
From Object-oriented Database Management
Systems to High Productivity Software

Development Environments

Duri Schmidt

Oregon Graduate Institute
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 91-014

June, 1991

From Obj
Syste

ect-oriented Database Management
ms to High Productivity Software
Development Environments

Dud Schmidt
Oregon Graduate Institute

schmidt@cse.ogi.edu

1 Introduction
2 Application model to be supported
3 Integration of OODBMS and traditional software development tools

3.1 User interface toolkits
3.2 User interface management systems based on the Seeheim architecture
3.3 4th generation languages
3.4 Generic database browsers

4 Integration of OODBMS and GACLs
4.1 Levels of integration
4.2 Strategy for the intermediate level integration
4.3 Properties and architecture of GACLs
4.4 Properties of OODBMS
4.5 Issues in the integration of GACLs with OODBMS

5 Related work
5.1 Gemstone and Smalltalk
5.2 ETDB

6 ETDB++
6.1 Solutions to issues resulting from the architecture of the GACL and properties of

OODBMS
6.2 Enhancement and extension of functionality of the OODBMS by exploiting

GACL services
6.3 Using a priori knowledge to increase performance of the interaction with the

dtnns
7 Conclusions and future work
References

1 Introduction

Object-oriented data management systems (OODBMS) differ from traditional database systems
in several respects. The main difference is that OODBMS offer greater extendibility, the
inclusion of user defined behavior, and enhanced reusability of prior work. While traditional
database systems are able to cope with and manipulate a fixed set of predefined but
parameterizable database types, OODBMS allow the programmer to define new abstract data
types. The definition of a data type includes not only its structure but also the behavior of its
instances. The definition of new data types is facilitated by inheritance which allows one to
adapt previously developed data types to new requirements.

Much work has been done to develop several viable OODBMS. These projects usually concentrate
on defining an object and database model and on developing a database management system for
these models. Normally these systems offer some low level integration of the database
management system with a programming language, in order to allow access and manipulation of
the persistent objects contained in some database.

However, OODBMS, like traditional database systems, are not self-contained complete
software development tools. They must be combined with other tools such as user interface
management systems to produce entire applications, but much less work has been done to explore
the combination of OODBMS and software development tools other than programming
languages. Several different software development tools are potential candidates for an
integration. Thus, the goal of this project is to show advantages and disadvantages of various
potential combinations and to explore the integration of OODBMS and GACLs (GACL) in more
detail.

2 Application model to be supported

Before discussing the main issues we limit the scope of applications we consider. Applications
targeted by this project consist of several components:

User Interface: An application presents itself to the user through its user interface. A user
can access the services of the application by issuing commands. Depending on the user
interface technology used, commands are induced by various means, as, for example,
through written commands or through the manipulation of graphical dialog elements such
as buttons or menus. Results of the execution of commands are shown by the user interface in
a textual form or graphically. Our project considers only user interfaces based on a modem
graphical user interface paradigm using direct manipulation, bitmapped graphics,
multiple windows, and at least a keyboard and a mouse as input devices.

Management of persistent data: Another component of an application is concerned with
the manipulation of persistent data. In applications of interest to this project, persistent
data is contained in persistent objects which are managed by an object-oriented database
management system.

Rest of the application: The last component of an application is called the rest of the
application. It includes everything not covered by the user interface component and the
management of persistent data. An example are the nonpersistent collection classes. This
component usually also manages any access to operating system services.

Another assumption about the applications concerns the transaction model. The target
applications use a simple pessimistic transaction model based on locking. Savepoints are
possible but otherwise no fancy features are assumed.

Prototypical target applications include graphical editors such as a schema editor for a
database system or form-based applications such as a bug reporting system.

We now consider how the development of such applications could be facilitated.

3 Integration of OODBMS and traditional software development
tools

First we shall consider tools developed in the context of non-object-oriented, non-database
applications and in the context of traditional database systems.

3.1 User interface toolkits

A user interface toolkit is a library of data types and procedures which implements common user
interface elements such as menus, scrollbars or radio buttons. A programmer can use these data
types in his or her program to construct a user interface for the application. The library usually
also contains procedures to access events from input devices as mouse and keyboard. Examples of
user interface toolkits are the Macintosh Toolbox [App185] and the Xt Toolkit for the X Window
System [Youn89]. The problems with toolkits are: (1) they usually are not programmed to take
advantage of object-oriented programming techniques, (2) the level of abstraction is too low, and
(3) they do not provide an architecture for an application. We therefore decided against
integrating OODBMS with user interface toolkits based on conventional programming
paradigms.

3.2 User interface management systems based on the Seeheim architecture

A user interface management system is a system in which a user interface for a given application
can be specified declaratively. It furthermore automatically manages the processing of user
events as far as the user interface is concerned on the basis of the user interface specification
[Olso87]. Often a graphical editor is used for the specification of user interfaces. A programmer
can assemble the layout of a window from predefined display and data entry fields like text
fields, radio buttons, check boxes, graphical output areas, popup menus, buttons and menus
attached to a menubar. The user interface constructed with such a system dispatches user events
to the items of a layout. The dialog items process related events on their own or call attached
user defined actions. User interface management systems are usually employed in the context of
applications which don't use a database system for the management of persistent data.

Many if not most of the user interface management systems are based on the Seeheim application
architecture [Gree851. In the Seeheim model the user interface is clearly separated from the
other parts of the application. The model assumes that the user interface and the other parts of
an application are only loosely coupled and that communication between the user interface and
the other parts may be accomplished by a low bandwidth connection [Myer89]. One could indeed
run the user interface in one process and the other parts of the application in anther process. The
user interface is further divided into a presentation component, a dialog control component and
an interface to the other parts of the application (Fig. 3.1). The dialog control component
dispatches and processes user events, the presentation component is responsible for drawing the
user interface, and the interface to the other parts of the application connects the user interface
to the other parts of the application, i.e., to the so-called rest of the application along with the
persistent data management part.

! user interface

persistent data
management

rest of the
application

application
interface

system 1 mg-t

presentation
component

Fig. 3.1: Seeheim model

dialog control
mmponent

Communication between the user interface and the other parts of the application is
accomplished through shared variables, message passing or a procedural interface.

One advantage of this architecture is that a new user interface can be used without altering the
rest of the application as long as the interface between them is not changed. Thus the user
interface can easily be modified to take advantage of new user interface paradigms or new user
interface techniques without the necessity of changing the other parts of an application.
Separating the user interface from the other parts of an application also facilitates the
incremental development of the user interface because the other parts of the application are not
affected by these nonfunctional changes.

Another advantage of this architecture is that the non user interface parts of an application are
relieved of the burden of processing every single user input. The user interface of an application
is thus relatively autonomous, i.e., much of the user input can be processed locally in the user
interface without the necessity of accessing other parts of the application. For example, when a
user fills in a form the user interface processes user inputs until the user has committed the
changes. Only then is the application sent the final content of the form.

