
Type Safe Abstractions Using Program Generators

ogi tech report ������

Tim Sheard and Neal Nelson

Oregon Graduate Institute of Science � Technology

P�O� Box ������ Portland� OR ��	��
���� USA

fsheard�nealng�cse�ogi�edu

Abstract

Writing program generators involves the development of pro�
grams that manipulate representations of programs� thus of�
fering unlimited possibliities for abstraction	 Abstractions
not expressable in typed languages can always be expressed
as generators	 For example generator mechanisms are im�
plicit in the eq�types of Standard ML� and the deriving
clauses of Haskel type classes� neither of which can be en�
coded within the language	 While these mechanisms always
generate well typed code� they are
hard coded� into the
compiler	

Our goal is to incorporate generator like abstraction mech�
anisms into programming languages� while ensuring that
only well typed programs are executed	 This can be accom�
plished by a generate and then type�check approach or an
inference mechanism that guarantees that only well typed
programs are generated	 In this paper we investigate both
possibilites	

The problems associated with program generators in�
clude problems of
hygiene� and the type compatibility of
the programs being generated	 Naive approaches to typing
generators have either been in�exible
giving rigid� invariant
types to the meta�level expressions representing programs
requiring every object term to have the same type� or unde�
cidable
requiring dependent types with arbitrary equality
theories on expression equality�	

We solve the hygiene problems by the use of syntactic
closures and have approached the type problem in two ways	
First by using a two level system
�a la Nielson and Nielson
���� we are able to embed a meta�computation phase which
associates invariant code types to object expressions� into
a later phase which then indexes these code types with the
object expression�s type	 This ensures that only well�typed
programs reach the run�time phase	 We guarantee that the
meta�computation phase terminates by restricting its ex�
pressiveness by the use of catamorphisms as the exclusive
mechanism to encode recursion	

Second we introduce a theory of dependent types for two�
level languages that has a useful� decidable theory due to the
use of catamorphisms� rather than arbitrary recursion� in
the expressions that may index dependent types	 We show
that this can give useful types to program generators which
detect type problems in generated code at the compile�time

of the generator	
Third we show that by embedding second level type dec�

larations as values in �rst level computations we are able to
construct polytypic program generators� such as polymor�
phic equality and generic map using our theory	

� Introduction

We propose a language with multiple levels that distinguishes
expressions meant to run at compile�time� link�time� run�
time etc	 For each level� n� there is a phase that type�checks�
elaborates� and translates meta�code for that level	 On suc�
cessful completion of that phase� the next phase involves
the execution of the level n meta�code along with the type�
checking� elaboration� and translation of the code at level
n��	

The overriding reason to resort to a multi�level system
is the ability to express abstractions not typable by tra�
ditional type systems using program generators� yet still
maintain the invariant that well�typed programs do not go
wrong	 In a multi level system this property can be guaran�
teed in a very simple manner	 First limit the expressiveness
of all but the last level
the meta�computation levels� in or�
der to guarantee their termination� and second use ordinary
Hindley�Milner type inference to type the generated code in
the context where it is incorporated into higher levels	

In this paper we concentrate on two level programs	 Level
� being what we would normally associate as compile�time
and level � being run�time	 Thus we observe that compile�
time can be expanded to accomplish more than just the
transformation of source code to target code	 It can also be
used as a meta�programming phase in which user supplied
code directs computation that constructs object�programs�
which are incorporated and compiled along with the pro�
grams explicitly supplied by the programmer	 At run�time
the sum of the generated code and the explicitly supplied
code is executed to supply results	

A two level language distinguishes three phases	 In phase
i� meta�code is typed� elaborated� and translated	 In phase
ii� the meta�code is executed to produce object�code� and the
sum of the generated object code and the explicitly supplied
second level code is compiled	 In phase iii�
what we nor�
mally associate as run�time� the compiled code is executed
to produce results	

In this two level� three phase scheme� type errors are all
caught in either phase i or phase ii	 Because of the termi�
nation properties of the meta language all compilations are
guaranteed to terminate	 While this maintains the desired
property that well typed programs do not go wrong� type
errors in generated code will not be found until they are

Programs

prog ��� level � d� level � d� e programs

d ��� type T �
Fn �i �� �� t declarations
k type T �
Fn �i �� �� Fix � �� t
k val v � e

t ��� unit k String k Int k t�t� k t �� t� k t j t� types
k � k T t�

e ��� �	 k v k e e k fn v �� e
k c constants like� �
k
e � e� k fn
v�� v�� �� e products
k inl e k inr e k fn vl �� e
 vr �� e sums
k in T e k fn in T v �� e k cata T e k fix v �� e recursive types
k �e� k � e meta expressions

Figure �� Syntax of the two level language

compiled in phase ii	
To solve this problem we have developed a type system

incorporating value�dependent types in the �rst phase	 This
allows us to type interesting meta�programs in phase i� and
to determine that all programs generated by such meta�
programs are well�typed	

� The Two Phase Language

The syntax of our two level language is presented in Figure
�	 Programs consist of two levels	 Each level is a sequence
of declarations	 The second level declarations are followed
by an expression� that computes the result of the program	
A declaration is either a type declaration or a value declara�
tion	 To ensure the safety of such a system� we place limits
on what may appear in each level	 In the sequel� we describe
a type systems for each level that admits only type�safe pro�
grams	

