
Large-Step Markov Chains for the
Traveling Salesman Problem

Olivier Martin, Steve W. Otto, Edward W . Felten

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 91-016

June, 1991

Large-Step Markov Chains for the Traveling
Salesman Problem

Olivier Martin
Department of Physics, CCNY, New York, NY, 10031, USA

Steve W. Otto
Department of Computer Science and Engineering,

Oregon Graduate Institute of Science and Techhnology,
19600 NW von Neumann Dr, Beaverton, OR, 97006-1999, USA

ottoQcse.ogi.edu

Edward W. Felten
Department of Computer Science,

University of Washington, Seattle, WA, 98195, USA

January 29, 1991

Abstract

We introduce a new class of Markov chain Monte Carlo search pro-
cedures, leading to more powerful optimizat~on methods than simulated
annealing. The main idea is to embed deterministic local search tech-
niques into stochastic algorithms. The Monte Carlo explores only local
optima, and it is able to make large, global changes, even at low tempera-
tures, thus overcoming large barriers in configuration space. We test these
procedures in the case of the Traveling Salesman Problem. The embedded
local searches we use are 3-opt and Lin-Kernighan. The large change or
step consists of a special kind of 4-change followed by local-opt minimiza-
tion. We test this algorithm on a number of instances. The power of the
method is illustrated by solving to optimality some large problems such
M the LIN318, the ATbT532, and the RAT783 problems. For even larger
instances with randomly distributed cities, the Markov chain procedure
improves %opt by over 1.6%~~ and Lin-Kernighan by 1.3%, leading to a
new best heuristic.

1 Introduction
The Traveling Salesman Problem (TSP) is probably the most well-known mem-
ber of the wider field of Combinatorial Optimization (CO) problems. These are
optimization problems where the set of feasible solutions (trial solutions which
satisfy the constraints of the problem but are not necessarily optimal) is a finite,
though usually very large set. The number of feasible solutions grows as some
combinatoric factor such as N! where N characterizes the size of the problem.
One technique for solving these problems is exhaustive search of all feasible sc+
lutions. This method, however, has time complexity typically growing as N!
and so is not a viable technique for problems of interesting size.

One might ask whether there are much faster techniques than exhaustive
search. Among optimization problems in general, the TSP is a member of
the set NP-complete. This is a class of difficult optimization problems whose
time complexity is probably exponential [I]: even the most clever algorithms
suffer from this time growth. The members of NP-complete are related so that
if a polynomial time algorithm were found for one problem, polynomial time
algorithms would exist for all members of NP-complete. All CO problems can
be formulated as optimizing an objective function (e.g., the length) subject to
constraints (e.g., legal tours). It has often been the case that progress on the
TSP has led to progress on other CO problems and on more general optimization
problems. In this way, the TSP is a playground for the study of NP-complete
problems. Though the present work concentrates on the TSP, a number of our
ideas are general and apply to all optimization problems.

The most significant issues occur as one tries to find extremely good or exact
solutions to the TSP. Many algorithms exist which are fast and find feasible
solutions which are within a few percent of the optimum length. In this paper
we present algorithms which will usually find exact solutions to substantial
instances of the TSP, for example, up to N - 1000.

In a general instance of the TSP one is given N "cities" and a matrix dij
giving the distance or cost function for going from city i to j. Without loss of
generality, the distances can be assumed positive. A "tour" consists of a list of
N cities, tour[i], where each city appears once and only once. In the TSP, the
problem is to find the tour with the minimum "length," where length is defined
to be the sum of the lengths along each step of the tour,

and tour[N] is identified with tour[O] to make it periodic. Most common in-
stances of the TSP have a symmetric dij matrix; we will hereafter focus on this
case, which also is in NP-complete.

2 Overview of Algorithms for the TSP
Before presenting the details of our work, we discuss the main methods employed
for the TSP. This helps to show where this work fits in and also provides some
needed background.

There are a number of exact methods (i.e., which are guaranteed to find the
exact optimum in a bounded number of steps) for solving the TSP. One family
consists of the Branch and Bound algorithm of Held and Karp [2, 31 and its
derivatives [4]. These algorithms attempt to prove that sets of links belong or
do not belong to the optimal tour, using bounds from, for example, minimal
spanning trees. There exist transformations on the distance matrix which leave
the relative ranking of all tours unaffected but which change the spanning tree
sub-problems. One then maximizes over these transformations, obtaining the
tightest possible spanning tree bound, causing the branch and bound tree to
prune most rapidly. Though the pruning is dramatic, branch and bound is still
an exponential (in N) algorithm.

To date, the most effective exact methods are the cutting-plane or facet-
finding algorithms [5, 61. These use an integer linear programing formulation
of the TSP. Roughly speaking, various constraints are added to a linear pro-
gramming problem until the solution found is a legal tour. The performance of
these methods are strongly dependent on the kinds of constraints that are added
and they are still to some extent an art form, In the last ten years, these exact
methods have been pursued so vigorously that it is now possible to exactly solve
problems with several hundred cities 16, 71. The state of the art algorithms are
quite complex, with codes on the order of 9000 lines.

There are also many approximate or heuristic algorithms. These obtain good
solutions in a (relatively) small amount of time but do not guarantee that the
optimal solution will be found.

There is a class of heuristic algorithms which simply directly construct tours
by some rule. The simplest of these is the trivial "greedy" aIgorithm which goes
as follows. Start with some (randomly selected) city. Now take as the first link
of the tour the step from this city to its closest neighbor. From the second city,
step to the nearest city which still has not yet appeared in the tour. Continue
in this fashion until no cities remain. The final step is from the last city to the
first city. The tours which greedy produces look reasonable for the most part,
except for a few long links which come from the end of the process, when few
cities remain and it is difficult to find a cloeby, untaken city.

Once greedy or something like it has given one a vaguely reasonable tour, the
idea naturally presents itself to look for ways to improve a given tour. This leads
to the class of "local search" algorithms. These methods sequentially construct
a chain of tours: usually the ith tour is constructed from the (i - 1)th tour
by changing some number of links. Local search algorithms demand that the
tour strictly improve as one goes from one tour to the next - that is, the tours
are constructed so as to decrease the length at each step. The most effective

such algorithms are those of Lin [8] and Lin and Kernighan (91. Lin starts with
the idea of a k-change: take the current tour and remove k different links from
it. Now re-connect the dangling sections in a new way so as to again achieve
a legal tour. A tour is considered to be "k-optn if no k-change exists which
decreases the length of the tour. Lin's algorithm begins with a random tour
and applies 2 and Bchanges until one reaches a %opt (and also Zopt) tour. He
found that the %opt heuristic was quite powerful: for a problem of moderate size
(N = 48), %opt from a random start had a non-negligible probability (- 5%)
of hitting the exact optimum. Therefore by taking many random starts, he was
almost certain to find the exact optimum for problems of this size. Lin also tried
higher k-changes but decided that they were not worthwhile, though it should
be realized that this conclusion depends on the speed of the k-opt algorithm for
k > 3. If a fast algorithm can be found for k > 3, it may very well be worthwhile
to go to 4opt or beyond.

Lin and Kernighan improved on these ideas by both speeding up the 3-
opt process and also by including some of the higher-order k-changes. In their
algorithm, the order of a change is not pre-determined, rather k is increased
until a stopping criterion is satisfied. Thus many kinds of k-changes and all
Schanges are included. In practice, there are many ways to choose the stopping
criteria, and the best codes are rather involved. The Lin and Kernighan method
is a powerful heuristic and is considered to be the benchmark against which all
other heuristics are compared. Surprisingly, there have not been significant
improvements in performance of local search algorithms since the work of Lin
and Kernighan which goes back to 1973.