A final advantage is the declarative nature of these tools. The programmer need no longer worry
about the sequence of events and can concentrate her or his efforts on other parts of the
application.

Unfortunately this architecture has several shortcomings:

A dialog can only be assembled from a predefined set of dialog items. While few systems
based on a textual specification languages allow the extension of the set of dialog items,
for example Apollo Computers Open Dialogue [Comp86], even fewer systems with a
graphical user interface editor provide an extension feature. Even then, the definition of
new dialog items is normally difficult. Thus it is either not possible or at best difficult to
enhance the user interface with domain specific interaction techniques.

Only form-based user interfaces are supported, but only a fraction of the applications
which fit the application model we want to support have a form-based user interface.

The basic assumption of the low bandwidth communication between the user interface and
the rest of the application does not hold for many applications, especially graphical
editors. In these applications communication between the user interface and the rest of the
application is very frequent because the rest of the application must often be consulted to
provide the semantically correct feedback, for example during dragging or resizing
graphical objects. Some systems, such as Higgens [Huds88], try to provide this kind of
feedback in the context of a user interface management system based on the Seeheim
architecture. Unfortunately however, much of the declarative nature of other user
interface management systems is lost. If the Higgens specific terms are stripped off the
system resembles a somewhat modified model-viewcontroller architecture where the
model is constructed of active values triggered by user or application events.

An investigation [Ross871 also showed that many designers have difficulty separating the
user interface from the other parts of the application.

The division of an application into a user interface and other parts gives the application
developer no further advice for the architecture of the other parts of the application.

In these systems, reusability is provided through the user interface management system
and not through the inheritance mechanism usually used in object-oriented systems.

These tools do not support the development of application specific aspects not related to
the user interface by high level tools.

In the case of a textual specification a programmer has to learn a new special language.

Recently several research groups started to explore the integration of user interface generators
and user interface management systems with object oriented database systems. Facekit [King891
and LOOKS [Alta89] [Plat891 combine an OODBMS and a user interface management system.
They exhibit most of the previously mentioned advantages and disadvantages. Usually a nested
object representation for complex objects is derived from the database schema and it is possible to
call methods of the displayed persistent objects. In LOOKS the user interface is called through

global procedures from the database application thus deviating from the programming
paradigm used in the non user interface related parts of an application. Neither system supports
the construction of graphical editors.

Another interesting research project [Fly11901 tries to unify persistent data management and user
interface specification management. User interface specifications are also considered as
persistent objects. They store both a description of the display of the persistent object and rules
applied to process user events. If a persistent object has to be displayed and manipulated, a
specification object is activated. The specification and the persistent object are used to generate a
display object, which displays the persistent data and controls the processing of user events.
Every persistent object can be combined with several different specification objects. Because the
system supports inheritance, specification objects can be easily reused to construct new ones. And
because specification objects are persistent objects any tool provided by the database system to
modify persistent objects can be used to alter the content of these objects during program execution,
giving the system much flexibility.

After considering advantages and disadvantages of these various systems we decided not to
investigate the integration of a user interface management system and an OODBMS although
this approach could be very reasonable for applications using a form-based user interface. But we
feel that it would be advantageous to retain in our approach at least some of the declarative
flavor of the user interface management systems.

3.3 4th generation languages

In the context of advanced database systems based on traditional data models such as 4th
Dimension from Acius [ACWSG], the high level tool support covers the interactive definition of
database schemas, the specification of the layout of windows, and the formulation of queries
and reports through graphical editors. Systems as these are called 4th generation languages
[Olso87]. This actually is a misnomer because the languages in which the rest of the application
is programmed do not differ from third generation languages except for the more or less elegant
integration of a persistent data type. The user interface and the management of persistent data
are normally tightly coupled in 4th generation languages. After specifying the database
schema, a default user interface is often inferred from the schema and one can then enter new
data and issue queries whose results are displayed through the default user interface. A
programmer can adapt the default user interface to his or her own taste or can define completely
different ones. Typically, dialog items such as text entry fields are bound directly to fields of a
record and the system automatically propagates to the database data entered in a panel. It is
usually not possible to relax this tight coupling of user interface and database or to have dialog
items for data computed from persistent data or for data from which persistent data is infered.

4th generation languages have the following advantages:

User interface design and user event processing are simplified.

Not only the user interface but also the management of persistent data is supported
through high level tools.

And the following disadvantages:

Dialogs are assembled from a predefined, usually not extendible set of dialog items.

Only form-based user interfaces are supported.

The database and user interface are normally tightly coupled, i.e., it is often not possible
to have special fields to display data derived from the persistent data. We think that
the tight coupling is not reasonable for many applications we would like to support.

These systems do not support the development of the application domain specific aspects
of an application not related to the user interface or persistent data management through
higher level tools than the programming language.

If a program needs facilities which cannot be produced with these tools a programmer
must use the low level programming language which is part of the whole system. There is
no intermediate level of support between the high level tools and the low level
programming language.

4th generation languages usually provide only a basic transaction mechanism built into
the language. They don't support different transaction patterns through higher level
abstractions.

The consideration of the advantages and disadvantages of 4th generation languages led us to the
decision that we don't want to develop a 4th generation language using an OODBMS instead of a
relational database system. But it would be interesting to have a system with similar tools
supporting applications with more complex user interfaces less tightly coupled to a database.

3.4 Generic database browsers

Another less ambitious approach to combining a database and a user interface are generic
database browsers such as the database browser of Sunsimplify [Sun 881. With this browser
every database has an application independent user interface and every database can be
examined and modified.

An example of such a system in the context of OODBMS is the KIVIEW browser [Laen89]. It
provides a standard user interface for every database. It is also possible to customize the user
interface. KIVIEW therefore provides functionality similar to the systems mentioned 3.2 or 3.3.

Because such a generic database browser is valuable tool, we would like our approach to provide
an application independent standard user interface.

Having seen several approaches we turn now to our own approach of the integration of OODBMS
and other software development tools.

4 Integration of OODBMS and GACLs

4.1 Levels of integration

Our approach is based on a model with three levels of integration between OODBMS and other
worlds (Fig. 4.1).

.
high level tool:

generic application persistent object
class library & class library

programming language & persistent objects

high level integration

intermediate level integration

low level integration

Fig. 4.1: Levels of integrations of OODBMS and other software development tools

The lowest level of integration is the integration of an object-oriented programming language
and an OODBMS through persistent objects. We define an OODBMS to be a database system
which is specialized to manage persistent objects [Schm90]. An object-oriented database consists
of persistent objects. Persistent objects are objects having a possibly long lasting existence. This
means that their existence is not confined by the process in which they are instantiated.
Persistent objects differ from nonpersistent objects only with respect to persistence. This means
that persistent objects also have state and behavior, and that they are instances of a class.
Classes may inherit from each other and dynamic binding is supported. This level of integration
is addressed by projects developing an OODBMS. It is not part of this project. Instead we will use
the existing combination of the programming language C++ [Stro86] and the OODBMS DB++
[Schm90].

