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Abstract 

We provide mechanisms that facilitate database design based on a shrink wrap schema. A shrink 
wrap schema is a well-crafted, complete, global schema that represents an application. We develop 
the notion of concept schemas as a way to decompose shrink wrap schemas. A concept schema is a 
subset of an application schema that addresses one particular point of view in an application. To 
aid in shrink wrap schema-based design, we define schema modification operations to customize each 
concept schema, to match the designer's perception of the application. We maintain the integrated, 
customized user schema. We enforce consistency checks to provide feedback to the designer about 
interactions among the concept schemas. We embody these mechanisms in an interactive system 
that aids in shrink wrap schema-based design. 

Our approach simplifies database design, particularly for a complex data model and/or complex 
schema. Our main contribution lies in the ability to use a shrink wrap schema as a starting point 
for modeling an application area. The shrink wrap schema approach promotes reuse of past design 
efforts; prior approaches to schema reuse do not attempt to reuse an entire schema nor do they focus 
on local customization. The focus of this paper is on the definition of concept schemas and their 
corresponding modification operations. 

Keywords: schema reuse, schema modification, database design 

1 Introduction 

Higher level constructs better represent application concepts by making explicit the structure and 

semantics of the concepts. However, those same constructs can be more difficult t o  understand and use 

correctly. They add t o  the complexity of the data  model, require more design effort, and raise issues 

regarding interaction among constructs. Another problem is that  a global schema, by its very nature, 

integrates all views or perspectives. This implies that  global schemas can be difficult t o  understand and 

t o  modify. 



1.1 The Problem 

We define a shrink wrap schema ' t o  be a well-crafted, complete, global schema that  represents an 

application. Ideally, we could reduce database design to  a trivial process by providing a "standard7' 

schema for each application area. A standard schema facilitates da ta  interchange and provides an 

accurate representation of semantics. Using a shrink wrap schema may be easier than designing an 

application schema from scratch because the standard schema correctly uses the data  model constructs 

and provides the designer with examples relevant to  the application. 

Realistically, we know that  it is difficult t o  provide a standard schema for an application area because 

particular applications need different variations of the schema. The scope of the system under con- 

struction may differ from that  of the standard schema. The business details or other aspects of an 

application might be simpler or more elaborate than the standard schema. This need for variations 

of the standard schema might defeat the use of shrink wrap schemas. For these reasons, the use of a 

shrink wrap schema for database design dictates that  provision be made for modifying the schema t o  

allow representations t o  vary. 

Another problem is that  when considering a shrink wrap schema (or any global schema), the designer 

is likely t o  be overwhelmed when given the entire schema a t  once. It may be difficult t o  make changes 

directly t o  the global schema because of the number and complexity of the constructs. Therefore, it 

is useful for the designer t o  be able t o  consider the shrink wrap schema a piece a t  a time t o  avoid 

these difficulties. We define concept schema types in order to  systematically decompose the shrink wrap 

schema for viewing and modification. 

1.2 The Solution 

We develop the notion of concept schemas as a way t o  decompose shrink wrap schema.  A concept 

schema is a subset of an application schema that  addresses one particular point of view, i.e., one 

concept, in an application. The concept schemas correspond to  modeling abstractions provided by the 

da ta  model (e.g., aggregation, generalization). To aid in shrink wrap schema-based design, we define 

techniques t o  customize each concept schema through simplification and elaboration, t o  match the 

designer's perception of the application. This process alleviates some of the rigidity forced on a designer 

when trying t o  use a shrink wrap schema in an application. After the schema has been tailored t o  the 

designer's needs, we construct the global, customized user schema. We also provide consistency checks 

based on the concept schema structure and semantics, in order t o  discover problems in the user schema 

and t o  provide feedback t o  the designer about interactions among the various concept schema.  

This research project includes the definition and development of an interactive schema designer with a 

schema repository t o  support shrink wrap schema-based design using concept schemas [29]. The focus 

of this paper is on: 

the definition of generic structure patterns (types) for concept schema,  

'This term originated in conversations with Michael Brodie of GTE Laboratories. 



the definition of the elaboration and simplification operations for concept schemas (i.e., the defi- 

nition of schema modification operations). 

2 Related Work 

This work is inspired by the large number of complex semantic and object-oriented da ta  models that  

are available today for the database designer [12, 22, 27, 24, 39, 35, 36, 31, 28, 26, 21, 34, 7, 14, 301. 

While the  increased complexity of the models produce more accurate representations of the application, 

the da ta  models are more difficult t o  utilize. Tools for database design have been proposed t o  aid the 

designer, but each of them starts  the design process from scratch [33, 38, 37, 91 Metamodels are defined 

by researchers t o  classify and describe da ta  models or schemas at a higher level of abstraction [I, 23, 21. 

Our work is similar t o  this research only in that  the concept schema types are defined at the metamodel 

level. 

Our work is closely related t o  research on reusing schemas. Work in this area concentrates on using 

portions of schemas as modeling constructs. Most approaches proceed by extracting portions of schemas 

from several similar schemas and describing the common information represented at a higher level of 

abstraction. This results in a generic pattern, abstracted from one or more applications, that  is hopefully 

useful during the design of new schemas. Our approach is centered around the reuse of a shrink wrap 

schema for an application area. We believe that  a well-crafted schema within an application is likely t o  

be (re)used. The concept schemas are defined based on generic structure, but are always a subset of an 

application schema. 

