since it doesn't lead to a "hard" mistake - 
it would cause one to miss a 3-opt tour. If this is thought to be a problem, 
however, the remedy is simple - take more bits for H (we use a 32 bit H) or 
add some other piece of information which describes the tour. 

Another problem is collisions. Since entries are written into the table but are 
never taken out, the table can become full over a long run for a large problem. 
When a collision occurs (we want to write to the table, but that entry is already 
taken by another tour) one could just give up and not write the entry in. This 
would not lead to errors, it merely reduces the effectiveness of the hash table. 
However, one can use secondary chaining to avoid collisions. In this technique, 
a hash table entry may actually be the head of a linked list of entries, and on 
both queries and writes, the linked list is scanned, if necessary. 

Finally, the performance of the hash table optimization depends on the order 
in which the cities are traversed in the %opt loops. The point is, once the "kick" 
has been made to the tour, the %opt subroutine should first concentrate in the 
area near the bridges. In this way, all the necessary 3-changes may be done 
early, the hash table may rapidly find a match, and an extremely early exit 
from the Sopt  loops can often be accomplished. This possible optimization is 
somewhat related to the one to be described below, but we have not explored 
the idea of heuristically changing the looping order so as to increase the chances 
of early hash table exits. 



Outer-Loop Optimization, Sub-Linear %opt 
Each step of the large-step Monte Carlo begins with a %opt tour. This tour 
is then modified by making a double-bridge move, and it is then %opted. The 
intuition behind the "outer-loop optimization" is that if a link is sufficiently 
far away from either of the two bridges then it will not be involved in the 2 or 
%changes and so it need not be considered as a possible starting point for any 
2 or %changes. We can therefore restrict the starting points of the outermost 
loop of the opt algorithm so as not to run over all the links, but just those which 
are close to the "action." In general, of course, the bridges rapidly get changed; 
what we really need to do is keep a list of the cities which are attached to links 
which have moved since the last 3-opt. Call this data structure change-list. The 
"consideration list" or con-list will be those cities which are sufficiently close 
to some member of change-list. The outermost loop of the opt algorithm will 
then run over only those links which are attached to a city which is a member 
of conJist . 

Figure 7: The city nl is far from the "action," is not part of the con-list, and 
thus need not be considered in the outermost loop of the %opt procedure. 

A schematic diagram of the outer-loop optimization is given in figure 7. 
Drawn there is a potential starting point for the outermost loop of the %opt 
algorithm, nl. Also shown is the set change-list, those cities which have had 
an attached link move since the last 3-opt. The "sufficiently close" constraint 
defines the set con-list and comes from the usual type of argument where we 
consider the minimum new distance versus the maximum old distance. The 
result is the following. The set con-list is given by those cities, n l ,  for which 
the following inequality is true for some city, p, in the change-list: 

d(nl, p) + 2 . min-link < 2 . maz-link + mat-p. 

m a z q  stands for the maximum length of the two links attached to p. This result 
comes about because nl  must interact with one of the cities in the change-list 



since it is already known to be relatively 3-opt to everything else. Therefore, if 
nl is to be involved in a %change, there must be a link going from nl to  one of 
the members, p, of change-list and also one of the two links attached to p must 
be broken. 

This optimization allows the Monte Carlo to concentrate on the current 
region of interest. Using it, sub-linear (in N) time complexity for the 3-opt is 
possible and this seems to be born out by our timings of the Sop t  (discussed in 
section 6). Another important point is that the maz-link which appears in the 
above inequality need no longer be over the entire tour, but rather just over the 
set con-list. Since mat-link is itself involved in the definition of con-list, one 
can recurse until nothing changes, thus achieving the smallest possible max-link. 
The fact that max-link no longer depends on the entire tour is satisfying. More 
complex and sharper inequalities than the above can be written down but a t  
some point the computational time spent on finding con-list outweighs the 
potential benefit from a small con-list. We have not thoroughly explored all 
the possibilities. 

Interaction with Branch and Bound 
Non-exact algorithms such as the large-step Monte Carlo can be used to improve 
exact algorithms such a s  branch and bound, and vice versa. For a Euclidean 
TSP, many of the possible N(N - 1)/2 links are long and thus unlikely to 
belong to the optimal tour. Branch and bound algorithms begin by eliminating 
links from consideration. For instance, for a random city N = 400 problem, 
typically 75% of the links are eliminated by the first pass of our branch and 
bound program [22]. Since we know these links cannot appear in the optimal 
tour, we can set the corresponding distances dij to  infinity in the Monte Carlo, 
effectively removing them from consideration. In practical terms, this causes 
the bounds to saturate more rapidly and can speed up the 3-opt. Inversely, 
the Monte Carlo rapidly gives one very good tours. The best of these gives a 
sharp upper bound of use for the exact methods. Having a good bound leads 
to significant improvements in the pruning and hence the performance of the 
branch and bound algorithm and facet finding algorithms. 