The next level of integration in our model, the intermediate level, is the integration of an
OODBMS and a GACL that is not specifically built to be used with an OODBMS. GACLs are a
new emerging software technology in the field of object-oriented software development. The
classes of a GACL are organized so that they form a generic application, i. e., an application
having all the common features and properties exhibited by all applications of a certain type
[Schm86]. The result of this intermediate level integration will be a new GACL. The generic
application of the new class library must exhibit all the common features and properties of
applications that have a modem graphical user interface and which use an OODBMS for the
management of the persistent data.

The last level of integration in our model is the integration of the OODBMS and high level
tools, e.g., user interface generator or schema editor. These tools are not independent of the
GACL. They generate new classes, which often inherit from classes in the GACL or they generate
specifications which can be interpreted from instances of some classes of the library.

We expect that this three layered application architecture has the following advantages over
the other mentioned approaches for integrating an OODBMS and other software development
tools:

Support of a wide range of applications which can have either a form-based, or a non
form-based user interface, or a combination of both. The Garnet system [Myergo] shows
that such a system can support not only form-based user interfaces but also in certain types
of graphical editors.

Graceful degradation of high level tool support. If a program needs facilities which
cannot be produced with a high level tool, a programmer eventually can use existing
classes from the GACL. Domain specific knowledge may be provided by these classes, or at
least domain specific classes can be derived from the classes of the library.

Easy integration of an application independent database browser. Because form-based
user interfaces will also be supported adding a generic database browser will be easily
possible.

Application development cost and maintenance cost is reduced because the structure of
applications is predefined and because many parts of an application can easily be derived
or composed from those already defined in the GACL.

Another reason for our approach is the inadequacy of persistent object class libraries currently
delivered with OODBMS. These rarely contain more types than a conventional database system
provides as fields or as set types rMaie871 [Onto88]. Therefore at the beginning of using such a
system they don't provide more predefined, reusable types than conventional database systems.
The integration with a GACL offers the opportunity to provide at least abstract persistent object
classes for the classes from which the programmer most often derives his or her own classes.

Together with a compiler and other language related tools, these tools build an open ended high
productivity software development environment for applications featuring a modern graphical
user interface and persistent data management by an object-oriented database management
system.

We will now explain the strategy for the intermediate level integration. Then we will show the
properties of GACLs and OODBMS in more detail. The discussion will also show the expected
problems of the integration. Finally we will discuss previous work in this field and the detailed
goals of the project.

4.2 Strategy for the intermediate level integration

It is beyond the scope of our project to develop a new GACL and a new OODBMS. Our integration
strategy therefore relies on an existing GACL and on an existing OODBMS. Because neither were
designed at the outset to interface with each other, we will adapt the GACL to the needs of the
OODBMS. Conversely we will adapt the OODBMS to the special needs of the GACL. Thus the
persistent objects enhance the functionality provided by the generic application and the class
library extends the capabilities of the OODBMS through such services as dialog management.

4.3 Properties and architecture of GACLs

4.3.1 Properties of GACLs

GACLs contain, as mentioned, classes which form a generic application. A GACL makes it
possible for a programmer to assemble many parts of a specific application from classes of the
library or from classes derived from classes of the library. The use of GACLs reduces the
complexity of the development of applications with a modem graphical user interface because
dialog elements, event dispatching, and event processing are predefined, because many other
building blocks, such as collection classes, are provided, and because they can easily be adapted
to special needs. The use of GACLs also facilitates the enforcement a homogeneous user interface
because the user interface guidelines are built into the dialog management part of the class
library. Furthermore, the GACL defines to a large extent the structure of an application. This
eases the design and the maintenance of applications.

ET++ [Weir1891 is a typical example of a GACL. It has the following properties:

The generic application standardizes the structure of an application and the general flow
of control.

It is possible to work concurrently with multiple documents.

A document may be displayed in one or more windows.

A programmer need provide nothing so that windows can be manipulated, i.e., moved,
resized or closed.

Windows can be divided into arbitrary clipping regions. These clipping regions show parts
of virtual drawing surfaces called views.

Clipping regions support changing the visible part of a drawing surface which is larger
than the clipping region (scrolling).

If graphical objects are moved over a drawing surface, the clipping region automatically
adjusts the visible part of the drawing surface as the object is moved. Thus, the part of the
drawing surface over which the graphical object is moved is always visible
(autoscrolling).

Redrawing windows is flicker-free because double buffering is used.

Printing of documents is automatically supported.

Many different collection classes support the programmer managing groups of nonpersistent
objects.

ET++ provides a framework to support undoable commands.

The declarative construction of dialogs is supported through many predefined dialog
elements and an automatic dialog layout feature.

Classes are provided to manipulate multiattribute text with proportional fonts.

ET++ contains inspectors for looking at the content of objects during runtime and a browser
for looking at the definition and implementation of the classes of an application.

4.3.3 The architecture of GACLs

As before we will concentrate on the architecture of ET++ because its architecture is quite typical
of similar class libraries.

The classes of ET++ can be divided into several groups (Fig. 4.2). The general base classes group
contains the most important abstract classes of the ET++ class hierarchy. To this group belong
the root of the ET++ class hierarchy, classes to process user events, the base class of graphical
object classes and collection classes. The application framework classes realize the generic
application, i.e., they constitute a specialized framework of classes, the application
framework. This framework provides the general event processing structure of an application
with a graphical user interface and as input devices, a mouse and a keyboard.

Fig. 4.2: Groups of classes of ET++

system
interface

general
base classes

The graphical classes contain user interface items such as menus, dialog elements, scrollbars, etc.,
and a class to compose such items. The system interface classes implement the interface to the
operating system and the interface to the window system. The programming environment
contains classes to inspect the state of objects and the definition of their classes at runtime.

graphical
classes

From the general base classes the classes Object and VObject are especially important for our
purpose. The class Object is the root of the ET++ cIass hierarchy. It defines the abstract methods
to compare objects, it implements change propagation, and it implements dynamic type checking.
Its most important function is its role as root class. Nearly all other classes of ET++ are derived
from Object. This allows the construction of collection classes which can have any instances of
subclasses of Object as element and every object can take part in change propagation.

application frame-
work classes

programming
environment

application

The class VObject is the base class of all graphical object classes. It is derived from the class
EvtHandler, which defines an abstract protocol to process user events. The class VObject specifies
instance variables and methods to manage the location and the extend of a graphical object and
to draw itself. Application specific graphical object classes usually are derived from this class.

The application framework classes define the general structure of an application which
processes user events. The most important concepts implemented by the application framework
classes are the concept of an application and the concept of a document. The application manages
the documents, i.e., it knows how to create new documents and how to open existing documents. An
application can handle many documents of the same or different types.