��� Type declarations

Types include the primitive types unit� Int� and String�
binary pairs� binary sums and function types	 Type abstrac�
tions are speci�ed using Fn and are limited to the outermost
scope of type declarations	 Recursive types are speci�ed ex�
plicitly using� Fix� the �x point operator on types	 Like
type abstractions the �x point operator must appear at top
level as well� except it must appear immediately after type
abstractions
if any�	 We use the syntax Fix x �� T x for
� T� but make explicit that T is a type constructor that takes
a a type parameter x	

��� The meta�language

The meta�extensions� �e� and � e make our language a re�
�ective meta�programming system	 In meta�programming�
programmers write meta�programs which manipulate and
construct object�programs	 In a re�ective system the meta�
language and the object language are the same� and there is
a mechanism for executing the constructed object language
programs	

In the two level language object language terms are con�
structed using the object bracket
� ��� and the escape no�
tation
��	 In this notation� object brackets surrounding a
lambda term denote the data structure that represents that
term	

An escaped term inside object brackets allows the term
to
escape� the e�ects of the object brackets	 Thus inside
object brackets wherever a term is expected an escaped term
may occur	 The escaped term is a meta�computation which

computes� a value to
�ll in� the hole in the object term at
that point	 This object bracket� escape notation is similar to
the back�quote�comma� quasi�quotation mechanism of Lisp
and Scheme� where object brackets play the role of back�
quote and escape plays the role of comma	 For example�

val double x � ��x
 �x�
val f � �fn x �� ��double �x�	 � ��

The function double takes an argument� x�object�term� and
produces a result of type object�term	 double �y��� pro�
duces ��y��	
 �y��	�	 The object�term� f represents the
abstraction �fn x �� �x
 x	 � ��	 Note the use of es�
cape
��double �x�	� to allow allow the application of the
double function to escape the object brackets� and the use
of the object brackets around x because the application of
double is escaped but its argument� the object bound vari�
able x� is not	

��� The expression language

In our language we choose untraditional ways of represent�
ing products� sums� and recursive types because representing
tuples as nested binary�products� and sums as nested binary
sums supports a superior notation for meta�programming	
This is because each syntactic construct has a �xed
size�
and
shape�	 There are no syntactic constructs with un�
bounded size	 For convenience� though� we wish to use a
display notation that is more familiar	 In Section �	� we
provide rules which map more familiar notation to the ex�
pression language of Figure � we are about to describe	

The unusual features of the expression language include
our treatment of all products and sums as binary prod�
ucts and sums	 Products are constructed using the usual
parenthesis�comma notation� �x�y		 The operators inl and
inr are the left and right injectors of the sum type	 Product�
abstraction� �fn �x�y	 �� e	 is de�ned by the rule �fn
�x�y	 �� f�x�y		 �e��e�	 � f�e��e�		 Sum�abstraction�
�fn x �� m
 y �� n	� when applied to �inl u	� computes
�fn x �� m	 u and� when applied to �inr v	� computes
�fn y �� n	 v	

Unlike many functional languages� our language does not
use explicit value constructors to construct instances of re�
cursive types	 Instead� it uses the explicit product� sum� and

�

�x�y�z�w	 � �x��y��z�w			
��

fn �x�y�z	 �� e � fn �x�m	 �� �fn �y�z	 �� e	 m
��

fn x �� a
 y �� b
 z �� c � fn x �� a
 m �� �fn y �� b
 z �� c	 m
��

fn x �� �fn �a�b	 �� e	 x
 y �� �fn �m�n	 �� w	 y � fn �a�b	 �� e
 �m�n	 �� w
��

if t then e� else e� � �fn �	 �� e�
 �	 �� e�	 t
��

Figure �� Syntactic Shorthands

in T operators	 The operator in T is the mediating mor�
phisms between values of type T and its �xpoint� speci�cally
between T
Fix x �� T x � and Fix x �� T x 	

The ordinary value constructors of a recursive type can
be de�ned in terms of these operators	 For example� for ML
style lists�

datatype �a list � Nil
 Cons of �a � �a list

we have instead

type L � Fn a �� Fn x �� unit
 a � x
type List � Fn a �� Fix x �� L a x

Thus in L has type�
�unit
 a � �Fix x �� L a x		 �� �Fix x �� L a x	

and the constructors Nil and Cons are de�ned by�

val Nil � in L �inl �		
val Cons � fn �a�r	 �� in L �inr �a�r		

Traditional languages use case statements to decompose
constructed values	 Our term language can capture any case
analysis over a value construction by using sum�� product��
and in�abstractions	 For example�

case e of Nil �� e�
 Cons�a�r	 �� e�

can be expressed by the following composition of abstraction
operators applied to e�

�fn in L x ��
�fn z �� e�
 y �� �fn �a�r	 �� e�	 y	 x	 e

��� Recursion and catamorphisms

In the expression language recursion in functions is expressed
explicitly using the fix x �� e operator� 	 For example the
recursive factorial function could be expressed by�

val fact �
fix f �� fn x �� if x�� then � else x � f�x��	

The catamorphism operator� cata T � � expresses uni�
form recursion��� over the type� Fix x �� T x	 The type of
cata T is
T� � �� �
Fix x �� T x� � �	 The cata
operator obeys the following equation� cata T �
in T x � �
�
T
cata T � � x� where the use of the type operator T in
the value space is its natural lifting as a functor	