6 Results 
This section contains the results of numerical experiments we have conducted 
using the large-step Monte Carlo. 

Local Search Benchmarks 
Our method consists of local-opt searches embedded within a Markov chain. 
Almost all of the computer time is spent within the local-opt and here we give 



Figure 8: SPARCstation-1 timings to 3-opt a tour after a kick. For each N, 
the data has been averaged over 100 Markov chain steps. This was done for 
20 separate TSP instances and then averaged again. The %opt is described in 
section 4, the two other optimizations in section 5. 

some timings as a function of N. The runs were done on a SUN SPARCstation-1 
computer and the code was written in the C programming language. Most of 
our runs attempted to solve the Euclidean version of the TSP, where the cities 
lie in a plane and the shortest, straight-line distance between city i and city j is 
taken for d i j .  However, the algorithm does not make use of this property, and 
the Euclidean version is not thought to be an easy subset of all TSPs. 

To time the algorithm, we constructed 20 instances of random-scatter TSPs 
for several N values. The N values considered were N = 50,100,200,300,400, 
and 500. For each instance we ran 100 steps of the Markov chain and computed 
the average time required to local-opt. These numbers were then averaged over 
the 20 instances. Figure 8 shows the result for the case of 3-opt. The set of 
points labeled "Fast %opt" were obtained using the basic 3-opt algorithm as de- 
scribed in section 4. Fitting these points to a power law gives an exponent near 
1.5. Following the arguments given at the beginning of section 4, the algorithm 
should behave at  worst as d ( N ) N  so that one expects an exponent leas than 2. 
Also, the check-out time itself requires f ( N ) N  steps, so the exponent should 
also be greater than 1, as it is. The set of points labeled "plus hashtable" are 



runs which include the hashtable optimization discussed in section 5. The effect 
of the hashtable is not very large since only 100 tours have been constructed in 
each of these benchmark runs - the hashtable becomes important as one thor- 
oughly samples the tours around the optimum. The last set of points includes, 
in addition, the outer-loop optimization. For large N the improvement is sig- 
nificant and seems to indicate a different N dependence, possibly sub-linear. 
The dependence on N when L-K is used instead of Sopt is similar. Since the 
algorithm considers more exchanges, the main difference is that L-K is compu- 
tationally more expensive, our L-K search taking about 1.8 times longer than a 
Sopt  search. 

Performance of the Markov Chain Algorithm 
Now we turn to the overall performance of the large-step Markov chain algw 
rithm. We first focus on the ability of the method to solve problems to opti- 
mality. For N = 50,100, and 200, we compared our results with exact solutions 
which were obtained using a branch and bound program written by one of us 
[22]. We generated instances of the TSP which consisted of cities scattered ran- 
domly throughout a square. It was observed that the large-step Monte Carlo 
was extremely effective. For N up to 200 (beyond N = 200 our branch and 
bound program was unable to converge) the Monte Carlo easily found the true 
optimum be it with the 3-opt or with the L-K local search. When L-K is used, 
the average time to solve to optimality is less than one minute for N = 100 
and five minutes for N = 200. For 3-opt embedded in the Monte Carlo, a few 
minutes was usually sufficient at N = 100, while for N = 200 less than an hour 
was necessary. Note that the Sopt time to solve to optimality is not merely a 
constant factor larger than the L-K times, instead it is N dependent. This is 
because there are exponentially more (in N) %opt tours than L-K opt tours. 

We then ran tests on larger problems solved to optimality by other groups 
using cutting plane methods. The first instance is the LIN318 problem [9]. 
The problem is posed as an open tour with fixed ends, but it is easy to recast 
as a TSP by setting the length of the "link" between the two ends to some 
large and negative value. Padberg and Grotschel, using a combination of cut- 
ting-plane and branch-and-bound methods, were able to find the optimal tour 
for this problem [6]. The original [9] Lin-Kernighan heuristic using repeated 
random starts achieved an answer of 41,871, which is 1.3% above the optimal 
value of 41,345 (see [6] for a discussion as to exactly what rounding strategy was 
used when constructing the distance matrix). We have confirmed this behavior 
with our coding of L-K. Simulated annealing achieves a similar result to Lin- 
Kernighan for this problem [23]. 