Local search algorithms tend to get trapped in local minima of the objec-
tive function. They proceed downhill for a while, making much progress, but
then stop. In order to make more progress, many links would have to be si-
multaneously changed in a single k-change, for some large value of k. Another
class of algorithms is possible in which one relaxes the strict downhill restriction
of the chain of tours and actually lets the tour length (occasionally) increase.
In this way, one can hope that the tour will climb out from the current local
minimum and cross over a barrier to a better solution. We call this class of
algorithms "iterative sampling." This class includes simulated annealing and
genetic algorithms.

In simulated annealing [lo, 111, the uphill moves are accomplished by intro-
ducing a "temperature" and updating the system according to the Metropolis
rule. A trial move is made for instance, by applying a 2 or Bchange to the
current tour; if this gives a downhill change, it is always accepted, while an
uphill move is accepted with conditional probability e-ALIT. AL is the change
in the length due to the trial move and T is the temperature, a free parameter
which controls the typical size of AL. One thus constructs what is called a
"Markov chainn of tours. Markov chains are distinguished from more general
types of chains by the requirement that the ith tour is constructed strictly from
the (i - 1)th tour (and not, for instance, from both the (i - 1) and (i - 2) tours).

If the trial moves satisfy a certain symmetry property (we will return to this
later) then a tour of length L will appear with probability proportional to e'LIT.
The exact optimum is the single most likely configuration to appear, but this is
counter-acted by the fact that there is such a large number of tours even slightly
above the optimum. This means that with simulated annealing the system will
almost always be in a sub-optimal tour. To fight this, one attempts to drive the
system towards the true optimum by slowly lowering the temperature T, and
this is termed annealing. If the annealing is done "sufficientlyn slowly, one is
guaranteed to find the true optimum if one waits long enough, but this is almost
impossible to achieve in practice. See Bentley and Johnson for an an extensive
comparison of the above heuristics [12].

Another type of iterative sampling algorithm is the class of -called "ge-
netic algorithms" [13, 14, 151. Here one starts with an ensemble of tours which
Ucompete:n the best tours replicate and the worst tours are eliminated. To cre-
ate new kinds of tours, one applies "mutationsn such as random k-changes and
Ucross-oversn where two or more tours are in some way put together to create a
new tour. This approach has not yet been systematically explored and probably
can be significantly improved.

A very different approach has generated much interest recently - the neural
network approach of Hopfield and Tank [16]. In this method, the constraint of
"legal" tours is not strictly enforced during the computation. (Note that this
also occurs in cutting-plane algorithms.) In practice, the method has not yet
been successful at solving problems of size 40 or greater [17].

In Section 3, we introduce a class of Markov chains in which each step is
produced by a "kick" followed by a local search optimization. The local search
method is described in section 4 and a number of other program optimizations
are given in section 5. Section 6 presents our results of local search timings and
the application of the entire method to a number of solved Euclidean TSPs.
Some background material on the density of tours of the TSP is given in Ap-
pendix A, and Appendix B discusses some properties of Markov chains.

3 Large-Step Markov Chains
The algorithms of Lin and Lin-Kernighan are powerful because they consider
many possible changes to a tour. This means that the 'local-opt' criterion is
rather stringent, and only a very small subset of all possible tours are generated.
Furthermore, the length of such tours are typically near the optimum. In this
section we show how to combine this good feature of the local search method
with Markov chains so as to produce a more powerful type of Monte Carlo
procedure than the standard simulated annealing method.

Throughout this paper we will concentrate on TSP's using a two dimensional
Euclidean metric, that is, the dij elements correspond to distances in a plane,
but our methodology does not depend on this. The density of "statesn (i.e.,

tours) away from the optimum of a TSP instance increases rapidly as a function
of length. As discussed in Appendix A, the density of states (i.e., tours) near
the optimum is a rapidly rising function because distant parts of the tour can be
modified almost independently. This independence then leads to a combinatoric
factor in the number of tours away from the optimum.

If an algorithm samples all these states it will not find the optimal solution
for problems of significant size: the density of states strongly biases the system
away from the optimum, and the odds of actually hitting the optimum become
negligible. The first thing to do to make the TSP more manageable is to thin
the set of tours to be considered. This is what the local search algorithms do.

77476 78638 79800 80962 82124 83286

Tour Length

Figure 1: Binned density of 3- opt tours for a random-scatter N = 100 Euclidean
TSP in two dimensions. The curve is the prediction of the model described in
Appendix A. The histogram contains 6138 distinct 3-opt tours - these were
found by running the large-step Monte Carlo at high T for a long time.

Figure 1 shows the (binned) density of $opt tours for a particular instance
of a 100 city TSP (the cities were randomly scattered in a square and the curve

is from the model given in Appendix A). The striking feature here is that the
distribution falls off very quickly below a few percent from the minimum length.
In fact, even in this range, the density of 3-opt tours is much smaller than the
density of all tours. One can say the Lin and Lin-Kernighan algorithms are effec-
tive because they dramatically reduce the size of the search space. Empirically,
it appears that the set of all the %opt tours are sampled relatively flatly: each
%opt tour appears with similar probability if one begins with random starts. In
particular, there is no strong bias towards the optimum. This is not surprising,
since there is nothing built into the algorithm which would produce this bias,
apart from the fact that %opt tours are fairly close to the optimum length. For
small N, the set of %opt tours is manageable and the algorithms can actually
find the optimum by repeated trials, which almost amounts to enumeration.

However, for large N, the set of %opt (and more generally, locally optimal)
tours itself becomes too large to enumerate. To improve the efficiency of the
algorithm, we need to bias the sampling of locally optimal tours towards tours of
shorter length. By using a Markov chain it is possible to sample the set in a more
intelligent way. The idea is to construct locally optimal tours from previous ones,
not from random starts. Such an algorithm superficially resembles simulated
annealing (there is an accept/reject step and an analogue of temperature) but
the important difference is that one restricts the tours in the chain to be locally
optimal.

Let us now schematically present our algorithm. To be specific, we will
consider the local opt procedure to be %opt, but the methodology applies to
any local opt, in particular Lin-Kernighan. Suppose the current tour is %opt.
Figure 2 is a schematic representation of the objective function versus tours;
the %opt tours are at local minima of this function. The goal is to construct a
Monte Carlo step (a step in the Markov chain from the ith tour to the (i + 1)th
tour) which goes directly from local minimum to local minimum, biased towards
shorter lengths. We accomplish this in the following way. Starting at the current
3-opt tour (labeled Start in Figure 2), we give the tour a large "kick", taking it
to Intermediate . We will describe in more detail later what we use for the kick -
for now it can be thought of as a randomly selected k-change for some k > 3. We
now apply an efficient %opt procedure to Intennediaie . This brings us to a new
local minimum, labeled Tr ia l in figure 2 . So far we have stepped from one 3-opt
tour to another. We do not merely accept this new tour, however, since we wish
to bias towards short lengths: we apply an acceptlreject procedure to Trial . If
the length has decreased, Trial is accepted and becomes the new current tour. If
the length has increased, it is accepted with conditional probability e-*&IT; if
the acceptance test fails, the tour is returned to Star t . This forms one step of the
Markov chain. This procedure is repeated many times, exploring local-opt tours
in a biased way. In particular, one expects to sample more often the local-opt
tours of shortest lengths than with algorithms which sample the locally optimal
tours randomly.