Note that cata� in� and in�abstraction are explicitly an�
notated with names� T � which are introduced in type decla�
rations	 To illustrate the use of catamorphisms� we de�ne a
function to sum the values in a list as a catamorphism over
List as de�ned above	

val total � cata L �fn �	 �� �
 �x�y	 �� x
y	

�We use lowercase fix for the operator on values and capitalized

Fix for for the operator on types� We use a similar notation for the
abstraction operators Fn and fn�

For reader unfamiliar with catamorphisms as control struc�
tures we have provided Appendix A	

Both the fix combinator and cata operators can express
recursive computations� though the recursion in catamor�
phism is implicit and is
hidden� inside	 It is important to
note that if � is a terminating function then cata T � is
also terminating	 We will exploit this important property in
the sequel to guarantee that all programs in the �rst level
of our two level language terminate	

��� Syntactic shorthands

As illustrated in Figure � in Eqn	 �� we may sometimes write
n�ary products� by which we mean right associative binary
products	 In Eqn	 �� a similar rule holds for n�ary prod�
uct abstractions� and in Eqn	 � for n�ary sum�abstractions	
In Eqn	 �� a sum�abstraction� each of whose arms is the
application of a product�abstraction to the sum�abstraction
variables� may sometimes be written using
patterns�� In
Eqn	 �� the if�expression is a syntactic shorthand for a sum�
abstraction over Bool� where Bool is de�ned by� type Bool
� unit
 unit and the constants true and false are de�
�ned by� val true � inr �	 and val false � inl �		

We sometimes use the integer constants �� �� �� etc	 as
if they were ordinal natural numbers� i	e	 elements of the
type Nat de�ned by�

type N � Fn a �� unit
 a
type Nat � Fix a �� N a
val zero � in T �inl �		
val succ � fn x �� in N �inr x	

where � � zero� � � succ�zero	� etc	
Finally� we write Fix T for the �xpoint of the type con�

structor T instead of the more verbose Fix x �� T x	

��	 Meta�language semantics

Meta�programming systems are notorious for insu�ciently
specifying the details about handling environments in which
object terms may be
evaluated�	 These environments spec�
ify bindings for the object term�s free variables	 For ex�
ample if the object term �f �� is constructed in a context
where f has one meaning� and evaluated in another con�
text where f has another meaning� in the evaluation which
meaning does f refer to� Object�terms which contain ab�
stractions also may exhibit problems with inadvertent vari�
able capture	 The absence of these problems has been called
hygiene���	 Any meta programming system must supply se�
mantics which describe precisely how these problems are
handled	

In Figure � we give semantics for the meta�lambda cal�
culus� a subset of our two level language	 The syntactic
category e describes the formation rules for terms	 The se�
mantic value domain is the separated sum� int j value �
value j term� where terms have local environments �	 The

�

e � term ��� n k v k e e k fn v �� e k �e� k � e where n � Int v � variable

S � value ��� �n �i k � g �f k � e �t� where � � variable � value� g � value � value

ext � v s � � u � if u � v then s else � u

��� x � term ����variable�value� � value

�� n ��� � �n �i

�� v ��� � � v

�� e� e� ��� � g �� e� ��� when �� e� ��� � � g �f

�� fn v �� e ��� � ��s��� e ��ext � v s �f

�� �n� ��� � �n �t�
�� �v� ��� � C �� v�
�� �e� e�� ��� � � f� �e�� �g��� f� �e�� �g��� �

t
�����

�� �fn v �� e� ��� � � fn v� �� f� �e� �g
ext � v � v� �t

�

� �t� where v
� is a new variable

�� ��e�� ��� � � �f� �e� �g��� �
t
�

�� �� e� ��� � �� e ���

�� � e ��� � �� f� e �g�� ���

f� e �g�� � y when �� e ��� � � y �t�

C � e �t� � � e �t�
C s � � v� �t

fv� ��sg

Figure �� The Semantics of the Meta Lambda Calculus

syntactic formation rules for the semantic domain of val�
ues is given by S	 Because we need to discriminate between
the three summands of S we use the � � notation with su�
perscripts i�f � and t that denote discriminants	 Thus �e�t�
denotes a value� where e is an object term and � is its local
environment	 We use the notation� �� ��� � term � value�
for the meaning function for terms under the mapping � �
variable � value	 If a term e under � has as its meaning
some term value � y �t� with local environment mapping � we
write f� e �g�� � y	

Excluding the meta�programming capabilitys
� � and
� � the meta�lambda calculus has a completely standard
semantics	 In function application if e� does not evaluate to
a function value then the semantics returns bottom	 Unlike
the the quasi quotation mechanism of lisp�like languages� a
bracketed term never evalutes to an object term contain�
ing free variables	 The rule for object variables
�� �v� �����
looks up the variable in the static environment� �� where the
bracket term appears	 This value is handled by the function
C	 Object bound variables
variables bound by bracketed
abstractions�� are just mapped to themselves� � e �t�	 If the
variable is not an object bound variable� then it is a value
s	 A term value is constructed� the term inside the value
is a new variable� and the local environment of the term
value� maps this new variable to the value s� � v� �tfv� ��sg	
Thus the free variables in object brackets are embedded in
the local environment � as a
syntactic closure�	 Thus all
free variables in bracketed terms are captured in the static
environment where the object bracketed expression occurs	