Consider now our large step Markov chain approach. We made many sepa- 
rate attempts on the LIN318 problem with different random starts. When the 
temperature is zero, the tour gets stuck in local minima, though these are of 
high quality. This is easily understood by comparing these local opt tours to the 



exact solution: the links connecting the three "columns" are not easily moved. 
They can be shifted by applying a bridge move, but unless the other bridge is at  
the "right" place, the move is rejected. Thus we found it necessary to either use 
multiple starts or to use non-zero temperatures. After adjusting the tempera- 
ture, the large-step Monte Carlo consistently found the optimal tour of length 
41,345 [6]. This fact gives us confidence in the robustness of the procedure. 
Another indicator is the fact that the Monte Carlo visits large numbers of tours 
just above the optimum and in fact, visits them multiple times. For instance, it 
visits the tour of length 41,349 given in [24] and the evidence from the Monte 
Carlo is that this is the first sub-optimal tour; the Monte Carlo found no tours 
between 41,345 and 41,349. In terms of speed, when the local search was L-K, 
the average time to find the optimum was less than one hour of SPARCstation- 1 
time. When the local search was Sopt, the average run time was four times 
longer. 

Run CPU Hours Best Tour % above min 

Table 3: SPARCstation-1 CPU times and best tour lengths for our 4 longest 
runs with Sopt  local search. A post-reduction method as described in the text 
was applied to the 4 best tours and the result of this is run number 5. 

We also tackled the sc~called AT&T532, a 532 city problem solved to opti- 
mality by Padberg and Rinaldi [7] using branch-and-cut methods. They deter- 
mined the exact optimum to be of length 27,686. The runs which used GK for 
the local search always found the optimum, and the average time to solve to o p  
timality was three SPARCstation-1 hours. If one uses instead %opt for the local 
search, the optimum is much more difficult to obtain In Table 3 we present the 
results of our four longest runs from different random starts for this case. The 
best tour length from a random start is 27,693, i.e., 0.025% above the optimum. 
(Note that the average intercity length in these units is 55.) The average of the 
best length of these runs is 27,700. Thus the Markov chain provides very high 
quality tours. In order to push the %opt Monte Carlo to the limit, we then used 
a method inspired by the "reduction" procedure of Lin and Kernighan [B, 91. 
In our "post-reduction," we took the best tour from each of our four long runs 
and created a list of cities which have the same incoming and outgoing links 
in this set of tours. The Monte Carlo was then run starting with tour 27,693 
and with the extra constraint that the bridges used in the kick cannot connect 



to these cities. The number of cities to which the bridges could connect was 
less than 100, leading to a much smaller space to sample. This allowed the 
post-reduction run to find the exact optimum of length 27,686. Note that the 
constraint imposed by this procedure is not very uhard" as the constraint is 
used only for the location of the bridges, not in the subsequent %opt. 

To see how ordinary Lin-Kernighan repeated from random starts performs 
on this problem, we first use the data of Bentley and Johnson (private com- 
munication) who have written a fast L-K code. For the AT&T532 problem, 
their local search from a random start takes on the order of 400 seconds on a 
VAX/750, and leads to an average excess length of 1.1%. For 100 random starts, 
their best tour length is 27,797, or 0.4% above the optimum. The probability 
distribution of tour lengths given by their L-K has an average of 28,500 and a 
variance of 400. Our coding of L-K gives very similar results. 

Finally, we also considered a 783 city problem (RAT783) solved to optimality 
by plane cutting methods by Cook et. al. (251. The city paitions were obtained 
by small, random displacements from a regular 27 x 29 lattice [26]. This instance 
turned out to be very easy to solve using our Monte Carlo heuristic. The 
runs reached the optimal tour (of length 8,806) in an average of one hour of 
SPARCstation-1 time (using the L-K local search). This timing is similar to 
one for the LIN318 instance. It is clear that the difficulty of a problem is not 
given only by it's size. 

To really compare the stochastic and local search methods requires fixing 
the total amount of CPU time allowed. For very long runs, a Markov chain 
approach leads to better results than random sampling because the density of 
states is simply too small near the optimum, so that random sampling is not 
competitive. On the other hand, local search methods are much better than for 
instance simulated annealing for short runs. A big advantage of our method is 
that a local search is incorporated into the algorithm. This allows our method 
to be better than simulated annealing and local searches for both short and long 
runs. 

7 Conclusions 
Many heuristic methods have been proposed for the TSP. To date, the most 
effective of these are the local search and the stochastic sampling algorithms. 
In this paper, we have shown that it is possible to combine these methods into 
what we call a large-step Markov chain. In this way, only locally optimal tours 
are sampled, thus reducing the search space dramatically. In addition, to sample 
this space effectively, a special kind of Cchange is made (the "kickn) followed 
by the local search. For other optimization problems, (graph partitioning, spin 
glasses, etc ...), the "kick" should correspond to a change which is not easily 
accessible to the local search moves and which is thought to be relevant. 

We have implemented this algorithm and applied it to a number of large 



TSP instances. In particular, it is able to find the exact solution to the LIN318, 
the ATdtT532, and the RAT783 problems in a very modest amount of CPU 
time. Our method provides a substantial improvement over the hereto state-of- 
the-art algorithm of Lin and Kernighan. We also showed how the local searches 
can be accelerated, providing a method for doing 3-opt which makes the O(N) 
complexity of the check-out time explicit, and which can be extended to k- 
connected-opt. Also, the set of links to be considered in the tour improvement 
can be drastically reduced by a dynamic outer-loop optimization. 

Appendix A: Density of States 
For an N city problem, there are ( N  - 1)!/2 tours if one uses orientation and 
cyclic permutation symmetry. It is of interest to know the length distribution 
of these tours. For clarity, we consider random scatter problems and scale the 
dij so that the average distance between neighboring cities is N independent. 
In two dimensions, this is achieved by having the cities in a region whose length 
scales as fi. We will consider a square 0 on a side, but for other shapes the 
argument still holds. In these units, the tour lengths scale as N since one can 
crudely think of a 4N problem as being four problems of size N pasted together. 
For any particular instance, the minimum tour length is 

where co is independent of both the particular instance of the TSP and the 
shape chosen above, and z is a number which depends on the instance. We can 
think of z as a random variable describing the fluctuations in the length as we 
consider different instances of the TSP. 

Now we would like to estimate the density of states near the minimum, i.e., 
the number of tours of length between 1 and 1 + dl, divided by dl. The main 
question is: how fast does this grow with 1 and with N? The answer is not 
known, but several distributions have been suggested [27, 281. Here, we present 
a model which is very simple, but which seems to describe well the data for 
randomly scattered Euclidean TSP's. 

Let us first consider the set of all tours. The (N - 1)!/2 tours have lengths 
which vary between Imi, and lmin . ~(fl), so clearly the range is very broad. 
Most of these tours are of no interest, for instance they have very long links 
of length - f l .  To model the density of tours near the minimum, we start 
with the optimum tour and consider doing 2, 3, etc ... changes. We will restrict 
ourselves to localized k-changes where the k links occur in a small spatial region, 
i.e., are near one-another. Specifically, consider only connected k-changes, for 
any k. Each connected k-change increases the tour length by an amount which 
we take to be a random variable with an N-independent probability distribution. 
To keep the modeling of the density of states simple, we replace the random 



variables by a typical value f which is some fraction of the inter-city nearest 
neighbor distance (and thus is O(1)). When constructing the set of low-lying 
tours, we first perform a kl-change at some location, then follow this by a k2- 
change at  another location, and so forth. The f i x  f i  square is approximated 
by M independent patches, where N / M  = a (the area of the patch) is taken to 
be N independent. A k-change as considered above is then viewed as increasing 
the length of the tour in one of these patches. Each patch is considered to be 
"on" or "off, and when one is "on" the tour length is increased by f .  The total 
number of tours in this model is 2 M .  To get the density of tour lengths, simply 
count the number of ways to choose a fixed number of patches. This gives a 
binomial distribution, so that (:) tours have length lmin + p . f. The above 
modeling has introduced two scale parameters, f and a, which are required to 
be N independent. If the model were extended so that k-changes for different 
k's were treated separately, a multinornial would have resulted but this would 
not affect the resulting distribution much. We have empirically found that good 
fits are obtained to the numerical data extracted from instances with randomly 
distributed cities. We expect the model to be reliable when p >> 1 so that the 
instance fluctuations are unimportant. Also, when too many patches are "on" 
one does not expect them to stay independent, so the model is innaccurate as p 
approaches M / 2 .  Another effect is due to the fact that we threw away many of 
the longer tours by the connectivity constraint on the k-changes. This leads to 
the wrong scaling in the total number of tours, 2Nfa, whereas the correct result 
is, of course, (N - 1)!/2. 

The model as described above was for the density of all tours. We can also 
specialize to the case of the density of k-opt tours and it is here that we expect 
the model to be most accurate. The dilute gas picture now consists of patches of 
area or. As before, our prediction for the density of tours at  1,jn + pfk is (y)  , 
where N = Mak. The curve in figure 1 shows this prediction for the dens~ty 
of 3-opt tours for a particular 100-city TSP. M (and therefore a s )  was fixed by 
the requirement that the total number of %opt tours be 2 M .  f3 was adjusted 
to give the correct average tour length. It is important to note that f3 is the 
only free parameter. The fit to the data, as seen in figure 1, is quite good. 