A document handles a closed group of persistent objects that is edited together and stored
together in a file. In addition, a document manages the window, views, etc., which are used to
display and manipulate the data of a document. A document also takes part in processing user
events. Documents do not overlap, i.e., documents do not contain references to objects of other
documents and they are not nested, i.e. a document cannot be element of another document. A
document itself is also a persistent object. Its persistence is refleceted not only in some persistent
data but also in the existence of a file with the name of the document. The document concept
supports only one activation/deactivation policy, i.e. all elements are activated when a
document is opened and elements are deactivated when a document is closed. It also provides for
only one clustering policy, i.e. all elements are clustered in one file. A document can access its
elements only by navigation because no query facilities are available.

Documents also represent transactions. Every document is an independent transaction because
documents don't overlap. The open, revert, save and close commands of the application
framework correspond to start transaction, rollback transaction, commit and start transaction,
and commit transaction respectively. Running multiple transactions in parallel in one process
works because by convention documents don't share objects and because GACLs provide uniqueness
of object identifiers only within one document even though there is no system enforced isolation
between the transactions. In the context of an OODBMS, however, identifier usually are unique
within a database and multiple documents may be stored in one database. Current OODBMS also
allow an application to run only one transaction at a time.

Transactions are linked strongly with the opening respectively closing of documents and with
the activation respectively deactivation the elements of a document. The transaction
mechanism is degenerated in so far that the transactions are not related to synchronization of
multiple users. The start of a transaction, i.e. the opening of a document, doesn't lock the file of
the document to prevent other users from accessing the document.

The application concept is represented in the class Application and the Document in the class
Document. These two classes are particularly important for the integration with OODBMS.

Differences to other generic application class libraries

Other GACLs such as MacApp [Schrn86], Interviews [Lint891 or Falcon [I provide either similar
or some aspects of the functionality described.

These GACLs differ not only in their functionality but also in their architecture. One main
difference is whether the design of the class library is based on a single root or a forest
approach. In the single rooted approach almost all of the classes are derived form a single base
class. Examples for this architecture are ET++ and MacApp. The single rooted approach results
in a very homogeneous class library. All classes have the same basic protocol such as change
propagation and all instances of derived classes are substitutable on the level of the base class
which makes combination and reuse of different objects very easy.

In the forest approach several root classes exist, one for example for the collection classes, one for
user interface elements and another for the graphical objects. Promoters of this approach argue
that in this approach "inheritance is only used where it is really needed for getting the required
behavior" and that "this architecture is better suited to building a framework that includes
contributions from a relatively large and diverse group of developers" . Another point often cited
is that in the single rooted approach every object is tagged by the amount of memory needed for
the instance variables of the base class even though it doesn't need these instance variables.
However, this problem can be reduced sharply by an approach in which most classes are derived
from the base class except for certain types which are more treated as values as for example
integer, string, point, or rectangle [Wein891.

Of note also is the fact that most of these class libraries provide a group of collection classes
which are heavily used elsewhere in the class library.

In our project we will discuss integration issues for both approaches where relevant. But for our
prototypes we want to use the GACL ET++. We chose ET++ for principal and pragmatical
reasons. It offers more functionality than comparable class libraries such as MacApp [Schm86] or
Interviews [Lint891 and its architecture is more homogeneous. Its source code is available and we
have experience using it.

4.4 Properties of OODBMS

OODBMS are, as mentioned, database systems specialized to manage persistent objects.
OODBMS provide an extensible type system in which the structure and the behavior of new
persistent objects can be defined. To reuse existing types new classes can be derived from existing
ones using inheritance. OODBMS also facilitate the homogeneous usage of databases, because
the persistent objects of a database can only be accessed through the methods defined in their
classes.

DB++ [Schm90] is an OODBMS which manages persistent C++ objects. Persistent objects in DB++
are based on a framework approach. From several abstract classes new classes must be derived to
get a database and persistent object classes (Fig. 4.3). Therefore persistence in DB++ is provided
through inheritance, i.e., classes have persistent instances if they inherit from the base class of
all persistent object classes DBObject. Persistent objects have strong identity and keep their
persistent data in fields. A programmer can assemble new persistent object classes from a set of
predefined field classes, the subclasses of DBField. But he or she can also define new field classes
for special applications. A persistent object class is always defined together with a metaclass,
for example DBObject together with DBObjectClass. The metaclass knows the structure of the
persistent objects and an instance of a metaclass (a metaobject) represents the extension of the
corresponding persistent object class. The database system as a whole is represented through a

13

database system class which must be derived directly or indirectly from the base class of all
database system classes DBase. The database system class defines, from which persistent object
classes a database may contain instances. The DB++ class library provides field classes for the
most common values such as integer or small strings and persistent collection classes to cope with
groups of objects such as lists.

- - - - - - ShortStrField - ShortStrFieldClass

- ReferenceField - ReferenceFieldClass

Fig. 4.3: Base classes of DB++

Beyond persistent objects OODBMS usually also provide a general transaction mechanism to
synchronize concurrent access to a database; they come with a set of collection classes; they often
offer query facilities and support versions of objects.

Types of OODBMS

There are three major principles used to determine whether an object is persistent or not. The
first approach is based on the reachability of objects from one or more (persistent) root objects.
All objects are persistent at the end of a transaction which are reachable from a root object. One
therefore has to watch carefully that no objects, which should not be persistent, are referenced
from persistent objects at the end of a transaction. In this project database systems relying on
persistence by reachability aren't considered any further because the majority of systems which
support the programming language C++ don't use persistence by reachability.

In the second approach persistence is based on inheritance. In such a system an object is
potentially persistent if its class is derived from a specific base class.

The third principle to determine persistence of objects is called persistence by allocation. In this
approach objects are persistent if they are allocated in a persistent memory region. With this
approach persistence and type are orthogonal, i.e., every type can have persistent instances.

Overall, OODBMS are currently delivered with a rather small and poor persistent object class
library. At the beginning of usage they don't provide more predefined reusable types than
conventional database systems, because the systems are designed to be as generally usable as
possible, and therefore nearly nothing is known about the classes which are used in the
applications. The integration with a GACL improves this situation. It is at least known from

which classes a programmer usually derives and assembles application specific persistent
objects. It is therefore an important goal of this project to construct a more meaningful and more
comprehensive persistent object class library.

4.5 Issues in the integration of GACLs with OODBMS

There are several different issues for the integration. Some problems are caused by the
architecture of application frameworks and the properties of OODBMS. Other issues of the
integration have their roots in the desire to enhance and improve the functionality of the
OODBMS. Another interesting aspect is the attempt to use a priori knowledge about the
interaction with the database system.

4.5.1 Problems resulting from the architecture and the design of the GACL

For GACLs and OODBMS to work together one has to overcome several obstacles resulting from
the architecture and the design of the GACL and the properties of OODBMS.

One problem caused by the architecture and the design of the GACL is that the current GACLs
use files to manage persistent data. The structure of the application framework classes is
therefore biased to use files.

Another issue is the concept of a document in these GACLs. The concept of a document as discussed
above is too restrictive in the context of database systems.

A further very important problem is that current GACLs incorporate a transaction concept which
only partly fits the transaction concept of OODBMS.

4.5.4 Problems resulting from the properties of the OODBMS

The problems resulting from the properties of OODBMS can be classified into problems common
to all systems and issues depending on the principle on which persistence of objects is determined.