The possibility of inadvertent variable capture is not pos�
sible because the meaning of an object abstraction� con�
structs a new abstraction with a new variable and consis�
tently renames all occurnces of the old variable	 The seman�
tics ensures that no bound variable in a constructed piece of
code can be known by the programmer� thus ensuring good
hygiene	

Re�ection� the execution of object language terms� is in�
dicated by an escaped term� e� which is not embedded in ob�
ject brackets	 The term e is evaluated to obtain a term value

with local environment �	 This term is then re�evaluated in
this local environment	 These semantics generalize to the
two level language with products� sums� and recursive types
quite easily	

��	�� A complete example

Consider the meta�computation speci�ed by the function
ntuple that given a natural number n� constructs an object
abstraction which builds an
n����tuple from its argument	

val ntuple �
fn n ��

�fn x ��
��cata N �fn �	 �� �x�

 s �� ��x��s	�	 n	�

Given an integer n the function ntuple builds an object ab�
straction� whose bound variable is x and whose body is some
term computed by the escaped catamorphism over n	 If n is
�� it returns just the variable x� otherwise it returns a prod�
uct whose �rst component is x and whose second component
is the result of applying the catamorphism to n��	

Thus the result of applying ntuple to the natural number
� is� �fn x �� x�� to � is� �fn x �� �x�x	�� and to � is�
�fn x �� �x��x�x		�� etc	

The purpose of meta computation is to
compute� code
in level �� which is to be
spliced� into the level � program	
In Figure � a small but complete two level program is illus�
trated	 Here escaped expressions involving values de�ned in
level � direct meta�computation in the compilation phase of
level �	

The level � ntuple function is used during the compi�
lation of the level � program to construct the abstraction
fn x �� �x��x��x�x			� which is used as the meaning of
the level � variable quadruple	 Note that �x��x��x�x			�
really is a quadruple since by the suntactic shorthand de�
scribed in Eqn	 �� it is equivalent to �x�x�x�x		 This pro�
gram computes� ������������		

�

level �

type N � Fn a �� unit
 a
type Nat � Fix a �� N a
val ntuple � fn n �� �fn x �� ��cata N �fn �	 �� �x�
 s �� ��x��s	�	 n	�

level �

val quadruple � ��ntuple �	

quadruple ��

Figure �� A small but complete two level program

� Typing the two level language

Figure � gives rules for syntacticly valid term constructions	
But not all such terms have meaning	 Traditionally� a type
system is used to report invalid terms by assigning types
to terms	 In Figure � we give type rules for the two level
language	 The rules are organized into three sections	 The
core rules are valid for typing both level � and level � terms	
We give additional rules that should be unioned with the
core rules to complete the rules for each level	 We introduce
the type code as the rigid type of all object terms	

Note that the type rules ensure that bracketed terms
may appear only in level � terms� and that the �x point
operator
and hence recursion and thus the possibility of
non�termination� may appear in only level � terms	 In level
� terms� escapes may occur only inside brackets� and in level
� terms� escapes may occur at any point	 The escaped terms
in level � may reference only constants and level � values	

Note that the rule ��esc implies that� in order to type
level � terms� the type system must evaluate level � terms
to obtain object language terms which are then typed	

It is important to note that the additional rules for level
� rigidly type every object language term with the a single
type� code	 We will return and reconsider this design choice
later	

� Why Two Levels

The reason for using typing at two levels is that it is pos�
sible to de�ne abstractions using generators which cannot
be well typed under the usual Hindley�Milner polymorphic
type system	

To illustrate the problem� consider the following function
last	 It takes a right associative nested family of tuples and
produces the last element of an
n� ���tuple	

last � x � x
last n
x� y� �
last
n� ��� y

Where last �
x� y� � y and last �
x� y� z� � z	 This
function is not typable in traditional type systems� since
the two clauses of the de�nition of last have two di�erent
types	 By using two levels� both clauses of last compute
something with type code� because both compute object
language terms	

last � � �fn x �� x�
last n � �fn �x�y	 �� ��last �n��		 y�

Because type checking level � code involves executing level
� code� and we want our type checker to always terminate�

we limit the expression of recursive computations in level
� to those using cata	 Thus we write the equivalent and
provably terminating�

val last �
fn n �� cata N �fn �	 �� �fn x �� x�

 f �� �fn �x�y	 �� �f y�	 n

It is only after applying last to a constant in some es�
caped level � term do we attempt to type the object code
produced	

Type problems with object language terms generated by
level � programs are only detected in phase ii	 Can we
do better� Can we guarantee the generator generates only
well�typed code� Can we do it when the generator is type�
checked once and for all� rather than wait each time until
the code is generated� For some programs the answer is yes�
To understand why� consider that if last is applied to a con�
stant� say �� the resulting object language term does have
a �xed type� but now the type of last depends upon the
value of its �rst argument	 A function whose type depends
upon the value of its argument is said to have a dependent
type	 We will write the type of last as� � n � Nat 	 E
n� to
denote that its type depends upon the value of n	 By intro�
ducing a richer type system involving dependent types we
can type many programs such as last	 We will see that de�
pendent types will also allow us to relax the design decision
of allowing only rigid code types	