This algorithm gives rise to a large-step Markov Chain because after the kick

A Intermediare

Length

Tour Space -
Figure 2: Schematic representation of the objective function and of the tour
modification procedure used in the large-step Markov chain.

and local-opt are applied, typically many links have been changed. If we take
as the metric of the TSP the number of links by which two tours differ, we may
say that Trial is often quite "far" from Start. Large-step Markov Chains are
powerful because they can reduce the auto-correlation time of the Markov chain
and the search space is explored rapidly. Appendix B discusses these points
in greater depth. It is important to realize that finding a practical large-step
Markov Chain is not a simple matter. After all, we could have taken as the large
step simply a k-change for some large value of k. The performance, however,
would be terrible since a randomly selected k-change would just take Start to
a random location in the space of all tours; Tn'al would then almost always be
rejected. Furthermore, it is essential to employ a very good tour improvement
method so as to bring us not only to a new tour, but to a new, high quality tour.
Our approach is reminiscent of the "spin wave" moves suggested by Ceperly and
Kalos for physics Monte Carlos [18]. For an efficient algorithm, the choice of the
large step must be specifically tailored to the problem at hand, which is why we
have chosen a specific kind of "kick" which is well suited for the TSP.

Another way of thinking of the advantage of large-step versus small-step
Monte Carlo (e.g., simulated annealing) is the following. In going from one local-
opt solution to another by some number of link changes, a barrier (i.e., a longer
tour) is encountered. In a small step Monte Carlo, the intermediate tour with
larger length must first be accepted in order to proceed. If one wants to sample

very near the optimal length, this forces the "temperature" to be low, leading to
a very low acceptance of such intermediate steps: the algorithm thus gets stuck
for exponentially long times in valleys of the objective function. The large steps
allow one to climb over some of the barriers and have the accept/reject test only
after having returned to a valley. Thus large steps should be constructed so that
barriers are easily jumped over. In effect, the objective function landscape has
been smoothed and many of the ridges have been eliminated. This shows up
quite dramatically during our runs: even at very low T, near the optimum, the
large-step Monte Carlo continues to explore new tours. It is very effective a t
avoiding trapping.

Figure 3: Example of a double-bridge kick (shown in dashed lines). The bridges
rearrange the connectivity of the tour on large scales.

For the "kick" we have chosen the particular type of 4change drawn in
Figure 3. It consists of a pair of improper 2-changes. Each improper 2-change
is a "bridge," i.e., it takes a legal, connected tour into two disconnected parts.
The combination of both bridges, of course, must be chosen so as to produce a
legal final tour. The motivation for this type of kick is evident from the figure
- it allows a peninsula to hop from one place in the tour to another without
much of an increase in the tour length. Obviously this is just one choice for
the kick but we have found it to be an effective way of getting the Monte Carlo
to rapidly explore the space of local-opt tours. The double-bridge kick enables
largescale changes in the current tour to take place. The double bridges can be
generated randomly, or with some bias towards allowing nearby peninsulas to

hop as in Figure 3. The important point is that the double-bridge move irr the
simplest move which cannot be built from the composition of a local sequence
of 2 and 3-changes.

The ideas of this section are quite general. For any optimization problem
for which powerful local search methods or other heuristics are known, one can
incorporate these into large-step Monte Carlos which generate only interesting
feasible solutions and also bias the sampling of these solutions towards the true
optimum. We are aware of one previous work which uses large step Markov
chains [19]. In that reference, the authors present a method for finding the
ground states of proteins, but they did not consider it to be a general optimiza-
tion method. In addition, they had rather limited success with their method,
perhaps because their large step was not very suited to their problem. Note also
that, contrary to their claim, their algorithm does not satisfy detailed balance,
so the Boltzmann distribution is not obtained.

Lack of Detailed Balance
In the case of standard simulated annealing, the trial moves which one feeds
to the acceptlreject part of the Metropolis procedure appear with symmetric
probabilities. That is, if T A - . ~ is the probability of the trial move A -+ B (before
one applies the acceptlreject test), then TA-B = TB-.A. This, combined with
the form of the Metropolis acceptlreject procedure leads to a total transition
probability which has the property of "detailed balance." This ensures that
the system asymptotically reaches thermal equilibrium (the ensemble reaches a
steady state) and that the states are populated with probability proportional
to e-LfT (the Boltzmann distribution). The algorithm is thus closely analogous
to a physical system in thermal equilibrium.

This is not the case for the large-step Monte Carlo. T ~ t a r t - ~ r i a l is the
probability that the move Start + Trial in figure 2 is attempted. There is
no reason for the inverse trial move, Trial + Start, to appear with the same
probability. Thus the algorithm does not satisfy detailed balance and there is no
direct physical (statistical mechanical) analogue of the large-step Monte Carlo.
The sampling of the tours is biased towards the optimum, but not necessarily
by the Boltzmann factor e-=IT.

4 Fast Local Searches
Fundamental to the large-step Monte Carlo is an efficient local search proce-
dure. The Lin-Kernighan algorithm takes a tour to 3-opt and beyond because
it includes some of the higher-order k-changes. It is very fast: checking that a
tour is L-K opt takes on the order of N operations. This is to be contrasted
with the k-opt algorithms introduced by Lin which require O(Nk) steps. More
recently, an O(N) check-out time approximation to 3-local-opt was presented

[20] as a heuristic way of getting close to 3-opt quality tours. The purpose of
this section is to show that 3-opt can, with no approximation, be realized so that
check-out time is O(N) rather than O(N3) as is commonly used by practitioners
in the field (41. The running time for our fast %opt is similar to Lin-Kernighan
restricted to 2 and 3 changes giving rise to %opt tours. A pwible advantage
of the algorithm below is that the method generalizes to all "connected" graphs
for any k.

We begin with the case of 2-opt which consists of improving a tour until its
length cannot be decreased by any 2-changes. If a 2-change leads to a decrease
of the tour length, we implement the exchange and this requires inverting and
re-writing part of the tour. This single 2-change costs an amount of computation
time, d(N), which depends on the quality of the current tour. If the current
tour is very bad, for instance, a random tour, d(N) is proportional to N. For
"good" tours, d(N) can be much less, proportional to Na with a < 1. Let us
suppose from now on that the tour is "reasonable," for example it was obtained
by "kicking" a 3-opt tour as is the case in our large-step Monte Carlo.

To find a 2-change which decreases the tour length, we must consider all
pairs of links for a possible exchange. NaYvely, this requires O(N2) steps, but in
fact it is silly to consider pairs of links which are very far apart in the physical
space of the problem. Figure 4 shows such an example. Intuitively, it is clear
that the %change obtained by cutting the two marked links will increase rather
than decrease the length.

Figure 4: A candidate pair (dashed lines) for a 2-change. Clearly, this 2-change
cannot decrease the tour length.