As we consider higher and higher connected k-opt, i.e., as the local search 
is improved, we expect as to increase since a larger number of link changes is 
required to go from one k-opt tour to another (at least k + 1). The total number 
of k-opt tours is given in this model by 2Nlak, a parameterization which has 
been given previously by Lin [a]. It would be interesting to determine whether 
the inclusion of disconnected graphs (say all the Copt tours) leads to a different 
N dependence such as 2Na/ak. Note that this model is valid also for higher 
dimensional randomly scattered Euclidean TSPs, and for other local searches 
besides k-opt. For instance, it applies to the Lin-Kernighan density of states. 
The model predicts that any local search method gives a distribution for the 
relative excess length ( I  - lmin)/lmi,,  which has an N independent average, and 
a width which scales as N-'/~. A consequence of this is that when comparing 



at  large N different local search algorithms which use random starts, the only 
important characteristic is the average relative tour length obtained by the 
algorithm. 

Appendix B: Markov Chains 
This appendix reviews some general properties of Markov chains in order to 
answer the questions: 

- will an algorithm always find the optimal solution? 
- how long should one run if one wants to reach the optimal 

solution with a given confidence level? 

The first question is related to the ergodicity of the Markov chain; the second, 
to its auto-correlation time. 

Since the set of all tours in the TSP is a finite set, the Markov chain can be 
characterized by a transition matrix T. The matrix element T,, is the proba- 
bility to go from tour n to m. In practice, the selection of rn requires random 
numbers. Given a starting tour, the application of T produces a sequence, or 
chain of tours. After some transients, usually the "memory" of the starting 
point decays, and tours appear with a limiting probability distribution P. P 
depends on the matrix T, and the goal is to find T's which lead to P(C) large for 
tours C of short length. This is called biased sampling, and it leads to sampling 
the tours of interest more efficiently. The simplest way to create such a biased 
sampling is to use a Metropolis style algorithm: the current tour is changed in 
some small random way, and the change is accepted with high probability only 
if the new tour is shorter than the old one. 

If C is the optimal tour, is P(C)  # O? In the case of simulated annealing, 
the distribution P is known because T satisfies detailed balance. In particular, 
the probability of all tours is non-zero (the Markov chain is ergodic) and P(C) 
depends only on the length of C. For general Markov chains, (i.e., for general 
choice of the matrix T), very little can be said of the probability distribution P. 
It is plausible nevertheless that within local-opt tours, our large-step Markov 
chain is ergodic, and all our runs are consistent with this. In particular, we have 
checked that P(C) # 0 for many instances (see section 6). 

How many tours, M, must one sample in order to have a high probability of 
reaching C? There are two constraints here: first, one must have MP(C) > 1, 
corresponding to the expected number of visits to C being much greater than 1. 
It is then improbable to have 0 visits. Second, M should be large enough so that 
the probability distribution of tours is indeed given by P: the above mentioned 
transients must have died away. This decay time can be made quantitative by 
the introduction of the auto-correlation time T of the Markov chain. T is defined 
by 

e- l /r  = 
1x1 l 



where XI is the eigenvalue of T of largest modulus and which is different from 
one. r can be thought of as the longest characteristic time occurring in the 
dynamics generated by T. The second constraint now reads M > r. Note 
that there is not much point in working so hard as to find a T such that r is 
as small as N (the number of cities) because the first condition also has to be 
satisfied: if one takes the analogue of "temperature" to be high (small bias), 
then T is O ( N )  (for modifying every link). Thus one is almost sure to do better 
than local search with random starts by simply embedding the local search into 
a Markov chains and introducing some bias into the sampling. On the other 
hand, one must make sure that r does not get astronomically large. When 
simulated annealing is used for the TSP, r diverges fast as the temperature is 
lowered because barriers become overwhelming. (Some of these barriers can 
be visualized by the transformations induced by double bridges.) But if the 
temperature is not low, there are too many configurations to sample, so again 
the algorithm is not effective for large N. Thus it is imperative to use large step 
Markov chains to keep r from growing too fast as one increases the bias. 

In practice, 7 can be measured without having to determine the eigenvalues 
of a large matrix. Ideally, one should find some operator on configuration space 
which projects out as much as possible the eigenvector corresponding to the 
eigenvalue X I ,  though in practice this is difficult. We suggest for the TSP 
taking the operator D which counts the number of links a tour has in common 
with a given good tour. Then the observable (Cn means the nth configuration 
in the Markov chain) 

is proportional to XIP = e-J'17, for large p. 
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