� Catamorphisms and Dependant Types

Many dependent type systems are undecidable
requiring
dependent types with arbitrary equality theories on expres�
sion equality�	 In this paper we restrict dependent types to
the use of catamorphisms
rather than arbitrary recursion�
in the expressions that index dependent types	 Our the�
ory of dependent types for two�level languages has a useful�
decidable theory	

� ��� S
t� k � v � � 	 �� k Cata T
 �
 � v

 ��� � k
j

� ���
 �� �� ���
� ��� � k unit k Int k String k �� ��

k � � �� k �� ��

Figure �� Syntax of Types for the Dependent Type
System

�

Core Language Rules

unit�
	 �

	 � �� �

var�

fv � �g � 	

	 � v � �

abs�
	� fv � �g � e � �

	 � fn v �� e � � � �
app�

	 � f � � � �� x � �

	 � f x � �

prod�abs�
	 � fv� � �� v� � �g � e � �

	 � fn �v�� v�� �� e � �� � ��� �
prod�

	 � e� � �� e� � �

	 � �e� � e�� � � � �

suml�
	 � x � �

	 � inl x � � � �
sumr�

	 � x � �

	 � inr x � � � �

sum�abs�
	 � fvl � �lg � el � �� 	 � fvr � �rg � er � �

	 � fn vl �� el � vr �� er � ��lj�r�� �

in�
	 � x � T �Fix T �

	 � in T x � Fix T
out�

	 � fv � T �Fix T �g � x � 	

	 � fn in T v �� x � �Fix T �� 	

cata�

T �
	� � � � � �
	k � �

	 � f � T
� � � �
k�� � � �

	 � cata T f � �Fix x �� T
� � � �
k�� x� � �

Addtional Rules for Level � br�unit� 	 � ���� � code

br�esc�
	 � e � 	

	 � �� e� � 	
br�var�

	 � v � 	

	 � �v� � code

br�app�
	 � �f� � code� �x� � code

	 � �f x� � code
br�abs�

	 � fv � 	g � �e� � code

	 � �fn v �� e� � code

br�prod�abs�
	 � fv� � �� v� � �g � �e� � code

	 � �fn �v�� v�� �� e� � code
br�prod�

	 � �e�� � code� �e�� � code

	 � ��e� � e��� � code

br�suml�
	 � �x� � code

	 � �inl x� � code
br�sumr�

	 � �x� � code

	 � �inr x� � code

br�sum�abs�
	 � fvl � �lg � �el� � code� 	 � fvr � �rg � �er� � code

	 � �fn vl �� el � vr �� er� � code

br�in�
	 � �w� � code

	 � �in T w � � code
br�out�

	 � fv � T �Fix T �g � �e� � code

	 � �fn in T v �� e� � code

Addtional Rules for Level �

��esc�
	 � x � code� f� x �g�� � y� y �

	 �� x �

���x�

	 � fv � 	 �
g � e � 	�

	 � fix v �� e � 	 �

Figure �� Type rules for the two level language

�

Addtional Rules for Level � br�unit� 	 � ���� � code�unit�

br�esc�
	 � e � 	

	 � �� e� � 	
br�var�

	 � v � 	

	 � �v� � code�	�

br�app�
	 � �f� � code�	�
�� �x� � code�	�

	 � �f x� � code�
�
br�abs�

	 � fv � 	g � �e� � code�
�

	 � �fn v �� e� � code�	 �
�

br�prod�abs�
	 � fv� � �� v� � �g � �e� � code���

	 � �fn �v�� v�� �� e� � code��� � ��� ��
br�prod�

	 � �e�� � code���� �e�� � code���

	 � ��e� � e��� � code�� � ��

br�suml�
	 � �x� � code���

	 � �inl x� � code�� � ��
br�sumr�

	 � �x� � code���

	 � �inr x� � code�� � ��

br�sum�abs�
	 � fvl � �lg � �el� � code���� 	 � fvr � �rg � �er� � code���

	 � �fn vl �� el � vr �� er� � code���lj�r� � ��

br�in�
	 � �w� � code�T �Fix T ��

	 � �in T w � � code�Fix T�
br�out�

	 � fv � T �Fix T �g � �e� � code�	�

	 � �fn in T v �� e� � code��Fix T �� 	�

Figure � Indexed code typing of level � programs�

We give the syntax of our dependent type system in Fig�
ure �	 We will discuss its meaning by explaining how to type
the last example	

Types include the types� t of Figure � as well as the two
new types � and Cata	 Note that the dependent variable v
introduced by � types may only appear in Cata types	 A
Cata type encodes a computation� which when given a value�
produces a type	 Patterns� �� in type abstractions allow a
limited form of case analysis of types inside fold types	