Peter Coad suggests using patterns as the building blocks for object-oriented design and construction 

[15]. He states tha t  a pattern standardizes small piecework into a larger chunk or unit. Patterns 

are discovered among low-level elements by looking a t  the relationships between them. In object- 

oriented technology, he identifies patterns of relationships as generalization, specialization, whole-part, 

association, and messaging. In addition, he feels that  there exist other patterns that  are applicable 

multiple times in a single application and across different kinds of applications. He defines an object- 

oriented pattern as a small grouping of classes that  is likely t o  be helpful again and again in object- 

oriented development. Coad presents seven different patterns along with guidelines for when they are 

useful [15]. Patterns as the units of reuse in this context involve multiple classes, relationships, and 

message passing. Our concept schema types are defined around what he calls patterns of relationships. 

He identifies some random patterns that  occur in schemas whereas our concept schema types are based 

on the da ta  model constructs and cover the entire schema. 

Antonellis e t  al. [lo] refer t o  information system design moving towards the design by reuse paradigm. In 

this approach, applications are developed not from scratch, but by tailoring and personalizing reusable 

components. This work proposes a methodology for building a library of entity-relationship schemas 

and extracting reusable components from selected schemas. A reusable component is a generic entity 

with an associated meta-entity that  provides guidelines for reuse in an application. The schemas are 

organized into a library with each schema characterized by a schema descriptor, based on structural 
characteristics of the schema. Schemas of the same application are clustered based on their schema 



descriptors. A metric called semantic affinity is proposed for describing the similarity between two 

entities within the clusters. If the pairs of entities are sufficiently close to  each other, they are presented 

t o  the application engineer for possible construction of a generic entity. The generic entity is defined by 

factoring out the common attributes of the pair of entities [lo]. Patterns in this context are based on 

entities as the unit of reuse. Reuse is supported in our approach occurring a t  the concept schema level 

as well as a t  the shrink wrap schema level. 

Bertram [4] defines a schema-pattern as a subset of an abstract data model that  can be instantiated for 

use in application-specific models. He specifies the components necessary t o  specify a schema pattern 

including: a da ta  model for pattern specification, a specification of the pattern boundary and interface 

across the boundary, rules for pattern usage, a description of some pattern variants, and links t o  similar 

patterns. In addition, the behavior of the pattern may be specified with basic functions and a state 

model [4]. This information is stored in a pattern library. However, no examples of schema patterns 

are presented in this paper. The main contribution of the paper is quality criteria for the evaluation of 

schema patterns, similar t o  those for reuse of software components. In comparison t o  this work, concept 

schemas are not schema patterns. Concept schemas are based on schema structure, but they are used 

as a formal mechanism for decomposing a shrink wrap schema. 

3 Shrink wrap schema customization with concept schemas 

The focus of the research is on the schema customization process based on a shrink wrap, or predefined, 

standard schema for an application. We therefore assume that  a well-designed, richly-structured, stan- 

dard schema has been created before the beginning of the design process. A first step in the process 

requires a decomposed or concept schema-based representation of the shrink wrap schema. 

During shrink wrap schema-based design, the designer considers the concept schemas one by one t o  

determine how they relate to  the application being designed. If the concept is deemed useful, the 

concept schema can be customized for the designer's application. Designers are allowed t o  customize all 

of the concept schema types and may elaborate and simplify the information specified in the interface 

definitions. There is a set of modifications available t o  the designer and each change t o  the concept 

schema is subject t o  constraints defined over the operation applied. For example, some operations 

possible on an interface definition include adding or removing object types, relationships, and attributes. 

The basic function of the schema customization process developed in this research is t o  allow the user, 

i.e. the schema designer, t o  view and alter the standard, well-crafted or shrink wrapped schema. The 

main components of the system are shown in Figure 1. The schema repository is a knowledge base 

for the entire process. It holds the original shrink wrap schema used as the starting point, the concept 

schemas (generated from the shrink wrap schema), the workspace for the schema under design, the 

custom schema, and the mapping from the original t o  the custom schema. The schema repository also 

includes a knowledge component that  specifies consistency rules, propagation rules, and constraints 

used t o  generate feedback for the designer. 

The designer interacts directly with the interactive schema designer by issuing operations (to view and 

alter the schema) and by receiving feedback. The feedback consists of error or informational messages 
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Figure 2: Object Modeling Technique notation 

about the requested operations. The schema designer provides a graphical interface for modifying the 

concept schemas t o  match the user's application. The schema designer uses windows and pull-down 

menus t o  guide the designer through modifications. The possible modifications are restricted according 

t o  the concept schema type that  is being modified. Constraints are enforced on the user's changes t o  

ensure that  the schema specification is syntactically and semantically correct. 

3.1 Notation 

We adopt Rumbaugh's notation for the graphical specification of the structure of our schemas because 

it has a rich, structural model. The structural notation is summarized on the inside of the front cover 

of [34] and is partially reproduced in Figure 2. 

The ODMG standards [ll] provide an Object Model, an Object Definition Language (ODL) t o  define 

interfaces t o  object types that  conform to  the Object Model, as well as C++ and Smalltalk bindings. 

We adopt ODL as the da ta  definition language on which our concept schemas are formally defined and 

the schema modifications are discussed. We choose ODL because it is language and database system 

independent. The grammar is extended slightly in this work t o  support the instance-of and aggregation 

relationship types, currently not present in the Object Model or the ODL. The extended ODMG da ta  

model includes the relationships of supertype, aggregation, and instance-of. 