By making this idea precise one arrives at a fast Zopt aleorithm. To do this,
we need additional data structures which specify which citles are close to any
given city. For simplicity, consider using N2 storage space to do this; for lar e P problems, one can store say the 20 nearest neighbors only, or to be complete y
rigorous, a tree data structure can be constructed. Let the c ~ t ~ e s be labeled by
an index which goes from 0 to N - 1. The tour is represented by a mapping
from tour entries to city labels. This is simply the t our array:

tour[j] = i ; /* c i t y i i s the j t h c i t y i n the tour */

The neighborhood array is defined by:

nbhdCi1 Cjl = k; /* c i t y k is tho j t h c loaost c i t y t o c i t y i */

This array is found by sorting each row of the distance matrix. This is done
once and for all at the beginning of a run. To efficient1 keep track of where the

by:
r cities are in the current tour, we introduce the which-s ot data structure defined

cities[i] .which-slot = j ; /* c i t y i is currently the j t h c i t y i n the tour */

This structure must be updated as the tour changes; updating which-slot is a
similar amount of work to updating the tour itself. Finally, there are two more
necessary data items. min-link is defined as the minimum size any link can
take. This is easily found once at the beginning of a run by simply finding the
minimum value of dij over all i and j. marl ink is defined to be the value of the
largest link in the current tour. This quantity must be dynamically updated
(this can be done incrementally and with few operations).

f o r (n-1 -;a-1 <i;++n-1) { /* loop through tour s l o t s */
m-1 = (n-1 - 1 + I) % i ;
f o r (j -2 4; j-2 <I-1 ;++j,2) {

c-2 = nbhd[n-11 Cj-21;
n-2 = cities[c-21 . ~ h i c h , s l o t ; /* n-2 goes out from c i t y tourCn-11 */
m-2 = (n-2 - 1 + B) % I;
if (d[tour[n-111 [tour[n-2]l+dn,link >

d[tour[m,l]] Ctour Cn-l]]+nax-link) {
break ; /* out o f j-2 loop; go t o next n-1 */

3
/* t r y the move */
/* if move accepted, break out o f j-2 loop and go t o next n-1 */

3

Table 1: The pseudo-code for fast 2-opt.

C-style pseudo-code for the efficient 2-opt is shown in Table 1. The meaning
of nl, ml, nz, and mz is shown in figure 5. The crucial step is the if statement.
The quantity on the left hand side of the expression within the if forms a lower
bound on the new length; the quantity on the right hand side is an upper bound

on the old length. Moreover, the right side is a constant within the enclosing
loop while the left hand side is monotonically increasing because of the way
n2 is constructed. Therefore, when these bounds paas each other we can stop
considering nl as a possible starting point for a 2-change and can go on to the
next nl .

Figure 5: Labels used in the pseud6code for a 2-change. The two links, (ml, nl)
and (mz, nz) are exchanged for two other links.

The time complexity of this 2-opt algorithm depends on the quality of the
current tour through d(N), an a priori unknown function. At this point, we
can only discuss the N dependence of the "check-outn period [8] which is the
time it takes to verify that a tour is 2-opt. (We referred to this time at the
begining of this section.) The check-out time is f(N)N, where the N comes
from the outer loop of the algorithm: all slots are tried at least once. The
function f(N) represents the average number of cities within a sphere of radius
(marlink-man-link) of city tour[nl]. As N grows, one expects (at least for
random scatter TSPs) that this is a very slowly growing function of N. The
simplest way to see this is by considering the "scaledn TSP problem, where the
cities are randomly scattered in a square of size 0 x f l and the length of
a good tour is proportional to N. In this case, the typical size of each link in
a good tour is of order 1. As N grows, one can have a city density fluctuation
which causes max-link to grow slowly as a function of N. If maz-link were a
constant, the number of cities within a sphere of radius maz-link-min-link would
be a constant and f (N) would be constant. This is not always the case, however,
so f(N) may be slowly growing. All this depends on the fact that during the
%-opt iteration the tour is "reasonablen - i.e., that (max-link-min-lank) is small.
This is true during the large-step Monte Carlo and later we will give timings.

The above discussion is easily extended to fopt; naively, the check-out time
takes O(N3) steps, but for a reasonable tour it is silly to consider cases where
the three links are far apart. If we label the three links to be broken as (ml, nl),
(mz, nz) and (m3, n3), there are two topologically different ways to reconnect
the points to make a legal tour. Table 2 gives the pseud~code for the case
depicted in figure 6. As in 2-opt, there are branches which give early exits from

Figure 6: Labels used in the pseudo-code for a 3-change. The three links,
(ml, nl), (mz, nz), and (ma, n3) are exchanged for three other links.

the loops. There are several of these corresponding to the tighter bounds which
can be found as more of the potential 3-change is constructed. The meaning
of the various indices is shown in figure 6. The time complexity for check-out
can again be written as f(N)N, where now f(N) counts the average number of
cities within a sphere of radius 2.(marlink-min-link) of city tour[ml]. Again,
f (N) has a weak dependence on N and can be measured. The time complexity
for the overall %opt procedure will be discussed in section 6 (see figure 8).

Though we used the Euclidean planar TSP to motivate this algorithm, noth-
ing actually depends on it. The triangle inequality is not needed; the algorithm
given above works for any symmetric d i j . It is fast whenever dij is such that any
given city only has relatively few near neighbors (e.g., not all N cities equidis-
tant!). Then f (N) is nearly constant: one can implement 2 and Sopt so that
the check-out time is O(N) .

The extension to k-opt with k > 3 is not straightforward. In the language
of Lin and Kernighan, for k > 3, there exist 'non-sequential' or 'disconnected'
k-changes. See figure 2 of their paper. Indeed, at k = 4, a new type of edge
exchange appears. It consists of a 4-change made out of two improper 2-changes.
These are nothing but the double-bridge moves which we use for the kick in the
large-step Monte Carlo. For such Cchanges, there is no locality bound which
constrains the two bridges to be near each other. This is a feature which many
k-changes share for k > 3. To understand this, consider constructing a k-
change sequentially. First, break one link, creating two free cities, 1 and 2,
and a dangling link on each. Choose a new city, 3, and connect it to one of
the dangling links. Now break one of the old links at city 3 so that there are
again a total of two dangling links and two free cities. Continue in this manner.
At every stage of this construction, there are two dangling links attached to
cities involved in the k-change. At some time, the two dangling links are joined
together. If this occurs at the last step, we call the resulting k-change sequential
or "connected;" otherwise, it is called "disconnected." Note that all legal 2 and

f o r <n,lrO;n,l<I;++hl) < /* loop through t o u r s l o t s */
m - l = (n - 1 - l + I) % I ;
f o r (j-2 rO;j,2 Cl-l;++j,2) <

c-2 = nbhdlm-11 Cj-21;
n-2 = cities[c,2] .which-slot; /* n-2 goes out from c i t y tour[m,ll */
m-2 = (n-2 - 1 + 8) % W;
if (d[tour b-111 [tour [n,2]]+2+lin,link

> d[tour[lcl]] [tour [n , l]]+2*ru , l i) <
break ; /* out of j-2 loop; go t o next n-1 */

>
if (d[tour b-111 [tour [n,2]]+2*~in,link

> d[tour[.cl]] [tour[n,l]]4[tour[m,2]] [tour[n,2l]+mu,link) {
cont inue; /* t o next j-2 value */

l
f o r (j-3 -0; j-3 <I-1 ;++j,3) <

c-3 = nbhd Cn-11 [j-31;
n-3 = cities[c,3] .which-slot; /* n-3 goes out from c i t y tour[n,l]*/
i f (d[tour[m-I]] [tour[n,2]]+d[tour[n-11 [tour[n,3]]~in,link >

d[tour[m,i]] [tour [n,l]]+d[tour[1,2]] [tour[n,2]] +mu-link) 1
break; /* out of j-3 loop; go t o next j-2 */

l
/* t r y t h e move */
/* if move accepted, break out of j-3, j-2 loopa. go t o next n-1 */

1
1

1

Table 2: The pseudecode for fast 3-opt.

3 changes are connected.
The fast algorithm explained for 2 and 3-opt can be extended to connected-

k-opt. At each step in the construction of a connected k-change, the new city
can be chosen in a neighborhood of the city which it reconnects to. One can
put a bound on the size of this neighborhood in the same way as we did for 2
and %changes. This leads to an algorithm for which check-out time grows as
f(N)N, and the tours generated are optimal under connected k-changes.