Problems common to all OODBMS

Common to all OODBMS is the problem that classes provided by the OODBMS usually are not
based on the same root class as the GACL. Therefore classes of the OODBMS don't support the
basic protocol of GACL classes such as change propagation, identity check, or comparison.
Furthermore, instances of predefinded OODBMS classes and GACL classes cannot be mixed in
collections because collections are defined on the basis of the GACL's or the OODBMS' root class
or, in the case of parameterized types, on the basis of some common ancestor. This reduces the
homogeneity, substitutability and interoperability of objects. This problem especially concerns
single rooted GACLs and OODBMS which provide persistence by inheritance.

However, OODBMS in which persistence is orthogonal to type also suffer to a certain degree
from the same problem. Often their collection classes are provided as parameterized types. The
generated collection classes are of course just as little derived from the root class of the GACL as
the ones provided by OODBMS based on persistence by inheritance.

Another issue concerns collection classes. Usually both the GACL and the OODBMS provide
collection classes. These classes usually have different functionality, different protocols, and
they are derived from different base classes. They are therefore not substitutable, and conversion
operators aren't available. Collection classes of GACL's normally are targeted to cope with
small to medium numbers of members whereas collection classes of WDBMS are designed to cope
with very large numbers of members. Collection classes of OODBMS usually provide a much
richer query facility and the capability of building indexes.

A further issue is object faulting. If a reference to a passive object is dereferenced the
corresponding object is automatically activated in an OODBMS. The so called object faulting
relieves the programmer from worrying about object activation. But often such objects have to be
connected to nonpersistent objects in order to function properly. An example is a persistent object
which consumes events. To get and distribute events the object has to be installed in the chain of
event handler objects. This means that one has to be very careful about not faulting objects
inadvertently, because this could lead to objects not being properly installed in their
environment.

A last hindrance for the integration is that GACLs usually rely on variable length objects where
some OODBMS only provide fixed length persistent objects.

Issues depending on the principle applied to determine persistence of objects

In the case of OODBMS which are based on persistence by inheritance the integration has to
cope with the following obstacles:

Some of the already defined classes in the GACL, as for example the text classes or
graphical object classes, should also have persistent versions.

Another problem concerns GACLs and OODBMS which are based on single inheritance.
There inheritance is used to get the persistence property. But often it is necessary to
construct classes which should have persistent instances, but which also should inherit
from another class. An example is a persistent graphical object class which should inherit
from the base class of the persistent object classes and from the base class of the graphical
object classes.

A consequence of the orthogonality of type and persistence is that all classes may have
persistent instances. The instantiation of one object often leads to a cascade of creations of other
objects, i.e., in the constructor of an object other objects are instantiated. Because every object
potentially can be created by such a cascading instantiation all constructors of all the classes of
the GACL must be changed so that all objects created during such a cascading instantiation are
allocated in the correct part of the memory. Otherwise it may happen that some parts of an
object are allocated in persistent memory while other parts are erroneously allocated in
nonpersistent memory. This is a tedious work since, for example, the GACL ET++ has several
hundred constructors.

4.5.5 Enhancing and improving the functionality of the database system

The issues considered so far make a GACL and a OODBMS function together and relaxes
constraints resulting from the file orientation of GACLs, i.e. applications can now be developed
which use an OODBMS for the management of persistent data. The next step of the integration
is to exploit the services offered by the GACL to enhance and improve the functionality of the
OODBMS and to overcome limitations of current OODBMS.

4.5.6 Using a priori knowledge to increase performance of the interaction with the dbms

The last issue in the integration of an OODBMS and a GACL concerns the use of a priori
knowledge to increase the performance of the interaction with the OODBMS. Database systems
are constructed with the goal of providing persistent data management to a wide variety of
applications. Therefore little can be presumed about the properties of applications and one
cannot take advantage of such knowledge to increase the performance of the dbms. In a GACL,
however, much more is known about the properties, the sequence and the probability of
interactions with the DBMS in general and in the near future. The GACL therefore can provide
the OODBMS hints so that the OODBMS can optimize its operation. Moreover, in the context of
a GACL it is possible to provide an application programmer with higher level abstractions
which represent typical interaction patterns with the dbms and therefore even more specific
information can be provided to the OODBMS.

5 Related work

5.1 Gemstone and Smalltalk

In one project [Purd871 the OODBMS GemStone and the Smalltalk programming environment
were combined. GemStone and Smalltalk run as different processes. Agent objects represent
persistent Gemstone objects in the Smalltalk application. The agent objects forward messages to
the persistent objects in Gemstone. Agents can also have a certain local autonomy, i.e., they can
cache part of the state of the GemStone objects and can have their own methods. This form of
integration belongs to lowest layer in our integration model. To our knowledge the integration
stopped at this level of integration and no further special GemStone classes were built to ease
the construction of new Smalltalk applications that use GemStone.

Another approach is our own previous work ETDB that integrates the OODBMS DB++ and
GACL ET++ [Schm901. It had narrower goals than our current approach. In our previous work

only the same document abstraction as currently incorporated in ET++ was supported,

the integration of a transaction concept adapted to the needs of a OODBMS was missing,

the integration strategy was different, and

only one persistent object could be displayed concurrently with the standard dialog.

Several properties of DB++ facilitated its integration with ET++:

The base class of all persistent object classes DBObject is derived from the root class of
ET++ Object. Therefore a persistent object can be used at any place where an instance of the
root class can be used. An example is a selection list in a graphical editor: to manage a
group of selected objects which by nature constitute a temporary group, a nonpersistent list
canbeused.

The protocol of the persistent collection classes is almost identical to the protocol of the
nonpersistent collection classes. A programmer knowing the protocol of the collection
classes of ET++ is therefore not required to learn a new protocol for persistent collection
classes.

To keep the complexity low ET++ wasn't altered. A new layer called ETDB was built below
ET++ and DB++. It integrates the GACL ET++ and the OODBMS DB++ (Fig. 5.1).

Fig. 5.1: Integration strategy

In this new layer several ET++ and DB++ classes were specialized and adapted to the needs of
the integration, so for example the application class, the document class, and the database class.
A persistent graphical object class was also implemented.

This effort resulted in a new GACL with which applications with a direct manipulation user
interface based on the cited document metaphor can be constructed (Fig. 5.2).

Fig. 5.2: Example application bubbles.

To increase the functionality of the OODBMS DB++, more functionality was added to the
classes of the persistent object class library of DB++. Each persistent object class derived from
the persistent object classes of the ETDB layer had a standard dialog. The standard dialog
displayed the content of the fields of a persistent object and the values could be modified (Fig.
5.2).

The result of the integration was, as described above, the new class library ETDB. To construct a
new application a programmer usually no longer derived classes from ET++ or from DB++ but
from ETDB.

The ETDB approach had several shortcomings:

The integration resulted in a strange distribution of functionality. The basic ET++ layer
was file oriented. In ETDB the file dependencies were removed and replaced by database
facilities.