The part-of relationship is used t o  express a relationship between an entity and its components. This 

relationship is prevalent in CAD applications where physical products and their components are being 

designed and represented. The relationship has an implicit l :N cardinality between the whole and its 

components. 

The instance-of relationship is used to  express a relationship between a generic specification entity and 

specific instances of that  entity. This relationship also has an implicit l : N  cardinality. The relationship 



is between one generic specification and many instances of that  specification. 

3.2 Simplifying Assumptions, Justifications 

In this section, we present the  assumptions made in the research. 

Good faith use - By deleting the entire shrink wrap schema and adding a completely new schema 

with some of the same concepts expressed or named differently, a designer can lose many of the 

benefits tha t  our approach provides. We assume that  he/she doesn't. 

Name equivalence - We assume name equivalence of object types, attributes, relationships, and 

operations. This is a simplifying assumption, but we believe that  our work could be easily adjusted 

t o  remove this assumption. 

Uniqueness - We assume that  the object type names, relationship names, and attribute names 

uniquely identify the type definitions, relationships, and attributes, respectively. The operation 

names are unique as well, except in the case where an operation is overridden. 

Semantic stability - Attributes, relationships, and methods are moved only within the generaliza- 

tion hierarchy established by the shrink wrap schema. We believe that  information tha t  is moved 

around in the schema should move between object types that  are semantically similar. This im- 

plies that  the moves should be within the generalization hierarchy. For example, a legal move 

might be t o  move an attribute up the hierarchy to  reside in a supertype's interface definition. 

Entity Stability - An entity in the standard schema is an entity in the custom schema (or i t  has 

been deleted). This assumption dismisses from consideration, for example, operations that  would 

change an entity's representation in the shrink wrap schema t o  an attribute in the custom schema. 

Relationship, Attribute, Method Stability - Like entity stability, each of these constructs are either 

present or absent in the custom schema, but not represented in some other structural manner. 

However, they could be moved within the limits of semantic stability explained above. 

Single root for generalization hierarchies - Each generalization hierarchy contains a single root 

by which i t  can be uniquely identified. Any hierarchy with two or more roots can be easily 

transformed by creating an abstract supertype of the multiple roots. 

3.3 Concept schema types 

This section defines the concept schema types defined in this research. They are based on the modeling 

abstractions present in the extended ODL. It is possible to  algorithmically decompose a schema defined 
in extended ODL into concept schemas. 

3.3.1 Wagon wheel concept schema types 

The basic building block for schemas is the wagon wheel concept schema type. The wagon wheel concept 

schema type is inspired by object type definitions in semantic and object-oriented da ta  models. A wagon 



J teaches 

--- -4 course I 
I 

Figure 3: Course Offering Concept Schema. 

I I 

wheel concept schema consists of one object type that  serves as the focal point of the wagon wheel and 

supporting attributes and relationships that  emanate from the focal point. We believe that  each focal 

point of a wagon wheel corresponds to  a different point of view in the schema, centered on one object 

type. 
At least one wagon wheel concept schema exists for every object type in a shrink wrap schema. It is 

possible for different points of view of an object type t o  result in more than one concept schema having 

the same focal point. The union of all the initial concept schemas gives the original shrink wrap schema. 

Structurally, the wagon wheel concept schema type, in addition t o  the focal point, includes objects 

that  are just one relationship away from the focal point. A wagon wheel may center on object types 

that  participate in generalization, aggregation, or instance-of hierarchies. Generalization, aggregation, 

and instance-of links of distance one from the focal point can be included in a wagon wheel because 

the wagon wheel schema includes allowable relationship types. An example of a wagon wheel concept 

schema tha t  represents a course offering in a university setting is given in Figure 3. The course offering 

object type is the focal point of the concept schema. The relationships and attributes for the course 

offering form the "spokes" of the wagon wheel. The figure gives a high level view of a course offering 

and does not relay all the information expressible in the data model (e.g., cardinalities, attributes, 

operations). The dotted line represents an instance-of relationship between a course and an offering of 

the course. 

Work by Aranow on class-centered modeling [25] provides design techniques centered around classes. 

He believes that  classes represent concepts and that  schemas should be presented t o  users one class a t  

a time with the class containing the supporting information similar t o  our description. His research 

provides for reuse of design efforts with the class as the unit of reuse. 

Although we believe that  wagon wheels (i.e., classes) are the basic building block for object-oriented 

schemas, we are also interested in additional structure and semantics that  occur beyond wagon wheels. 
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We have identified three additional concept schema types in the chosen object model. 

3.3.2 Generalization hierarchies 

A generalization hierarchy specifies the object types that  participate in subtype/supertype relationships 

and inherit information from supertype t o  subtype. Defining a concept schema type for generalization 

hierarchies (where other attributes and relationships are not shown) gives the designer an integrated 

view of the inheritance paths between object types. For example, consider the generalization hierarchy 

of students in the university conceptual schema given in Figure 4. The student generalization hierarchy 

shows, for example, that  a Non-thesis masters student object inherits the attributes and operations 

defined on a Graduate student object type. 

Each generalization concept schema describes all subclasses of the root type and allow the schema 

designer t o  consider the inheritance patterns, distinctly from the various wagon wheels. 