It is much more difficult to deal with the disconnected k-changes. There
seems to be no O(N) algorithm for such k-changes. One role played by these
k-changes is to change the large-scale connectivity of the tour. Perhaps instead
of doing these changes explicitly as in a local search algorithm, it is more effi-
cient to sample them stochastically. This is what our large-step Monte Carlo
does. The choice of the double-bridge as the kick was made for this reason.
Thus our algorithm can be viewed as a simple implementation of a large-step
Monte Carlo where kicks consisting of disconnected k-changes (which encourage
global connectivity changes, the double-bridge being the simplest such move)
are followed by a local search sub-algorithm such as 2, &opt, k-connected-opt,
or G K .

Let us mention here how the Lin-Kernighan algorithm also achieves a check-
out time proportional to f (N) N (this f need not be the same as the one above).
Note that if we restrict the Lin-Kernighan algorithm to k-changes for k 5 3,
then all possible 2 and 3 changes are considered. The Lin-Kernighan algorithm
can be O(N) for check-out time because it considers a class k-changes which are
connected. Using the notation of [9], suppose there exists a k-change for which
the total gain is positive:

k

where gi is the gain achieved in the ith exchange. Lin and Kernighan show
that there always exists a cyclic permutation of the indices such that the partial
sums of the g's are also positive. Thus one can impose this as a constraint on
the search. This leads to a bound when choosing each new exchange, having a
similar effect to our locality bounds.

5 More Tricks
In this section we present some additional optimizations to the large-step Monte
Carlo algorithm which allow it to run fast and better explore the space of local-
opt tours. We describe the optimizations in the framework of 3-opt, but exten-
sions to other local searches are straightforward.

The Hash Table
Lets suppose that one has an instance with N not too large and that one wants
to be confident that one has found the optimal solution. This means that as the
Monte Carlo proceeds (at low temperatures), Sopt tours very near the optimum
should be visited many times. Rather than verify again and again that a tour
is Sopt, one can use the well known device of a hash table [21] to store locally
opt tours which have previously been visited. If the lookup can be made fast,
the hash table can be continually queried as to whether or not the current tour
is a member of the table (i.e., has this tour been seen before and is it %opt?).
If the answer is yes, an early exit from the loops of the %opt algorithm can be
taken.

A hashing function which maps tours to locations in the hash table should
scatter similar tours. That is, two tours which differ even by only a few links
should map to different locations in the table. Other useful properties for the
hash function are invariance under cyclic permutations of the tour (it doesn't
matter which of the N cities is considered to be the "first" city in the tour)
and mirror symmetry (invariance under reversal of the tour orientation). To
accomplish this, we construct a table of N2 random integers, rij, where we
associate each ri, with the link l i j , which is one of the N2 links which may

appear in the tour. To properly represent the links, we symmetrize the random
number table, so that rij = rji (we are working with a symmetric di j) . For a
given tour, a useful hash function is given by the following:

A means bitwise XOR. We use a hash table of 216 entries and the lowest 16
bits of H form the index into this data structure. The function H has the
aforementioned properties and does a good job of scattering tours uniformly
across the hash table. At each place in the hash table we store the full (all the
bits) hash value, H , plus the length of the tour. If a tour is known to be 3-opt,
an entry is made in the table at the corresponding index. When the table is
queried, to get a "match," both the H and the tour length must match. If the
query says there is a match, the current tour has been seen before and is %opt.
Both H and the tour length can be computed incrementally as the current tour
changes. This means that H and the tour length are always available and the
query into the hash table is a fast operation. In our program, we can query the
hash table every time the tour changes at all and if the answer is "match" we
immediately exit the %opt loops. The hash table forms a repository for all the
known 3-opt tours for this instance of a TSP and is valuable in speeding up the
search.

As defined, this procedure does have a finite probability of making a mistake
(matching H's and tour lengths for different tours). We have ignored this since
it is extremely unlikely and also since it doesn't lead to a "hard" mistake -
it would cause one to miss a 3-opt tour. If this is thought to be a problem,
however, the remedy is simple - take more bits for H (we use a 32 bit H) or
add some other piece of information which describes the tour.

Another problem is collisions. Since entries are written into the table but are
never taken out, the table can become full over a long run for a large problem.
When a collision occurs (we want to write to the table, but that entry is already
taken by another tour) one could just give up and not write the entry in. This
would not lead to errors, it merely reduces the effectiveness of the hash table.
However, one can use secondary chaining to avoid collisions. In this technique,
a hash table entry may actually be the head of a linked list of entries, and on
both queries and writes, the linked list is scanned, if necessary.

Finally, the performance of the hash table optimization depends on the order
in which the cities are traversed in the %opt loops. The point is, once the "kick"
has been made to the tour, the %opt subroutine should first concentrate in the
area near the bridges. In this way, all the necessary 3-changes may be done
early, the hash table may rapidly find a match, and an extremely early exit
from the Sopt loops can often be accomplished. This possible optimization is
somewhat related to the one to be described below, but we have not explored
the idea of heuristically changing the looping order so as to increase the chances
of early hash table exits.

Outer-Loop Optimization, Sub-Linear %opt
Each step of the large-step Monte Carlo begins with a %opt tour. This tour
is then modified by making a double-bridge move, and it is then %opted. The
intuition behind the "outer-loop optimization" is that if a link is sufficiently
far away from either of the two bridges then it will not be involved in the 2 or
%changes and so it need not be considered as a possible starting point for any
2 or %changes. We can therefore restrict the starting points of the outermost
loop of the opt algorithm so as not to run over all the links, but just those which
are close to the "action." In general, of course, the bridges rapidly get changed;
what we really need to do is keep a list of the cities which are attached to links
which have moved since the last 3-opt. Call this data structure change-list. The
"consideration list" or con-list will be those cities which are sufficiently close
to some member of change-list. The outermost loop of the opt algorithm will
then run over only those links which are attached to a city which is a member
of conJist .

Figure 7: The city nl is far from the "action," is not part of the con-list, and
thus need not be considered in the outermost loop of the %opt procedure.

A schematic diagram of the outer-loop optimization is given in figure 7.
Drawn there is a potential starting point for the outermost loop of the %opt
algorithm, nl. Also shown is the set change-list, those cities which have had
an attached link move since the last 3-opt. The "sufficiently close" constraint
defines the set con-list and comes from the usual type of argument where we
consider the minimum new distance versus the maximum old distance. The
result is the following. The set con-list is given by those cities, n l , for which
the following inequality is true for some city, p, in the change-list:

d(nl, p) + 2 . min-link < 2 . maz-link + mat-p.

m a z q stands for the maximum length of the two links attached to p. This result
comes about because nl must interact with one of the cities in the change-list

since it is already known to be relatively 3-opt to everything else. Therefore, if
nl is to be involved in a %change, there must be a link going from nl to one of
the members, p, of change-list and also one of the two links attached to p must
be broken.

This optimization allows the Monte Carlo to concentrate on the current
region of interest. Using it, sub-linear (in N) time complexity for the 3-opt is
possible and this seems to be born out by our timings of the Sop t (discussed in
section 6). Another important point is that the maz-link which appears in the
above inequality need no longer be over the entire tour, but rather just over the
set con-list. Since mat-link is itself involved in the definition of con-list, one
can recurse until nothing changes, thus achieving the smallest possible max-link.
The fact that max-link no longer depends on the entire tour is satisfying. More
complex and sharper inequalities than the above can be written down but a t
some point the computational time spent on finding con-list outweighs the
potential benefit from a small con-list. We have not thoroughly explored all
the possibilities.