In the dependent type system we replace the abstraction
type rules with rules which give every abstraction a � type	
For example�

dep�abs�
! � fv � ��g � e � ��

! � fn v �� e � �v � �� 	 ��

Thus if the non�generator version of last
the version in
italics� is written as a catamorphism�

last � fn n ��
cata N �fn �	 �� �fn x �� x	

 f �� �fn �x�y	 �� f y		 n

It can be given a � type	 Since the body of the abstraction
is a catamorphism� and the cata rule of the core rules fail�
we give the catamorphism in the de�nition of last a Cata

type	 The type of last is�

� n � Nat 	 Cata N

�
� � �� � � �
j
 � � ��
��
� � �

�
n

One interprets this as follows� given a natural number n
we can compute the type of last n	 The �rst clause in the
fold type� � � �� � � �� gives the type of last � � � � �	
This is accomplished by applying the type abstraction to
the type unit�
the domain of zero�	 The second summand
in the fold type� �

 � �� ��
� �
� � � tells how to
compute the type of
last n� �
��
� � � given the type
of
last
n � ��� �
 � �	

Intuitively Cata types allows us to type catamorphisms
such as� cata T phi� where each clause of the sum abstrac�
tion� phi� has a di�erent co�domain	 Given a catamorphism�

if the original core rule cata fails� we may use a the richer
rule� dep�cata� below that gives the catamorphism a Cata

type	

! � T � Fn vt �� Ei
vt� � 	 	 	�En
vt� �

v � Fix T� �i � Ei
�i�� �i� zi �
 "Ei
�i�� �� �i

! � cata T
fn ��j 	 	 	 j�n� v � cata T
� z�j 	 	 	 jzn� v

when
i�j����n 	 Ej
�j� �� Ej
�i�

To type a catamorphism� the annotation T must be a
type abstraction over vt whose body is a sum	 The sum�
mands Ei
vt� are type expressions which depend upon vari�
able vt	 The cata variable v must have as its type the �x�
point of T 	

The ��s and ��s range over types �	 The notation Ei
��
denotes the type
in the syntactic category � of types� given
by S
Ei
vt�� with � substituted for vt	 In a similar fashion
"Ei works in the syntactic category of patterns �	

The �i are the cata actions to take� depending upon
which summand the value of v is in	 The domains of the
�i functions must be appropriately shaped according to Ei

for some �i	 Furthermore� in the cata type expression� the
"Ei
�� patterns of the zi have to match the Ei
�� domains
of the �i�s	

Finally� the collection of Ei
�i� types must satisfy the

cata�coherence condition� underneath the rule that guar�
antees that both the types of the �i�s and the zi�s pat�
terns will properly match when the catamorphism unwinds
itself	 This condition states that the co�domain type of
each clause� �i� must be compatible with the recursive parts
of the domain� of every �	 For the type of last � n �
Nat 	 Cata N
 � � �� � � � j
 � � ��
��
� � � � n
this manifests itself in the two conditions
� � �� ��
��

� � � and

� � ��� ��
��
�� �	

�If there are any� For example the domian for �zero is �� and has
no recursive parts�

level �
val ext � fn env �� fn s �� fn x �� cons��s�x	�env	

val lookup � fn env �� cata L �fn �	 �� fn s �� error �not found�

 ��t�x	�g	 �� fn s �� if s�t then x else g s	 env

val mapgen �
fn x ��
�cata Ty
�fn s �� �fn env �� �fn x �� x�	

 s �� �fn env �� lookup s env	

 �f�g	 �� �fn env �� �fn �p�q	 �� ���f env	 p���g env	 q	�	

 �f�g	 �� �fn env �� error �arrow type in map�	

 �f�g	 �� �fn env �� �fn lf �� inL���f env	 lf	
 rt �� inR���g env	 rt	�	

 �s�f	 �� �fn env �� �fn a �� ��f �ext env s �a�		�	

 �T�s�h	 �� �fn env �� �fix m ��

fn in �T x �� in �T ��h �ext env s �m�		 x �		
x	 Nil

level �
type L � Fn a �� �Fix x �� unit
 �a � x		
type List � Fn a �� Fix l �� unit
 �a � l	
val nil � in �L� �inL �		
fun cons x � in �L� �inR x	

val map � ��mapgen List	

map �fn x �� x
�	 �cons���cons���nil			

Figure #� A complete two level program illustrating poly�typic map

	 Indexed code Types

It is possible to give object language terms a much richer
type indicating the type of the object term as well as the
fact that the object terms are of type code	 We indicate
this by indexing the the type object language terms code
with a type� code��		 Because a single meta program may
produce many object language terms� each with a di�erent
type� many generators become impossible to type under this
indexed code type scheme	 This is because the type of the
generator cannot be described by a single parametrically
polymorphic type scheme	

By incorporating dependent types as described earlier
we can solve this problem	 The dependent types describe
how to calculate the type of a generated program from the
argument to the generator	 The types of the generated pro�
grams are all members of a single family of types which are
generated by a Cata type when applied to the generators
input	

To infer indexed code types we need to enrich the rules
described for level � programs	 In Figure we give the richer
rules for inferring indexed code types from level � programs	