3.3.3 Aggregation hierarchies 

The aggregation hierarchy expresses part-of relationships between two object types. The part-of rela- 

tionship has a l : N  cardinality by definition. This relationship is mentioned as a possible extension t o  

the Object Model [ll] and is present in some semantic data models. Figure 5 is an example of a parts 

explosions for a lumber yard. The construction supplies necessary t o  build a house, for instance, can 

be recorded with the roof of the house consisting of plywood decking, tar  paper, and shingles. These 

types of hierarchies are useful in VLSI and CAD applications. 

We propose a rooted aggregation hierarchy as one of our generic concept schema patterns. This concept 

schema allows the designer t o  consider the part-of explosion for each aggregated object and provide a 

point of view that  is different from wagon wheels and different from the generalization patterns. 
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3.3.4 Instance-of Hierarchy 

There is a benefit t o  viewing a sequence of several instance-of relationships between object types as a 

concept schema. The software version application concept schema from the Environmental and Molec- 

ular Sciences Laboratory (EMSL) [40, 32, 17, 16, 191 schema is shown in Figure 6. This example can 

be best understood by presenting objects for each of the object types. For example, the C compiler is 

an application object that  is related to  many versions of C compilers including version 3.0. The version 
3.0 may have been compiled on many different machines, each compilation creating a compiled version 
3.0 executable (a  compiled version of the application object). The executable is in turn installed on 

many machines, each installation creating a installed version 3.0 (an installed version of application 

object). We propose a generic concept schema pattern t o  describe the sequence of instance-of links. 

In our experience, the instance-of hierarchy has been linear with no branches. However, we are not 

claiming that  a branched structure is not possible. 
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3.4 Schema modifications 

We propose t o  formalize the simplification/elaboration process for concept schemas by restricting the 

operations that  can be performed. The BNF grammar in Appendix A specifies the syntax for a 

complete set of schema modification operations. We initiate the discussion by considering an example 

that  illustrates a schema modification. 

Consider the course offering concept schema from Figure 3. The designer may want t o  include a course 

schedule object type that  consists of course offerings. In that  case, the course offering concept schema 

would need t o  be elaborated by including an aggregation link from class schedule t o  course offering. 

The resulting course offering concept schema is shown in Figure 7. Consider another situation where 

courses are offered by correspondence only. In this case, the course offering concept schema is simplified 

by removing the time slot entity and room attribute. 

We make some restrictions on the modifications in the context of shrink wrap schemas that  simplify 

our problem from that  of schema evolution: 

described-by 

We do not allow modifications that  change the name of interfaces, relationships, and operations. 

This decision reflects our name equivalence assumption. 

offered- 
durationsf during 

We only allow information in modify operations t o  move within the generalization hierarchies. 

This restricts the movement of information among similar object types, providing what we term 

semantic stability. 

Table 1 summarizes the operations that  are allowed in the concept schemas for each of the ODL 

candidates for modification. The letters A, D, and M are abbreviations for Add, Delete, and Modify. 
The instance-of hierarchies allow the designer t o  modify information having t o  do with the instance-of 



relationships. The designer is allowed t o  add and delete object types and connect them with instance- 
of relationships or modify the information (excluding names) about the existing relationships. The 

designer can also add and delete instance-of relationships between object types. 

Table 1: Operations on ODL schema definitions in the context of concept schema types. Note: disallowed 
operations support name equivalence 

The part-of hierarchies allow modification of the existing part-of relationships as well as operations t o  

re-wire the hierarchy. These operations include the ability t o  add and delete object types and part-of 

relationships. 

The generalization hierarchies provide several interesting operations t o  move information around within 

the schema. Operations, attributes, and relationships are allowed t o  change object types within the 



hierarchy. Each of these operations causes the inheritance pattern of information t o  change within the 

hierarchy. Object types can be added and deleted in the hierarchy and supertype relationships can be 

added, deleted, and modified for re-wiring the generalization hierarchy. 

The largest portion of the modifications are supported in wagon wheel concept schemas. The wagon 

wheel concept schemas are the  best choice for most modifications because they cover the entire shrink 

wrap schema and they are centered around the definition of an object. Object types can be added 

and deleted and the complete set of operations for the type properties, extent name and key list, are 

allowed. With respect t o  instance properties; attributes, relationships, and operations can be added 

and deleted and existing instance information can be modified. However, modification of supertypes, 

part-of relationships, and instance-of relationships is not supported in wagon wheel concept schemas; 

those modifications must be addressed in their respective concept schema types. 

As an example, consider the modify-relationship-target-type operation. This operation allows the de- 

signer t o  move the end of the relationship that  is defined in an object type that  participates in a 

generalization hierarchy up or down the generalization hierarchy. Consider the situation in Figure 8 

where a department has an employee and the employee works in a department. Now suppose that  

students also work in departments, so modify the target type of worksin-a from employee t o  person 

t o  represent this information. The relationship for Department and Employee interface definition was 

originally specified in the interface definition as: 

Department: 
relationship set<Employee> has inverse 
Employee : : w o r k s i n a  

Employee : 
relationship Department w o r k s i n a  inverse 
Department : :has 

and, after the  operation modify relationship target type ( Employee, worksin-a, Person), now becomes 

Department: 
relationship set<Person> has inverse 
Person: : worksin-a 

Person: 
relationship Department w o r k s i n a  inverse 
Department::has 

We exclude operations that  split and merge interface definitions. We believe that  i t  is more appropriate 

t o  subtype the interface definitions t o  be split and t o  create an abstract supertype for interface definitions 

t o  be merged. 