Interaction with Branch and Bound
Non-exact algorithms such as the large-step Monte Carlo can be used to improve
exact algorithms such a s branch and bound, and vice versa. For a Euclidean
TSP, many of the possible N(N - 1)/2 links are long and thus unlikely to
belong to the optimal tour. Branch and bound algorithms begin by eliminating
links from consideration. For instance, for a random city N = 400 problem,
typically 75% of the links are eliminated by the first pass of our branch and
bound program [22]. Since we know these links cannot appear in the optimal
tour, we can set the corresponding distances dij to infinity in the Monte Carlo,
effectively removing them from consideration. In practical terms, this causes
the bounds to saturate more rapidly and can speed up the 3-opt. Inversely,
the Monte Carlo rapidly gives one very good tours. The best of these gives a
sharp upper bound of use for the exact methods. Having a good bound leads
to significant improvements in the pruning and hence the performance of the
branch and bound algorithm and facet finding algorithms.

6 Results
This section contains the results of numerical experiments we have conducted
using the large-step Monte Carlo.

Local Search Benchmarks
Our method consists of local-opt searches embedded within a Markov chain.
Almost all of the computer time is spent within the local-opt and here we give

Figure 8: SPARCstation-1 timings to 3-opt a tour after a kick. For each N,
the data has been averaged over 100 Markov chain steps. This was done for
20 separate TSP instances and then averaged again. The %opt is described in
section 4, the two other optimizations in section 5.

some timings as a function of N. The runs were done on a SUN SPARCstation-1
computer and the code was written in the C programming language. Most of
our runs attempted to solve the Euclidean version of the TSP, where the cities
lie in a plane and the shortest, straight-line distance between city i and city j is
taken for d i j . However, the algorithm does not make use of this property, and
the Euclidean version is not thought to be an easy subset of all TSPs.

To time the algorithm, we constructed 20 instances of random-scatter TSPs
for several N values. The N values considered were N = 50,100,200,300,400,
and 500. For each instance we ran 100 steps of the Markov chain and computed
the average time required to local-opt. These numbers were then averaged over
the 20 instances. Figure 8 shows the result for the case of 3-opt. The set of
points labeled "Fast %opt" were obtained using the basic 3-opt algorithm as de-
scribed in section 4. Fitting these points to a power law gives an exponent near
1.5. Following the arguments given at the beginning of section 4, the algorithm
should behave at worst as d (N) N so that one expects an exponent leas than 2.
Also, the check-out time itself requires f (N) N steps, so the exponent should
also be greater than 1, as it is. The set of points labeled "plus hashtable" are

runs which include the hashtable optimization discussed in section 5. The effect
of the hashtable is not very large since only 100 tours have been constructed in
each of these benchmark runs - the hashtable becomes important as one thor-
oughly samples the tours around the optimum. The last set of points includes,
in addition, the outer-loop optimization. For large N the improvement is sig-
nificant and seems to indicate a different N dependence, possibly sub-linear.
The dependence on N when L-K is used instead of Sopt is similar. Since the
algorithm considers more exchanges, the main difference is that L-K is compu-
tationally more expensive, our L-K search taking about 1.8 times longer than a
Sopt search.

Performance of the Markov Chain Algorithm
Now we turn to the overall performance of the large-step Markov chain algw
rithm. We first focus on the ability of the method to solve problems to opti-
mality. For N = 50,100, and 200, we compared our results with exact solutions
which were obtained using a branch and bound program written by one of us
[22]. We generated instances of the TSP which consisted of cities scattered ran-
domly throughout a square. It was observed that the large-step Monte Carlo
was extremely effective. For N up to 200 (beyond N = 200 our branch and
bound program was unable to converge) the Monte Carlo easily found the true
optimum be it with the 3-opt or with the L-K local search. When L-K is used,
the average time to solve to optimality is less than one minute for N = 100
and five minutes for N = 200. For 3-opt embedded in the Monte Carlo, a few
minutes was usually sufficient at N = 100, while for N = 200 less than an hour
was necessary. Note that the Sopt time to solve to optimality is not merely a
constant factor larger than the L-K times, instead it is N dependent. This is
because there are exponentially more (in N) %opt tours than L-K opt tours.

We then ran tests on larger problems solved to optimality by other groups
using cutting plane methods. The first instance is the LIN318 problem [9].
The problem is posed as an open tour with fixed ends, but it is easy to recast
as a TSP by setting the length of the "link" between the two ends to some
large and negative value. Padberg and Grotschel, using a combination of cut-
ting-plane and branch-and-bound methods, were able to find the optimal tour
for this problem [6]. The original [9] Lin-Kernighan heuristic using repeated
random starts achieved an answer of 41,871, which is 1.3% above the optimal
value of 41,345 (see [6] for a discussion as to exactly what rounding strategy was
used when constructing the distance matrix). We have confirmed this behavior
with our coding of L-K. Simulated annealing achieves a similar result to Lin-
Kernighan for this problem [23].

Consider now our large step Markov chain approach. We made many sepa-
rate attempts on the LIN318 problem with different random starts. When the
temperature is zero, the tour gets stuck in local minima, though these are of
high quality. This is easily understood by comparing these local opt tours to the

exact solution: the links connecting the three "columns" are not easily moved.
They can be shifted by applying a bridge move, but unless the other bridge is at
the "right" place, the move is rejected. Thus we found it necessary to either use
multiple starts or to use non-zero temperatures. After adjusting the tempera-
ture, the large-step Monte Carlo consistently found the optimal tour of length
41,345 [6]. This fact gives us confidence in the robustness of the procedure.
Another indicator is the fact that the Monte Carlo visits large numbers of tours
just above the optimum and in fact, visits them multiple times. For instance, it
visits the tour of length 41,349 given in [24] and the evidence from the Monte
Carlo is that this is the first sub-optimal tour; the Monte Carlo found no tours
between 41,345 and 41,349. In terms of speed, when the local search was L-K,
the average time to find the optimum was less than one hour of SPARCstation- 1
time. When the local search was Sopt, the average run time was four times
longer.

Run CPU Hours Best Tour % above min

Table 3: SPARCstation-1 CPU times and best tour lengths for our 4 longest
runs with Sopt local search. A post-reduction method as described in the text
was applied to the 4 best tours and the result of this is run number 5.

We also tackled the sc~called AT&T532, a 532 city problem solved to opti-
mality by Padberg and Rinaldi [7] using branch-and-cut methods. They deter-
mined the exact optimum to be of length 27,686. The runs which used GK for
the local search always found the optimum, and the average time to solve to o p
timality was three SPARCstation-1 hours. If one uses instead %opt for the local
search, the optimum is much more difficult to obtain In Table 3 we present the
results of our four longest runs from different random starts for this case. The
best tour length from a random start is 27,693, i.e., 0.025% above the optimum.
(Note that the average intercity length in these units is 55.) The average of the
best length of these runs is 27,700. Thus the Markov chain provides very high
quality tours. In order to push the %opt Monte Carlo to the limit, we then used
a method inspired by the "reduction" procedure of Lin and Kernighan [B, 91.
In our "post-reduction," we took the best tour from each of our four long runs
and created a list of cities which have the same incoming and outgoing links
in this set of tours. The Monte Carlo was then run starting with tour 27,693
and with the extra constraint that the bridges used in the kick cannot connect

to these cities. The number of cities to which the bridges could connect was
less than 100, leading to a much smaller space to sample. This allowed the
post-reduction run to find the exact optimum of length 27,686. Note that the
constraint imposed by this procedure is not very uhard" as the constraint is
used only for the location of the bridges, not in the subsequent %opt.