The basic concept of a document was not changed and the transaction mechanism was not
adapted to the needs of a database management system.

Only the display services of the GACL were used to enhance the functionality of the
OODBMS.

The standard dialog was restricted to display only one persistent object at a time.

Having explained the problems and the limitations of recent approaches, a new approach -
ETDB++ -is presented and its solutions to the various problems are discussed. The solution to the
various problems and issues suggest a variety of means ranging from programming guidelines, new
or adapted classes to requirements for the OODBMS.

6.1 Solutions to issues resulting from the architecture of the GACL and
properties of OODBMS

6.1.1 Solutions to problems resulting from the design of the GACL

File oriented application framework

The solution to the problem of file oriented application framework in ETDB++ is to build a
neutral application framework which can be specialized for different kinds of persistent data
management.

If we look at ETDB, we see that the integration resulted in a strange distribution of
functionality. In the ET++ layer the application framework uses files, in the ETDB layer the
file dependent classes are replaced by classes which convert the GACL into one prepared to use
an OODBMS. The ETDB++-architecture uses an application framework neutral to persistent
data management and neutral to the supported document metaphor. From the neutral
application framework specialized application frameworks using different means for persistent
data management are derived. This architecture results in a class hierarchy for applications as
shown in Fig. 6.1. A generic application class provides the abstract protocol for applications. Its
subclasses are specialized application classes representing applications with different
approaches to persistent data management. The document classes will be organized in a similar
manner.

neutral specialized
4 m

- FileApplication

GenericApplication -
DBApplication

Fig. 6.1: Inheritance structure for the application classes of ETDB++

Transaction concept

Because OODBMS don't allow one process to execute more than one transaction at a time and to
prevent problems resulting from the concurrent execution of multiple transactions in one process,
ETDB++ allows a process to execute only one transaction at a time. A user still can run multiple
transactions in parallel against one database, because he or she can start multiple application
processes. Any number of documents can be opened and closed during one transaction, but they do
not represent separate transactions. ETDB++ applications therefore could be described as one
transaction - multiple document applications.

Transaction

Application

Document

Fig. 6.2: Structure of the transaction abstraction for overlapping documents

Furthermore, ETDB++ uses the concept of master and slave applications so that users are not
bothered with starting all transactions from the shell. The master application lets the user
select a transaction to be carried out. It then either starts a slave application in another process
or activates an inactive slave application. The slave application receives all needed
information, i.e., which transaction to run against which database from the master application.
At the end of the transaction the slave application notifies the master application that it is
ready to work on a new transaction.

Fig. 6.3: Structure of the transaction abstraction for non overlapping documents

In ETDB++ the strong linkage of transactions, opening/closing documents and
activation/deactivation of objects is broken up. A transaction can be started before a document is
opened, but the application automatically starts a transaction when a document is opened and no
transaction is already running. It is the duty of a document to decide about the appropriate
policy to lock and activate its elements, i.e., whether to activate all objects when the document
is opened or later on demand or according to another policy. Likewise it is also the responsibility
of a document to implement the appropriate unlocking and deactivation policy. Other
consequences of the separation of transactions from documents is that documents can be closed
without ending a transaction and they can implement a deactivation policy adapted to their
special purpose.

The end of a transaction causes the closing of all documents, deactivation of all persistent objects
and release of their locks. This policy can be overriden and adapted to special needs of the
application.

Finally one has to address the question of who manages transactions. In ETDB++ the application
classes are responsible for managing transactions. Therefore they provide the necessary protocol
to start, to rollback and to commit transactions. A transaction is of course an object too. Start,
rollback and commit are methods of the transaction class and these operations can be used to
trigger application specific actions.

Concept of a document in ETDB++

In ETDB++ a document still manages a group of persistent objects, but, as explained, a document
now is only loosely coupled with transactions. Documents may differ in the following properties:

Management of persistent data: for the management of the persistent data either files or a
OODBMS is used. (file / OODBMS)

Concurrent activation: some document abstractions assume that only one document is
concurrently active in an application. Others may allow the concurrent activation of more
than one document. (single / multiple concurrently active documents)

Structure: some documents presume that the objects they manage are not shared with other
documents. Others support the overlapping of documents. (nonshared / shared)

Element access: Documents can be based on navigational access to the elements, access by
queries or a combination of both if an OODBMS is used for the persistent data
management.

Activation and deactivation policy: Documents may implement different activation
policies according to the needs of the application.

Clustering: Elements of a document may be clustered within one or more segments or
another policy may be used.

Documents can therefore vary greatly in their properties. To provide document classes for every
reasonable combination of properties would lead to a large number of document classes and the

class library would be blown up with many similar classes. ETDB++ therefore provides a few
general and some more specialized but often used document types. The general document classes
implement general document concepts and they implement mechanisms which facilitate the
derivation of other documents with different properties.

neutral specialized
-4 m

- FileDocument

GenericDocument - - ...

* DBDocument -

- ...

Fig. 6.4: Document types in ETDB++

The base class of all document classes is the class GenericDocument. It is an abstract class and
defines the basic protocol of document classes to manage a group of objects and to control the
windows, views, etc., in which the objects are displayed. No assumptions are made with respect
to management of persistent data, concurrent activation of documents etc.

For the management of persistent data with files, the class FileDocument is provided. It
implements the same functionality as the current document class in ET++, i.e., a document is a
closed group of objjts edited together. It allows the concurrent activation of multiple documents
and the persistent data is stored in one file.

The class DBDocument implements the basic database document concept. It allows the concurrent
activation of multiple documents and shared groups of objects. It assumes activation of its
elements on demand and deactivation at end of transaction. It allows navigational access to its
elements, access via queries or a combination of both. It assumes no particular clustering policy.

To facilitate the management of its components all active objects can be registered with their
document. This information can be used to implement specialized deactivation policies in the
case of shared objects.

For documents which rely on navigational access to their components another registration
facility to permanently register its components is provided. Because the document knows which
objects will be accessed it can acquire all the needed locks in one interaction with the OODBMS
and it can ask to activate all or subgroups of its elements in order that the OODBMS can
optimize network communication, buffer management and disk access.

6.1.2 Solutions to problems resulting from the architecture and the design of the OODBMS

common problems

Problem of object faulting

If persistent objects must be connected to their nonpersistent environment to work properly one
cannot rely completely on object faulting. Therefore it is suggested in ETDB++ that documents
manage activation and deactivation and that all objects are registered at activation time with
their document. The registration can then be used to trigger the proper installation. The basic
database document therefore provides the necessary protocol needed to install objects properly
during registration.

Variable length objects versus fix length objects

Many classes in ET++ rely on variable length objects. It is possible but not comfortable to
integrate with a OODBMS only providing fixed length persistent objects but it is easier and more
convenient to integrate with a OODBMS supporting variable length objects.

In the following sections, the paper discusses problems and solutions for OODBMS based on
persistence by inheritance and persistence by allocation separately because the same problems
usually have different solutions for the different systems or because the different systems have
different problems.

Problems and solutions for OODBMS with persistence by inheritance

Persistent objects have not the same base class as transient objects

A good way to solve this problem is to provide a persistent object class which is substitutable
with instances of the root class of the GACL (in ET++ Object) and which implements the basic
functionality of the root class for persistent objects. Further persistent object classes are derived
from this new persistent object root class. The persistent object classes derived from this classes
are then also substitutable on the base of the root class of the GACL.

This can be achieved by implementing a forwarder class and a class which combines the
forwarder class and the base class of the persistent object classes. The forwarder object is used
whenever the persistent object should be substitutable with instances of Object and it simply
forwards all message calls to the combination object. The combination object either calls back the
method of the superclass of the forwarder object or deals itself with the message call (for a
detailed description of the technique see [Schm90]). The combination class can be implemented
with multiple inheritance or with composition.

Class libraries and OODBMS provide collection classes

In the best case one would have only one efficient set of universally applicable collection classes.
One way to achieve this would be to simply not use one set. But because the features of the two
sets are quite different one would at least loose a lot of possibilities or the solution simply
wouldn't work, because, for example, the set of collection classes used couldn't cope with

transient and persistent objects. The goal for this project is therefore to find a solution which
comes as close as possible to one set of collection class solution.

In the case of OODBMS based on persistence by inheritance it is possible to adapt the protocol of
the OODBMS collection classes to the protocol of the collection classes of the GACL. This is
achieved by implementing new persistent collection classes which use as their representation an
OODBMS collection and whose protocol is as similar as possible to the already defined protocol
of the GACL collection classes. This simplifies the use of collections, because programmers have
to learn only one protocol for persistent and nonpersistent collection classes. This solution leads to
substitutability with instances of Object but not with the collection classes of the GACL because
the new persistent collection classes are derived from the new persistent object root class.

To achieve also substitutability with transient collections one has to apply the technique
explained above for the problem of different root classes with the difference that the forwarder
class is derived from the collection class for which a persistent counterpart is to be implemented.
To prevent problems with the insertion of transient objects into such a persistent collection one
has introduce runtime checks in the insertion methods.

The integration could be further improved by enhancing the transient collection classes so that
they have the same query facilities as persistent collection classes. However, this would
probably require a major effort.

Drawback of the integration is that persistent and nonpersistent versions exist.

Already defined classes should have persistent versions

For some classes of the GACL persistent counterparts should be provided. In the case of ET++
these are about 15 classes. Examples are text classes, event handler, and graphical object classes.
The technique of forwarder and combination classes can also be applied here in the same way as
with collection classes.

Problems and solutions for OODBMS with persistence by allocation

Class libraries and OODBMS provide collection classes

In the case of OODBMS based on persistence by allocation one can derive new classes from the
base colIection class of the GACL. These classes use the collection classes of the OODBMS as
representation and act as protocol converters. This leads to a duplication of some classes because
the GACL and the OODBMS both provide, for example, a class Set. The new collection classes
also provide query facilities while the collections of the GACL provide only iteration. The
collections are substitutable on the base of base class collection of the GACL. If duplicate
collection classes, as for example Set, should be substitutable one would have to implement a
new abstract class for each collection class and derive classes with different representations or
parameterize the selection of the representation.

Eventually, if the collection classes of the OODBMS are efficient enough, one could simply
reimplement the collection classes of the GACL with collections of the OODBMS as their
representation.

Problem of cascading instantiation

There is no other way to cope with this problem than to modify all constructors in order that
they can take an additional parameter to indicate where the object should be allocated.
Moreover all cascading instantiations have to be modified to pass the additional parameter.

Which approach for persistence is preferable?

The integration is possible with both types of OODBMS. In systems based on persistence by
inheritance one has to provide persistent counterparts to the collection classes and about 15 other
already in the GACL defined classes. The integration is somewhat awkward in the case of the
collection classes, probably because nonpersistent collections have no query facility and because
of the duplication of the collection classes. An advantage is that the integration doesn't require
any changes in the GACL as long as the collection classes are not changed for a query facility.

The integration with a OODBMS based on persistence by allocation is easier to accomplish
because for already defined classes it is easily possible to allocate persistent instances. The
integration of the collection classes could be smoother than for OODBMS based on persistence by
inheritance if they are efficient enough to be used in place of the current collection classes of the
GACL. A disadvantage of systems based on persistence on allocation is that one has to change
the GACL in many places to cope with the problem of cascading instantiations.

Overall, the integration of the GACL and a OODBMS leads to a larger persistent object class
library with more specific and meaningful persistent object classes.

6.2 Enhancement and extension of functionality of the OODBMS by
exploiting GACL services

In ETDB++ the dialog facilities and the idle time of an application are used to enhance and
improve the functionality of the OODBMS.

Use of the dialog facilities

The GACL supplies all necessary facilities to construct forms and in database application
persistent objects often are displayed in forms. ETDB++ therefore provides a standard form for
persistent objects. In the case of OODBMS with persistence by inheritance the standard dialog is
part of the protocol of the root class of all persistent objects classes used in conjunction with the
GACL. In OODBMS with persistence by allocation a class with such dialog properties is
defined. Classes which should have this dialog facility are then derived from this class. In
order to allow more flexibility the standard dialog facilities of a persistent object implement
the methods needed to display the object and to cope with user events. The dialog layout is not
hardcoded but determined by a policy object which can be exchanged at runtime.

Use of the idle time of the GACL

In many interactive application the computing resources are not consumed all the time in
processing user interactions. The application is quite often idle while the user is thinking.
Therefore one could take advantage of low activity time (think time) to do housekeeping tasks
without interfering with the user activity. The generic application class therefore provides a
service to manage tasks which are carried out during idle time, the so-called "idle tasks". A
task may be installed in a task list. The application activates one task after the other. Tasks
are not preempted. The task service assumes that tasks are cooperative, i.e., they stop execution
after a short time. Tasks themselves are objects which have a protocol to start a task, to resume
the task and to terminate the task.

One example for an idle task is incremental synchronization of the object cache with permanent
store. During idle time changed objects may be written to permanent store. This reduces
deactivation time and transaction commit time. Another task could be prefetching objects if it is
known or highly expected that a user will access some objects in the near future.

The task system could be further improved if the operating system supports nonpreemptive
threads. The complete GACL could then be based on these threads and the idle tasks would be
only a special case of other threads of a application.

6.3 Using a priori knowledge to increase performance of the interaction with
the dbms

The performance of object activation/deactivation is heavily dependent on the distribution of
objects in permanent storage and on the order in which the objects are accessed. If queries are used
to access objects a query optimizer hopefully tries to figure out an efficient order. If navigational
access is used the optimizer is no help. With object faulting it may happen that for every fault
another page or another segment must be accessed. However, if an OODBMS is asked to load a
group of objects it could optimize the disk access, e.g., an elevator algorithm could be used, and it
could optimize the buffer management. Even better performance results if the OODBMS is asked
to load a whole segment.

There are also different access patterns. In the document editing style a bunch of objects is
loaded, then these objects are manipulated for a longer time and then all the objects are written
back to disk. Therefore, the time to load the objects and the time to store them on disk should be
minimized. In the bank teller style, a few members of some big collections and some objects
connected to them are loaded for a short time. It is therefore often not reasonable to load the
whole segment, but the time to search the objects in the collections should be minimized. In the
report access pattern often a high percentage of objects of one or more collection are accessed for a
short time and some aggregations are computed.

Some of this knowledge can be used during physical database design to decide what attribute to
index and which objects to cluster. The registration of the active elements and the permanent
registration the elements of a document can be exploited in the activation/deactivation policy of
a document to give the OODBMS hints for activation and deactivation of these elements.

However, some of this knowledge could also be used to build specialized documents. A
programmer can simply use such a document if the problem in question requires the
activation/deactivation pattern, the clustering policy, and other characteristics assumed for
the implementation of the document.

An example of such a predefined document is the class SimpleDBDocument which implements
an abstraction very similar to the FileDocurnent but for persistent data management with an
OODBMS. It presumes that at most one document is concurrently active, that the document relies
at first on navigational access and that the documents don't overlap. If the OODBMS supports
clustering of objects all elements of such a document are clustered in one or more segments which
don't contain objjts of other documents. Activation, deactivation, and locking of such documents
is very efficient, because whole segments can be locked, activated, and deactivated. In contrary
to the FileDocurnent where multiple people could inadvertently change a file at the same time,
the transaction mechanism of the OODBMS prevents the concurrent write access to such a
document.

7 Conclusions and future work

This project shows that with the current state of technology only the integration of a OODBMS
and a GACL supports applications with a modern graphical user interface. The integration of a
OODBMS and a GACL faces several obstacles but viable solutions to overcome the hindrances
are available. The integration also allows to improve the functionality of the OODBMS via use
of services of the GACL and by taking advantage of a priori knowledge about interactions of the
GACL with the OODBMS.

In future work one should consider a transaction concept more suited to engineering applications
and the integration of versions. It would also be desirable to find an integration solution that
works equally well with OODBMS based on persistence by inheritance or persistence by
allocation. One approach would be to develop a generalized persistent object model which then
would be mapped to the different database models. Eventually, high level tools which take
advantage of the new GACL/OODBMS combinations should be built.

Acknowledgements

This work benefited very much from the helpful comments and benevolent critique of Judy
Cushing, Belinda Flynn, Dave Maier and Jon Walpole.

References

[ACIU86] ACIUS, 4 th Dimension, ACIUS, 1986.

[Aha891 Alta'ir, The LOOKS User's Manual (Prototype Version 1.0), Altaii; Le Chesnay,
1989.

iApp1851 Apple Computer, Inside Macintosh Volume I, Addison-Wesley, Reading, MA,
1985.

[Comp861 A. Computer Inc, Open Dialogue, Apollo Computer, Inc., Chelmsford, Mass., 1986.

[M I 0. Deux, "The Story of 02," IEEE Transactions on Knowledge and Data
Engineering, Vol. 2, No. 1, Mar. 1990, pp. 91-108.

[Flyn90] Flynn, Belinda B., "OODBMS Support for the Design and Management of Object
Displays", Unpublished manuscript, Oregon Graduate Institute of Science and
Technology, Nov.1990.

[Gold831 A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley Publishing Company, Reading, 1983.

iGree851 M. Green, "Report on Dialogue-Specification Tools," In User-In terface
Management Systems, G. E. Pfaff, ed. Springer-Verlag, New York, 1985, pp. 9-20.

[Huds881 S. E. Hudson and R. King, "Semantic Feedback in the Higgens UIMS," IEEE Trans.
on Software Engineering, Vol. 14, No. 8, Aug. 1988, pp. 1188-1206.

[King891 R. King and M. Novak, "FaceKit: A Database Interface Design Toolkit," In Proc.
of the Fifteenth Int. Conf. on Very Large Data Bases (August 22-25, 1989,
Amsterdam, The Netherlands), P. M. G. Apers, ed. Morgan Kaufmann Publishers
Inc., Los Altos, 1989, pp. 115-123.

[Laen891 E. Laenens, F. Staes, and D. Vermer, "Browsing ?i la carte in Object-Oriented
Databases," The Computer journal, Vol. 32, No. 4,1989, pp. 333-340.

[Lint891 M. A. Linton, J. M. Vlissides, and P. R. Calder, "Composing User Interfaces with
Interviews," IEEE Computer, 1989, pp. 8-22.

[Maie871 D. Maier and J. Stein, "Development and Implementation of an Object-Oriented
DBMS," In Research Directions in Object-Oriented Programming, B. Shriver, ed.
MIT Press, Cambridge, 1987, pp. 355-392.

[Myer891 B. A. Myers, "User-Interface Tools: Introduction and Survey," IEEE Software,
Vol. 6, No. 3, Jan. 1989, pp. 15-23.

[Myer901 B. A. Myers et al., "Comprehensive Support for Graphical, Highly-Interactive
User Interfaces: The Garnet User Interface Development Environment,"
Submitted for publication, Jan. 90.

[Ols0871 D. R. Olson, "ACM SIGGraph Workshop on Software Tools for User-Interface
Management," Computer Graphic, April 1987, pp. 71-147.

tStro861

[Sun 881

Ontologic Inc., Vbase+ Functional Specification, Ontologic Inc., Billerica, 1988.

D. Plateau, R. Cazalens, and B. Poyet, A customizable abstract I/O sewer for
complex object edition, Altdir, Le Chesnay, 1989.

A. Purdy, B. Schuchardt, and D. Maier, "Integrating an Object Server with Other
Worlds," ACM Transactions on Office Information Systems, Vol. 5, No. 1, 1987,
pp. 27-47.

M. B. Rosson, S. Maass, and W. A. Kellogg, "Designing for Designers: An Analysis
of Design Practices in the Real World," In Proceedings SIGCHI+GI 1987, ACM,
New York, 1987, pp. 137-142.

K. J. Schmucker, Object-Oriented Programming on the Macintosh, Hayden Book
Company, New Jersey, 1986.

D. L. Schmidt, Persistente Objekte und objektorientierte Datenbanksysteme:
Konzepte, Architektur, Implementierung und Anwendung, Ziirich, 1990.

B. Stroustrup, The C++ Programming Language, Addison-Wesley, Readings, 1986.

Sun Microsystems, Sunsimplify Overview, Sun Microsystems, Mountain View,
1988.

B. F. Webster, The NeXT Book, Addison-Wesley Publishing Company, Inc,
Reading, 1989.

A. Weinand, E. Gamma, and R. Marty, "Design and Implementation of ET++, a
Seamless Object-Oriented Application Framework," Structured Programming,
Vol. 10, NO. 2,1989, pp. 1-25.

D. A. Young, X Window Systems Programming and Applications with Xt, Prentice
Hall, Englewood-Cliffs, New Jersey, 1989.