3.5 Completeness of this approach 

We consider whether schema modification using our approach allows a designer to  make all possible 

modifications (i.e., that  he/she would be able to  make if he/she were modifying a schema without the 
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benefit of our approach). Based on the syntax of ODL, we have enumerated every possible construct 

that  can be modified in an ODL specification. 

We consider first whether all constructs expressible in ODL are available for add, delete, and modify 

operations within our approach. Consider the information in Table 2 for addition of the ODL constructs; 

the deletion operations are identical, with the word "add" changed t o  "delete" in the operation name. 

These tables show our operations that  cover the addition and deletion of the ODL candidates for 

modification. 

Now we consider more complicated changes to  the schema. Do we prevent the user from the changing 

the schema in some way? Based on our assumptions, we intentionally limit the modification operations. 

For example, it is not possible t o  replace an entity in the shrink wrap schema by an attribute value 

in the customized schema (and retain the semantic connection between the two). However, we observe 

that  any construct present in the shrink wrap schema can be deleted and any new construct can be 

added. In the extreme case, the entire shrink wrap schema can be deleted, and an entirely new (custom) 

schema can be added. This defeats any automatic semantic integration between the two schemas. On 

the other hand, it demonstrates that  our approach does not prevent the user from creating any possible 

schema. The modify operations are summarized in Table 3. This table does not have t o  be complete, 

because, as stated above, all schema modifications can be made using only add and delete operations. 

Note that  names are not allowed t o  be modified in accordance with our assumptions of uniqueness and 

equivalence of names. 

4 Real-world example of shrink wrap schema based design 

ACEDB provides an example of a system that  has been adapted for reuse in many different applications. 

This system and its successors furnish a scenario where shrink wrap schema-based design has been 

performed manually, with a number of benefits, without using our research. We demonstrate here that  

the kind of changes made t o  ACEDB are admissible using our technology. 

ACEDB is an application, with an internal database, originally developed t o  study the physical mapping 

da ta  for the nematode genome project. The application was reused for several related projects, resulting 

in a family of related, customized schemas based on the original schema. [5 ,  8, 13, 20, 181. Designers 

who were building similar databases picked up the ACEDB system and modified it for their purposes. 

The fact that  the systems must all use the same display code requires the schemas t o  be similar. 
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Modify-part-of-order-by 

Modifyinstance-of-target-type 

Inverse path name 
One way cardinality 
Order by list 

Modifyattribute 
Modifyattribute-type 
Modify~ttributesize 

Modifyinstance-of-cardinality 
Modifyinstance-of-order-by 



Figure 9: ACEDB object types 

Figure 10: SacchDB object types 

We have studied the schemas from two systems based on ACEDB; the Arabidopsis database (AAtDB) 

for the plant thale cress, and the Saccharomyces database (SacchDB) for yeast. We have examined the 

common classes in the three schemas t o  determine the similarity of the system schemas. Figures 9, 
10, and 11 give a subset of the object types that  have the same name across the schemas along with 

their interconnections by relationships. The object types have the same name and further study of the 

type definitions reveals that  much of the structure is the same. The object type strain in the ACEDB 

schema and phenotype in the AAtDB schema are semantically equivalent terms that  are used in the 

animal and plant disciplines. 

This scenario gives empirical evidence that  shrink wrap schema-based design is feasible. A shrink 

wrap schema based on the ACEDB schema could have been constructed and each of the later physical 

mapping databases could have used our mechanisms to  create the custom schema for their application. 



Figure 11: AAtDB object types 

5 Evaluation and Conclusions 

First, we consider limitations to  our work. Name equivalence means that  things with the same name 

are the same and things with different names are different. We acknowledge that  database designers are 

very likely t o  want t o  introduce local names for constructs that  appear in the schema. The extension of 

our work t o  handle this possibility requires that  the user indicate a change of name, and that  the system 

maintain the mapping from shrink wrap schema names t o  local names. We view such an extension as 

straightforward and not mainstream t o  our work. 

We assume tha t  the object type names, relationship names, and attribute names uniquely identify the 

type definitions, relationships, and attributes, respectively. This assumption complements name equiv- 

alence in helping establish equivalence among schema information. We do not deal with establishing 

equivalence of information that  does not have the same name. Some models require that  attribute 

names, for example, be unique across the entire schema. Others require only that  they be unique within 

objects. In the latter case, an attribute name must be qualified by the object type name where the 

attribute resides. Once again, we believe that  the extension of our work to  allow qualified names is 

straightforward. Note that  Rebecca Wirfs-Brock et al. recommend the use of unique names during 

design t o  improve the clarity of the object model [42]. 

We restrict the movement of attributes, relationships, and methods t o  be within the generalization 

hierarchy established by the shrink wrap schema. We make this choice on semantic (not simplifying) 

grounds. We would argue, for example, that  replacing a participant in a relationship with an object 

type that  is not semantically comparable results in a semantically distinct relationship. 

An entity in the shrink wrap schema is either an entity in the custom schema or not in the custom 

schema a t  all. This assumption is in line with our belief that  the shrink wrap schema is a well-crafted 

representation of the application. More sophisticated modifications would allow, for example, an object 

type in the shrink wrap schema t o  be replaced by an attribute value or by the union of several object 

types. We believe that  entity, relationship, attribute, and method stability contributes t o  the designer's 



ability to understand the shrink wrap schema and its relationship t o  the custom schema. Thus, although 

it is a simplifying assumption, we believe that  the changes we allow are quite intuitive. We also see 
generalization of our current approach t o  a more expressive set of mappings as a possibility for future 

work. 

Second, we consider the contribution of this work. Consider the example of building a latex document 

for the first time. The task is easier if you are allowed t o  start  with a latex file and modify i t  for your 

application. In fact, a sample latex file that  demonstrates basic functionality is provided with the tutorial 

for using latex. The same principle holds in database design. People comprehend examples and the 

shrink wrap schema provides those examples in a form relevant t o  their application. A contribution of 

our research lies in the ability t o  use a shrink wrap schema as a starting point for modeling an application 

area. The shrink wrap schema provides a well-crafted schema for the designer and ultimately leads to  

better schema quality for the custom schema. Other contributing factors t o  the quality of the custom 

schema include the guidance and feedback provided by the interactive schema designer; this aspect of 

the work is discussed elsewhere [29]. Schema quality of the shrink wrap schema can be improved by 

revising the representation over time as i t  is employed and reviewed by diverse design teams. 

Software reusability, like object-orientation, impacts everything from management practices t o  software 

development standards [3]. Software practitioners often limit their definition of software t o  source and 

object code, but, in truth,  software includes many other things such as modules, documentation, plans, 

standards, analysis and design products, and quality assurance efforts. Software reusability can have a 

very positive impact on software reliability, efficiency, and time to  market [3]. Our research provides 

reuse of the conceptual schema for database systems. The design of the successors of ACEDB [5, 8, 13, 

20, 181 that  have been produced manually, could, in fact, have been created using our technology. 

Since our research operates using the implementation independent ODL, the techniques discussed are 

broadly applicable. Our approach is not dependent on a DBMS or even a da ta  model. The da ta  model 

provides an object-oriented approach, but there has been work, for example, on modeling in an object- 

oriented model and translating the results t o  other models such as entity relationship diagrams and 

relational models. 

Our approach simplifies the customization process for the designer by restricting the modification o p  

erations available, according t o  the situation. The modifications are also organized and checked by 

the interactive schema design system t o  provide guidance and feedback t o  the designer. The language 

that  is created for specifying modifications formalizes the modification choices for implementation in a 

system. These factors accelerate the process of schema design. 

Possible applications of our work are: t o  facilitate interoperation through common objects. Work in 

progress [6] is attempting t o  establish a Business Object Model to  promote the conduct of business over 

the network. In general, systems built from the same shrink wrap schema (i.e., common objects) can be 

integrated for information interchange because the semantically identical constructs have already been 

identified. 

This paper reports on research on concept schemas and their associated modification operations that  

are part of a larger research project. The complete list of activities is shown here: 

1. Modifications t o  ODL t o  accommodate part-of and instance-of relationships. 



2. Definition of generic structure patterns (types) for concept schemas. 

3. Algorithms for extracting concept schemas from an ODL specification. 

4. Architecture of an interactive tool for shrink wrap schema-based design. 

5. Restriction of the schema modification operations possible on an ODL specification for shrink 

wrap schema customization. 

6. Definition of schema modification operations in the context of concept schemas. 

7. Definition of the language for specifying the modification operations. 

8. Discussion of the semantics and definition of constraints associated with the operations. 

9. Definition of a set of constraints enforced in the interactive tool for shrink wrap schema-based 

design and classification of the constraints into logical categories. 

Definition of a set of rules t o  show the designer the impact of the proposed modification 

operation (i.e., all of the changes that  follow from a given change). 

Definition of a set of cautionary statements to  the user in the form of feedback 

10. Definition of a mapping representation that  records the semantic correspondence between the 

shrink wrap and customized schema. 

11. Specification of an approach t o  generating deliverables for designer feedback as a result of shrink 

wrap schema customization. 

12. Development of a prototype implementation to  demonstrate the feasibility of the research. 

Implementation of the schema repository as an Object Store application. 

Construction of a parser for Object Store header files. 

Implementation of mapping generation, user deliverables generation, constraint enforcement. 

The prototype is operational, but we have not fully implemented the interactive nature of the 

schema modification operations. 

This paper focuses on 1,2,5,6, and 7. 

Future work will include a full-featured implementation of the interactive schema designer with inter- 

active feedback, impact (perhaps shown in color on the graphical view), and cautionary statements, 

coupled with a field trial of the technology. Possible extensions t o  this work include: 

An explanation facility for the existing concept schemas can be created t o  explain the information 

represented in the concept schema t o  the designer. 

a More complex schema modification operations with well-defined semantics can be added t o  provide 

guidance t o  the designer. The modifications can be incorporated into the schema designer along 

with expected constraints and impact on the schema. 



Additional constraints and rules for the knowledge component can be added to  aid in the design 

process. These would make life easier for the designer. 

Constraint Analysis [41] can be used in the consistency check to suggest the operations that need 

to be altered to enforce semantic constraints. 

It may be worthwhile to include the object oriented type constructors (set-of,list-of,bag-of,array- 

of), for construction of complex objects, in the data model. If that is the case, then the object- 

oriented type constructors should be represented in concept schemas; we feel that they may be 

implemented as a variation of aggregation. 
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A BNF grammar for schema modifications 

This grammar specifies the syntax of the operations allowed on the concept schemas. The inputs of the 
operations are "hooks" into the ODL grammar specification; therefore, this grammar is built on top of 
the ODL specification grammar. This language formalizes the specification of the schema modification 
operations for an interactive tool for shrink wrap schema based design. Some of the information that  
is necessary for the modification specification is implicit in the grammar. For example, the concept 
schema type that  the operation is defined over is specified through nonterminals in the grammar. This 
information would be known in the interactive schema designer since the user would be working with 
that  concept schema type when the operation is issued. Also, all of the inputs t o  the operation do not 
have t o  be explicitly entered by the designer since some may be inferred from the context in which the 
operation is issued. 



<ww-attribute-ops> ::= < a d d a t t r i b u t e >  
I ( d e l e t e a t t r i b u t e )  
I (modifyattribute-type> 
I <modif y a t t r i b u t e s i z e >  

<wwrelationship-ops>: := <addre la t ionship> 
I <de le t e re l a t ionsh ip>  
I <modif y r e l a t  ionship-cardinality> 
I <modif y r e l a t  ionship-order-by> 

<ww-operation-ops> : := <add-operation> I <delete-operation> 
I <modif y-operationreturn-type> 
I (modify-operationarg-list> 
I <modif y-operation-except i o n s r a i s e d >  

<ww-part-of -ops> : : = <add-part-of r e l a t i o n s h i p >  
I (de le te -par t -of re la t ionship> 

<ww-instance-of-ops> ::= <add-instance-ofrelationship> 
I <delete- instance-ofrelat ionship> 

Cgh-attribute-ops> : : = <modif y a t t r i b u t e >  
<ghirelationship_ops> : :=  <modifyrelationship-target-type> 
<gh-operation-ops> : :=  <modify-operation> 
<ah-part-of -ops> : : = <add-part-of r e l a t i o n s h i p >  

I (delete-part-of r e l a t i o n s h i p >  
I <modify-part-of-target-type> 
I (modify-part-of-cardinality> 
I <modif y-part-of -order-by> 

<ih-instance-of -ops> : : = <addinstance-of r e l a t i o n s h i p >  
I <delete-instance-of r e l a t i o n s h i p >  
I (modify-instance-of-target-type> 
I <modif y-instance-of -cardinal i ty> 



/* operat ion spec i f i ca t ions  */ 
<add-type-def i n i t  ion> : : = add-type-definition ( <typename> ) 
<delete-type-def i n i t i o n >  : := delete-type-definition ( <typename> ) 
<addsupertype> : : = a d d s u p e r t y p e  ( <typename> 

<supertype> ) 
<dele tesuper type> : : = delete-supertype ( <typename>, <supertype> ) 
<modif ysuper type> : : = modi fysupe r type  ( <typename>, 

< o l d s u p e r t y p e l i s t > ,  <newsupe r type l i s t>  ) /* re-wiring isa */ 
< o l d s u p e r t y p e l i s t >  : : = < s u p e r t y p e l i s t >  
< n e w s u p e r t y p e l i s t >  : := < s u p e r t y p e l i s t >  
<add-extent name> : : = add-extent-name ( <typename>, 

(extent name> ) 
<delete-extentname> : : = delete-extentmame ( <typename>, 

(extent name> ) 
<modif y-extent name> : : = modify-extent-name ( <typename>, 

cold-extent name>, <new-extent name> ) 
told-extentname> : : = <extentname> 
<new-extentname> ::= <extentname> 
< a d d k e y l i s t >  : := a d d k e y l i s t  ( <typename>, 

< k e y l i s t >  ) 
< d e l e t e k e y l i s t >  : : = d e l e t e k e y l i s t  ( <typename>, 

< k e y l i s t >  ) 
< m o d i f y k e y l i s t >  : : = m o d i f y k e y l i s t  ( <typename>, 

< o l d k e y l i s t > ,  < n e w k e y l i s t >  ) 
<add-at t r ibute> : : = a d d s t t r i b u t e  ( <typename>, 

<domain-type>, [ <size> ] , <at t r ibu tename> ) 
( d e l e t e a t t r i b u t e )  : : = delete-attribute ( <typename>, 

<a t t r ibu tename> ) 
<modif y a t t r i b u t e >  : : = modify-attribute ( <typename>, 

<typename> ) /* move a t t r .  up/down gen. h i e r  */ 
<modif ya t t r i bu te - type>  : : = m o d i f y ~ t t r i b u t e - t y p e  ( 

<typename>, <a t t r ibu tename>,  <old-type>, <new-type> ) 
<old-type> ::= <domain-type> 
<new-type) ::= <domain-type> 
<modif y ~ t t r i b u t e s i z e )  : : = modifyat t r ibute-s ize ( 

<typename>, <a t t r ibu tename>,  < o l d s i z e > ,  <newsize> ) 
< o l d s i z e >  : := <size> 
<newsize> : : = <size> 
< a d d r e l a t  ionship> : : = addre l a t ionsh ip  ( <typename>, 

<target-of -path>, Ctraversalqathname-1> 
<inverse- t raversa lpa th>,  C < a t t r i b u t e l i s t >  1 ) 

< d e l e t e ~ e l a t i o n s h i p >  : : = delete-relationship ( 
<typename>, <traversal_pathname-1> ) 

cmodif yrelationship-target-type> : : = modify-relationship ( 
<typename>, <traversal-pathname-I>, <old-target-type>, 



<new-target-type> ) 
/* move r e l a t ionsh ip  t a r g e t  up/down gen. h i e r .  */ 
<old-target-type> ::= <target-type> 
<new-target-type> ::= <target-type, 
<modifyrelat ionship-cardinal i ty> ::= 

modify -relations hip-cardinality ( <typename>, 
(traversal-pathname-1>, <old-target-of -path>, 
<new-target -of -path> ) 

<old-target-of -path> : : = < t a r g e t o f  -path> 
<new-target-of -path> : : = <target-of -path> 
<modifyrelationship-order-by> ::= 

modify-relationships-order-by ( <typename>, 
(traversal-pathname-1>, < o l d a t t r l i s t > ,  

< n e w a t t r l i s t >  ) 
< o l d - a t t r l i s t >  : : = < a t t r i b u t e l i s t >  
< n e w - a t t r l i s t >  : : = < a t t r i b u t e l i s t >  
<add-operat ion> : : = add-operation ( <typename>, <return-type>, 

<operationname>, [ <argument l i s t>  1 , [ <except ionsra ised> 1 ) 
<delete-operation> : : = delete-operation ( <typename>, 

<operat ionname> ) 
<modif y-operat ion> : : = modify-operation ( <typename>, 

<operationname>, <new-typename> ) 
<new-typename> : : = <typename> 
/* move operat ion up/down gen h i e r .  */ 
<modif y-operat ionre turn- type> : : = modify-operation-return- type(  

<typename>, <operat ionname>, coldreturn-type> , 
<newleturn-type> ) 

<oldre turn- type> : : = <return-type> 
<newreturn-type> : :=  <return-type> 
<modif y-opera t ionarg- l i s t>  : : = modify-operation-arg-list( 

<typename>, coperat ionname>, < o l d a r g l i s t >  , <new-argl ist> ) 
< o l d - a r g l i s t >  : : = <argument l i s t>  
<new-arg l i s t>  : : = <argument l i s t>  
<modify~opera t ion~except ionsra ised> ::= 

modify~operation~exceptions r a i s e d (  <typename>, 
<operationname>, t o ld -excep t ion l i s t> ,  <new-exceptionlist> ) 

<old -excep t ion l i s t>  ::= < e x c e p t i o n l i s t >  
<new-except i o n l i s t >  : : = < e x c e p t i o n l i s t >  
<add-part-ofrelat ionship> ::= <add-part-of-to-part-ofrelationship> 

I <add-part-of -to-wholerelationship> 
<add-part-of -to-part-of r e l a t i o n s h i p >  : : = 

add-part-of-relationship ( <typename>, <collection-type>, 
<target- type>,  <traversal-pathname-I>, 
(inverse-traversal-path>, [ < a t t r i b u t e l i s t >  1 ) 

<add-part-of -to-wholerelat ionship> : : = 
add-part-of-relationship ( <typename>, <target-type> , 
<traversal+athname-1>, <inverse-traversalqath>, 



[ < a t t r i b u t e l i s t >  1 ) 
(de le tepar t -of  r e l a t  ionship> : : = delete-part-ofrelationship ( 

<typename>, < t raversa lpa thname- l>  ) 
<modif yqar t -of  - target  -type> : : = modify-part-of-target-type ( 

<typename>, <traversalqathname-1>,  <old-target-type> , 
<new-target-type> ) 

<modif y_part-of -card ina l i ty>  : : = modify-part-of-cardinality ( 
<typename>, ctraversal-pathname-I>, <old-collect-type> , 
<new-collect-type> ) /* only allowed f o r  to-part-of end */ 

<old-collect-type> ::= <collection-type> 
<new-collect-type> : := <collection-type> 
<modif y-part-of -order-by> : : = modify-part-of-order-by ( 

<typename>, < t raversa lpa thname-I>  , < o l d - a t t r l i s t > ,  
< n e w - a t t r l i s t )  ) 

<add-instance-of x e l a t  ionship> : : = 
<addinstance-of -to-instance-ent it i e s r e l a t  ionship> 
I <add-instance-of - t o_gene r i c - en t i t y~e la t  ionship> 

<add-instance-of - to- ins tance-ent i t ies~ela t ionship> : : = 
addins tance-of re la t ionship  ( <typename>, 
<collection-type>, <target-type>, c traversalpathname-1>,  
<inverse-traversalqath), C < a t t r i b u t e l i s t >  I ) 

<add-instance-of-togeneric-entitylelationshp : :=  
add-instance-of-relationship ( <typename>, <target-type>, 
( t raversa lpa thname- l> ,  < inverse- t raversa lpa th>,  
[ c a t t r i b u t e l i s t )  I ) 

<de le t e ins t ance -o f r e l a t ionsh ip>  ::= 
delete-instance-of- relationship ( <typename>, 
<traversal-pathname-1> ) 

<modif yinstance-of  -target-type> : := 
modifyinstance-of-target-type ( <typename>, 
< t raversa lpa thname-I> ,  <old-target-type> , 
<new-target-type> ) 

<modifyinstance-of-cardinality> : := 
modifyinstance-of-cardinality ( <typename>, 
< t raversa lpa thname- l> ,  <old-collect-type>, 
<new-collect-type> ) 
/ *  only allowed f o r  to- instance-ent i t ies  end of r e l a t i onsh ip  */ 

<modif yinstance-of  -order-by> : : = modify-instance-of- order-by ( 
<typename>, < t raversa lqa thname-I> ,  < o l d - a t t r l i s t > ,  
< n e w - a t t r l i s t >  ) 