So �nally using these rules� and the rule dep�cata the
generator version of the function last�

val last �
fn n �� cata N �fn �	 �� �fn x �� x�

 f �� �fn �x�y	 �� �f y�	 n

is given the type�

� n � Nat 	

Cata N

�
� � �� code�� � �	
j code�
 � �	 �� code�
��
� � �	

�
n

� Polytypic Generators

Poly�typic programs are ad�hoc polymorphic programs which
execute di�erent code at each instance	 A polytypic algo�
rithm abstracts over the structure of data�types so that a
single algorithm speci�es many di�erent code sequences once
a particular data�type is �xed	 Generic equality and map are
well known examples	 A program generator whose input is a
data structure similar in shape and structure to type decla�
rations can be used as a polytypic program generator	 One
such data structure is the type Intension�

type Ty � Fn t ��
string �� int� string �	

 string �� var �	

 �t � t	 �� product �	

 �t � t	 �� arrow �	

 �t � t	 �� sum �	

 �string � t	 �� Fn a �� a � b �	

 �annotation � string � t	 �� Fix x �� t �	

type Intension � Fix x �� Ty x

All types declarations in the two level language have an
embedding in the type Intension
but not all Intensions
represent valid type declarations since Intension does not
require type abstraction and �x point to be the outermost
constructors�	 The type annotation is a primitive type that
will be explained later	

Generators over Intension specify polytypic functions	
For example the map function for any type can be generated
by the generator mapgen in �gure #

In level � the functions ext and lookup are used to man�
age a list of string � code pairs� that represents a map�
ping of the type variables to pieces of code	 The function
lookup is written as a catamorphism to guarantee its termi�
nation	 The catamorphism inside the function mapgen when

#

applied to x�Intension� produces a function from type vari�
able mappings to pieces of code	 This function is applied to
the empty mapping
Nil� to produce a piece of code	 The
variable T of type annotation is used to annotate the in and
the in abstraction operators in the last clause of the cata	
When mapgen is applied to the Intension associated with
the type declaration for List it produces the piece of code�

fn a ��
fix m ��

fn in L x ��
in L �fn lf �� �fn x �� x	 lf

 rt �� �fn �p�q	 �� �a p�m q		 rt	
x

which is the recursive de�nition of the map for lists	

��� Level � types as level � values

Of course users must encode the Intensional data structure
which the mapgen function uses as input	 Or do they� If
all type declarations can be embedded into type Intension
the compiler could automate this encoding	 By prede�ning
the types Ty and Intension in the level � compiler� and by
arranging to bind the names of level � types to values of
type Intension in escaped level � code� level � types can be
treated as level � values of type Intension	 This is where
the value of List comes from in the escaped level � term�
�mapgen List		 Since every valid type declaration has an
embedding in type Intension it is easy for the compiler of
the two level language to do this	

Using this feature it is possible to use our two level lan�
guage as a general purpose polytypic generator system	

� Relationship to other work

The use of two level languages with two level type systems
comes directly from Nielson and Neilson ��� where it is used
to specify compilers	 Catamorphisms and some of their
properties are discussed in ��� ���	 Harper and Morrisett
��� �rst use catamorphisms to express types� but their cata�
morphisms induct only over the structure of primitive types�
rather than arbitrary values	 Poly�typic programming� the
speci�cation of algorithms abstracted over the data struc�
tures they operate on has roots in some of our earlier work
����� but has been most succesfully promoted by Johan Jeur�
ing ��� ��	

Martin�L$of pioneered the use of dependent type systems
which have now become standard in many types systems
for programming logics ��� and we incorporate them into
the terminating parts of our language	 Nelson investigates
the issue of type inference for dependent types � � #�	

 Conclusion

Programming languages have always embodied a concep�
tual distinction between their compile and link�time aspects
and their run�time behavior� distinctions that programmers
have always been aware of to some extent	 Recently more
and more programs involve programming staticly as pro�
gramming languages have greatly expanded their static fa�
cilities to provide richer methods of organizing and structur�
ing programs such as polymorphism� overloading� modules�
type classes� etc	 An overall goal of these static facilities
is increased ability to express abstraction along with its as�
sociated bene�ts of decreased program maintenance and in�
creased software component reuse	 Since programmers must

already be aware of these static abstractions to program ef�
fectively in modern languages they should be able to create
their own rather than be content with the static features
supplied by any given language	

To provide such mechanisms in a type safe manner re�
quires extending type systems to handle these abstractions	
We have illustrated two extending mechanisms� multi�level
type systems and dependent types	

References

��� Robert Harper and Greg Morrisett	 Compiling poly�
morphism using intensional type analysis	 In ��nd

ACM Symposium on Principles of Programming Lan�
guages� January ����	 to Appear	

��� Johan Jeuring	 Polytypic combinatorial functions	
unpublished manuscript� email johan%cs	chalmers	se�
����	

��� Johan Jeuring	 Polytypic pattern matching	 In Pro�
ceedings of the conference on Functional Programming

and Computer Architecture� La Jolla� California� June
����	

��� Eugene Kohlbecker� Daniel Friedman� Mathias
Felleisen� and Bruce Duba	 Hygienic macro expansion	
In Proceedings of the SIGPLAN ��� ACM Conference
on Lisp and Functional Programming� pages ���&����
New York� August ��#�	 ACM Press	 Cambridge� Ma	