To see how ordinary Lin-Kernighan repeated from random starts performs
on this problem, we first use the data of Bentley and Johnson (private com-
munication) who have written a fast L-K code. For the AT&T532 problem,
their local search from a random start takes on the order of 400 seconds on a
VAX/750, and leads to an average excess length of 1.1%. For 100 random starts,
their best tour length is 27,797, or 0.4% above the optimum. The probability
distribution of tour lengths given by their L-K has an average of 28,500 and a
variance of 400. Our coding of L-K gives very similar results.

Finally, we also considered a 783 city problem (RAT783) solved to optimality
by plane cutting methods by Cook et. al. (251. The city paitions were obtained
by small, random displacements from a regular 27 x 29 lattice [26]. This instance
turned out to be very easy to solve using our Monte Carlo heuristic. The
runs reached the optimal tour (of length 8,806) in an average of one hour of
SPARCstation-1 time (using the L-K local search). This timing is similar to
one for the LIN318 instance. It is clear that the difficulty of a problem is not
given only by it's size.

To really compare the stochastic and local search methods requires fixing
the total amount of CPU time allowed. For very long runs, a Markov chain
approach leads to better results than random sampling because the density of
states is simply too small near the optimum, so that random sampling is not
competitive. On the other hand, local search methods are much better than for
instance simulated annealing for short runs. A big advantage of our method is
that a local search is incorporated into the algorithm. This allows our method
to be better than simulated annealing and local searches for both short and long
runs.

7 Conclusions
Many heuristic methods have been proposed for the TSP. To date, the most
effective of these are the local search and the stochastic sampling algorithms.
In this paper, we have shown that it is possible to combine these methods into
what we call a large-step Markov chain. In this way, only locally optimal tours
are sampled, thus reducing the search space dramatically. In addition, to sample
this space effectively, a special kind of Cchange is made (the "kickn) followed
by the local search. For other optimization problems, (graph partitioning, spin
glasses, etc ...), the "kick" should correspond to a change which is not easily
accessible to the local search moves and which is thought to be relevant.

We have implemented this algorithm and applied it to a number of large

TSP instances. In particular, it is able to find the exact solution to the LIN318,
the ATdtT532, and the RAT783 problems in a very modest amount of CPU
time. Our method provides a substantial improvement over the hereto state-of-
the-art algorithm of Lin and Kernighan. We also showed how the local searches
can be accelerated, providing a method for doing 3-opt which makes the O(N)
complexity of the check-out time explicit, and which can be extended to k-
connected-opt. Also, the set of links to be considered in the tour improvement
can be drastically reduced by a dynamic outer-loop optimization.

Appendix A: Density of States
For an N city problem, there are (N - 1)!/2 tours if one uses orientation and
cyclic permutation symmetry. It is of interest to know the length distribution
of these tours. For clarity, we consider random scatter problems and scale the
dij so that the average distance between neighboring cities is N independent.
In two dimensions, this is achieved by having the cities in a region whose length
scales as fi. We will consider a square 0 on a side, but for other shapes the
argument still holds. In these units, the tour lengths scale as N since one can
crudely think of a 4N problem as being four problems of size N pasted together.
For any particular instance, the minimum tour length is

where co is independent of both the particular instance of the TSP and the
shape chosen above, and z is a number which depends on the instance. We can
think of z as a random variable describing the fluctuations in the length as we
consider different instances of the TSP.

Now we would like to estimate the density of states near the minimum, i.e.,
the number of tours of length between 1 and 1 + dl, divided by dl. The main
question is: how fast does this grow with 1 and with N? The answer is not
known, but several distributions have been suggested [27, 281. Here, we present
a model which is very simple, but which seems to describe well the data for
randomly scattered Euclidean TSP's.

Let us first consider the set of all tours. The (N - 1)!/2 tours have lengths
which vary between Imi, and lmin . ~(fl), so clearly the range is very broad.
Most of these tours are of no interest, for instance they have very long links
of length - f l . To model the density of tours near the minimum, we start
with the optimum tour and consider doing 2, 3, etc ... changes. We will restrict
ourselves to localized k-changes where the k links occur in a small spatial region,
i.e., are near one-another. Specifically, consider only connected k-changes, for
any k. Each connected k-change increases the tour length by an amount which
we take to be a random variable with an N-independent probability distribution.
To keep the modeling of the density of states simple, we replace the random

variables by a typical value f which is some fraction of the inter-city nearest
neighbor distance (and thus is O(1)). When constructing the set of low-lying
tours, we first perform a kl-change at some location, then follow this by a k2-
change at another location, and so forth. The f i x f i square is approximated
by M independent patches, where N / M = a (the area of the patch) is taken to
be N independent. A k-change as considered above is then viewed as increasing
the length of the tour in one of these patches. Each patch is considered to be
"on" or "off, and when one is "on" the tour length is increased by f . The total
number of tours in this model is 2 M . To get the density of tour lengths, simply
count the number of ways to choose a fixed number of patches. This gives a
binomial distribution, so that (:) tours have length lmin + p . f. The above
modeling has introduced two scale parameters, f and a, which are required to
be N independent. If the model were extended so that k-changes for different
k's were treated separately, a multinornial would have resulted but this would
not affect the resulting distribution much. We have empirically found that good
fits are obtained to the numerical data extracted from instances with randomly
distributed cities. We expect the model to be reliable when p >> 1 so that the
instance fluctuations are unimportant. Also, when too many patches are "on"
one does not expect them to stay independent, so the model is innaccurate as p
approaches M / 2 . Another effect is due to the fact that we threw away many of
the longer tours by the connectivity constraint on the k-changes. This leads to
the wrong scaling in the total number of tours, 2Nfa, whereas the correct result
is, of course, (N - 1)!/2.

The model as described above was for the density of all tours. We can also
specialize to the case of the density of k-opt tours and it is here that we expect
the model to be most accurate. The dilute gas picture now consists of patches of
area or. As before, our prediction for the density of tours at 1,jn + pfk is (y) ,
where N = Mak. The curve in figure 1 shows this prediction for the dens~ty
of 3-opt tours for a particular 100-city TSP. M (and therefore a s) was fixed by
the requirement that the total number of %opt tours be 2 M . f3 was adjusted
to give the correct average tour length. It is important to note that f3 is the
only free parameter. The fit to the data, as seen in figure 1, is quite good.

As we consider higher and higher connected k-opt, i.e., as the local search
is improved, we expect as to increase since a larger number of link changes is
required to go from one k-opt tour to another (at least k + 1). The total number
of k-opt tours is given in this model by 2Nlak, a parameterization which has
been given previously by Lin [a]. It would be interesting to determine whether
the inclusion of disconnected graphs (say all the Copt tours) leads to a different
N dependence such as 2Na/ak. Note that this model is valid also for higher
dimensional randomly scattered Euclidean TSPs, and for other local searches
besides k-opt. For instance, it applies to the Lin-Kernighan density of states.
The model predicts that any local search method gives a distribution for the
relative excess length (I - lmin)/lmi,, which has an N independent average, and
a width which scales as N-'/~. A consequence of this is that when comparing

at large N different local search algorithms which use random starts, the only
important characteristic is the average relative tour length obtained by the
algorithm.

Appendix B: Markov Chains
This appendix reviews some general properties of Markov chains in order to
answer the questions:

- will an algorithm always find the optimal solution?
- how long should one run if one wants to reach the optimal

solution with a given confidence level?

The first question is related to the ergodicity of the Markov chain; the second,
to its auto-correlation time.

Since the set of all tours in the TSP is a finite set, the Markov chain can be
characterized by a transition matrix T. The matrix element T,, is the proba-
bility to go from tour n to m. In practice, the selection of rn requires random
numbers. Given a starting tour, the application of T produces a sequence, or
chain of tours. After some transients, usually the "memory" of the starting
point decays, and tours appear with a limiting probability distribution P. P
depends on the matrix T, and the goal is to find T's which lead to P(C) large for
tours C of short length. This is called biased sampling, and it leads to sampling
the tours of interest more efficiently. The simplest way to create such a biased
sampling is to use a Metropolis style algorithm: the current tour is changed in
some small random way, and the change is accepted with high probability only
if the new tour is shorter than the old one.

If C is the optimal tour, is P(C) # O? In the case of simulated annealing,
the distribution P is known because T satisfies detailed balance. In particular,
the probability of all tours is non-zero (the Markov chain is ergodic) and P(C)
depends only on the length of C. For general Markov chains, (i.e., for general
choice of the matrix T), very little can be said of the probability distribution P.
It is plausible nevertheless that within local-opt tours, our large-step Markov
chain is ergodic, and all our runs are consistent with this. In particular, we have
checked that P(C) # 0 for many instances (see section 6).

How many tours, M, must one sample in order to have a high probability of
reaching C? There are two constraints here: first, one must have MP(C) > 1,
corresponding to the expected number of visits to C being much greater than 1.
It is then improbable to have 0 visits. Second, M should be large enough so that
the probability distribution of tours is indeed given by P: the above mentioned
transients must have died away. This decay time can be made quantitative by
the introduction of the auto-correlation time T of the Markov chain. T is defined
by

e- l /r =
1x1 l

where XI is the eigenvalue of T of largest modulus and which is different from
one. r can be thought of as the longest characteristic time occurring in the
dynamics generated by T. The second constraint now reads M > r. Note
that there is not much point in working so hard as to find a T such that r is
as small as N (the number of cities) because the first condition also has to be
satisfied: if one takes the analogue of "temperature" to be high (small bias),
then T is O (N) (for modifying every link). Thus one is almost sure to do better
than local search with random starts by simply embedding the local search into
a Markov chains and introducing some bias into the sampling. On the other
hand, one must make sure that r does not get astronomically large. When
simulated annealing is used for the TSP, r diverges fast as the temperature is
lowered because barriers become overwhelming. (Some of these barriers can
be visualized by the transformations induced by double bridges.) But if the
temperature is not low, there are too many configurations to sample, so again
the algorithm is not effective for large N. Thus it is imperative to use large step
Markov chains to keep r from growing too fast as one increases the bias.

In practice, 7 can be measured without having to determine the eigenvalues
of a large matrix. Ideally, one should find some operator on configuration space
which projects out as much as possible the eigenvector corresponding to the
eigenvalue X I , though in practice this is difficult. We suggest for the TSP
taking the operator D which counts the number of links a tour has in common
with a given good tour. Then the observable (Cn means the nth configuration
in the Markov chain)

is proportional to XIP = e-J'17, for large p.

Acknowledgements

We would like to thank Bill Cook and David Johnson for useful discussions and
for sharing some of their results with us prior to publication. We thank Manfred
Padberg for providing us with the ATkT532 instance, Jean Vannimenus for
bringing our attention to the work of reference [19], and Richard Friedberg and
Paul Rujan for a number of suggestions. The work of O.M. was supported in
part by a grant from the City University of New York PSC-CUNY Research
Award Program and by NSF-ECS8909127. The work of S.O. was supported in
part by DARPA grant MDA972-88-J-1004, and, that of S.O. and E.F. in part
by DOE-FG03-85ER25009.

References

[I] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complezity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[2] M. Held and R.M. Karp. The traveling salesman problem and minimum
spanning trees, part I. Oper. Res., 18:1138-62,1970.

[3] M. Held and R.M. Karp. The traveling salesman problem and minimum
spanning trees, part 11. Math. Prog., 1:6-25, 1971.

[4] E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys, editors.
The Traveling Salesman Problem. John Wiley & and Sons, 1984.

[5] M. Grotschel and M. W. Padberg. Polyhedral theory. In E.L. Lawler, J.K.
Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys, editors, The Trnveling
Salesman Problem, chapter 8. John Wiley & and Sons, 1984.

[6] P. W. Padberg and M. Grotschel. Polyhedral computations. In E.L. Lawler,
J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys, editors, The Traveling
Salesman Problem, chapter 9. John Wiley & and Sons, 1984.

[7] M.W. Padberg and G. Rinaldi. Optimization of a 532-city symmetric trav-
eling salesman problem by branch and cut. Oper. Res. Lett., 6(1):1-7,
1987.

[8] S. Lin. Computer solutions of the traveling salesman problem. Bell Syst.
Tech. J., 44:2245, 1965.

[9] S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Oper. Res., 21:498, 1973.

[lo] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated an-
nealing. Science, 220:671, 1983.

[l l] V. Cerny. Thermodynamical approach to the traveling salesman problem:
an efficient simulation algorithm. J. of Opt. Theo. and Appl., 45:41, 1985.

[12] J . Bentley and D. Johnson. A comparison of heuristics for the traveling
salesman problem. In preparation.

[13] J.H. Holland. Adaptation in Natural and Artijicial Systems. University of
Michigan Press, Ann Arbor, 1975.

[14] H. Muhlenbein, M. Georges-Schleuter, and 0. Kramer. Evolution algo-
rithms in combinatorial optimization. Parallel Computing, 7:65, 1988.

[15] P. Rujan. Searching for optimal configurations by simulated tunneling. 2.
Phys., B 73:391, 1988.

[16] J . Hopfield and D. Tank. Neural computation of decisions in optimization
problems. Biol. Cybern., 52:141, 1985.

[17] G. Wilson and G. Pawley. On the stability of the travelling salesman
problem algorithm of Hopfield and Tank. Biol. Cybern., 58:63,1988.

[18] D.M. Ceperly and M.H. Kalos. In K. Binder, editor, Monte Carlo Methods
in Statistical Mechanics. Springer-Verlag, 1979.

[19] Z. Li and H.A. Scheraga. Monte carlo-minimization approach to the
multiple-minima problem in protein folding. Proc. Null. Acad. Sci.,
84:6611-6615, October 1987.

[20] W.R. Stewart. Accelerated branch exchange heuristics for symmetric trav-
eling salesman problems. IVetworks, 17:423, 1987.

1211 D. Knuth. The A d of Computer Programming, volume 3. Addison-Wesley,
Reading, MA, 1973.

[22] E.W. Felten. Best-first branch-and-bound on a hypercube. In Third Con-
ference on Hypercube Concurrent Computers and Applications, 1988.

1231 D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization
by simulated annealing: An experimental evaluation, part I11 (the TSP).
In preparation.

[24] M.W. Padberg and S. Hong. On the symmetric travelling salesman prob-
lem: A computational study. Math. Prog. Stud., 12:78, 1980.

(251 W. Cook, V. Chvatal, and D. Applegate. In R. Bixby, editor, TSP 90.
Workshop held at Rice University, April 1990.

[26] A Library of TSP instances is electronically available. For further details,
contact R. Bixby at bixby0rics. edu.

[27] B.L. Golden and W.R. Stewart. Empirical analysis of heuristics. In E.L.
Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys, editors, The
Traveling Salesman Problem. John Wiley & and Sons, 1984.

[28] N. Burgess and M. A. Moore. Cost distributions in large combinatorial op-
timization problems. Technical report, Manchester University, Manchester,
U.K., 1989.