��� Per Martin�L$of	 An intuitionistic theory of types� Pred�
icative part	 In H	 E	 Rose and J	 C	 Shepherdson� ed�
itors� Logic Colloquium ���� pages �&��#	 North Hol�
land� �� �	

��� E	 Meijer� M	 Fokkinga� and R	 Paterson	 Functional
programming with bananas� lenses� envelopes and
barbed wire	 In Proceedings of the 	th ACM Confer�

ence on Functional Programming Languages and Com�
puter Architecture
 Cambridge
 Massachusetts� pages
���&���� August ����	

� � Neal Nelson	 Primitive recursive functionals with de�
pendant types	 In Mathematical Foundations of Pro�
gramming Semantics	 Springer Verlag� march ����	
Lecture Notes in Computer Science ��#	

�#� Neal Nelson	 Type Inference and Reconstruction for

First Order Dependent Types	 PhD thesis� Department
of Computer Science and Engineering� Oregon Gradu�
ate Institute� ����	

��� Flemming Nielson and Hanne Riis Nielson	 Two�Level

Functional Languages	 Cambridge Tracts in Theoretical
Computer Science	 Cambridge University Press� Cam�
bridge� UK� ����	

���� T	 Sheard	 Automatic generation and use of abstract
structure operators	 ACM Transactions on Program�

ming Languages and Systems� ��
������&�� � October
����	

���� Tim Sheard and Leonidas Fegaras	 A fold for all sea�
sons	 In Proceedings of the conference on Functional

Programming and Computer Architecture� Copenhagen�
June ����	

�

Standard ML Version

datatype Nat � Zero
 Succ of Nat�

fun cata�Nat �Z�S	 Zero � Z

 cata�Nat �Z�S	 �Succ x	 � S�cata�Nat �Z�S	 x	�

datatype �a list � Nil
 Cons of �a � �a list�

fun cata�list �N�C	 Nil � N

 cata�list �N�C	 �Cons�x�xs		 �

C�x�cata�list �N�C	 xs	�

datatype �a Tree � Tip of �a

Node of �a Tree � �a Tree

fun cata�Tree �T�N	 �Tip x	 � T x

 cata�Tree �T�N	 �Node�x�y		 �

N�cata�Tree �T�N	 x�cata�Tree �T�N	 y	�

Two Level Language Version

type N � Fn x �� unit
 x
type Nat � Fix x �� N x

val mapN � fn f �� �fn �	 �� inl �	

 x �� inr �f x		

val cataN �
fn phi �� fn in N x � phi�mapN �cataN phi	 x	

type L � Fn a �� Fn x �� unit
 a � x
type List � Fn a �� Fix x �� L a x

val mapL � fn f �� �fn �	 �� inl �	

 �x�y	 �� inr�x�f y		

val cataL �
fn phi �� fn in L x � phi�mapL �cataN phi	 x	

type T � Fn a �� Fn x �� a
 x � x
type Tree � Fn a �� Fn x �� T a x

val mapT � fn f �� �fn a �� inl a

 �x�y	 �� inr�f x�f y		

val cataL �
fn phi �� fn in T x � phi�mapT �cataN phi	 x	

Figure �� Side by side comparison

A Catamorphisms Explained

In a traditional functional language with constructors for
recursive types� a catamorphism� cata T
f�� 	 	 	 � fn�� can
be viewed as a function that replaces every constructor Ci

in a recursive value with a corresponding function� fi	 For
example by repeatedly replacing Cons with c and Nil with
n we proceed�

cata List
n� c�
Cons
 �Cons
��Nil
�����
� c
 � cata List
n� c�
Cons
��Nil
����
� c
 � c
�� cata List
n� c�
Nil
����
� c
 � c
�� n��

This is accomplished by a recursive function which takes
a vector of functions fi as an argument and which places
a recursive call to the catamorphism on every
recursive�
component	 This is illustrated in the Standard ML Ver�
sion side of Figure �	

In the two level language the pattern of recursion in a
type de�nition is �rst captured by a non�recursive type def�
inition
or functor� such as N� L and T	 The recursion in the
type is introduced later using the explicit �x point opera�
tor in a separate type declaration	 The constructors
Zero�
Nil� Cons� etc	� of the ML version are captured by composi�
tion of the in operator and the sum injection functions inl
and inr as was illustrated in section �	�	 Thus in the two
level language instead of replacing each constructor with an
associated function� we replace the in operator with an as�
sociated sum�abstraction� phi� after recursively reducing all
the recursive components by using the appropriate map ap�
plied to �cata phi		 It is interesting to note that the map
functions capture exactly where the recursive calls are to
be placed� and follow directly from the non�recursive type
declarations of N� L and T	

The cata T operator is built directly from the type def�
inition by the compiler in this manner	

To use a catamorphism the programmer must only sup�
ply the name of the non recursive type and the sum�abstraction
phi	 For example�

val total � cata L �fn �	 �� �
 �x�y	 �� x
y	

val length � cata L �fn �	 �� �
 �x�y	 �� y
�	

val app �
fn x �� fn y ��

cata L �fn �	 �� y
 �x�y	 �� Cons�x�y		 x

val addition �
fn x �� fn y ��

cata N �fn �	 �� y
 m �� m
�	 x

val flatten �
cata T �fn x �� Cons�x�Nil	
 �m�n	 �� app m n	

��

