
Reusing (Shrink Wrap) Schemas by Modifying
Concept Schemas

Lois Delcambre and Jimmy Langston

Technical Report No. CS/E 95-009

June 1995

Reusing (Shrink Wrap) Schemas by Modifying Concept Schemas

Lois Delcambre Jimmy Langston
lmd@cse.ogi .edu j tl@cse.ogi.edu

Data Intensive Systems Center
Dept. of Computer Science and Engineering

Oregon Graduate Institute
Portland, OR 97291

June 12, 1995

Abstract

We provide mechanisms that facilitate database design based on a shrink wrap schema. A shrink
wrap schema is a well-crafted, complete, global schema that represents an application. We develop
the notion of concept schemas as a way to decompose shrink wrap schemas. A concept schema is a
subset of an application schema that addresses one particular point of view in an application. To
aid in shrink wrap schema-based design, we define schema modification operations to customize each
concept schema, to match the designer's perception of the application. We maintain the integrated,
customized user schema. We enforce consistency checks to provide feedback to the designer about
interactions among the concept schemas. We embody these mechanisms in an interactive system
that aids in shrink wrap schema-based design.

Our approach simplifies database design, particularly for a complex data model and/or complex
schema. Our main contribution lies in the ability to use a shrink wrap schema as a starting point
for modeling an application area. The shrink wrap schema approach promotes reuse of past design
efforts; prior approaches to schema reuse do not attempt to reuse an entire schema nor do they focus
on local customization. The focus of this paper is on the definition of concept schemas and their
corresponding modification operations.

Keywords: schema reuse, schema modification, database design

1 Introduction

Higher level constructs better represent application concepts by making explicit the structure and

semantics of the concepts. However, those same constructs can be more difficult t o understand and use

correctly. They add t o the complexity of the data model, require more design effort, and raise issues

regarding interaction among constructs. Another problem is that a global schema, by its very nature,

integrates all views or perspectives. This implies that global schemas can be difficult t o understand and

t o modify.

1.1 The Problem

We define a shrink wrap schema ' t o be a well-crafted, complete, global schema that represents an

application. Ideally, we could reduce database design to a trivial process by providing a "standard7'

schema for each application area. A standard schema facilitates da ta interchange and provides an

accurate representation of semantics. Using a shrink wrap schema may be easier than designing an

application schema from scratch because the standard schema correctly uses the data model constructs

and provides the designer with examples relevant to the application.

Realistically, we know that it is difficult t o provide a standard schema for an application area because

particular applications need different variations of the schema. The scope of the system under con-

struction may differ from that of the standard schema. The business details or other aspects of an

application might be simpler or more elaborate than the standard schema. This need for variations

of the standard schema might defeat the use of shrink wrap schemas. For these reasons, the use of a

shrink wrap schema for database design dictates that provision be made for modifying the schema t o

allow representations t o vary.

Another problem is that when considering a shrink wrap schema (or any global schema), the designer

is likely t o be overwhelmed when given the entire schema a t once. It may be difficult t o make changes

directly t o the global schema because of the number and complexity of the constructs. Therefore, it

is useful for the designer t o be able t o consider the shrink wrap schema a piece a t a time t o avoid

these difficulties. We define concept schema types in order to systematically decompose the shrink wrap

schema for viewing and modification.

1.2 The Solution

We develop the notion of concept schemas as a way t o decompose shrink wrap schema. A concept

schema is a subset of an application schema that addresses one particular point of view, i.e., one

concept, in an application. The concept schemas correspond to modeling abstractions provided by the

da ta model (e.g., aggregation, generalization). To aid in shrink wrap schema-based design, we define

techniques t o customize each concept schema through simplification and elaboration, t o match the

designer's perception of the application. This process alleviates some of the rigidity forced on a designer

when trying t o use a shrink wrap schema in an application. After the schema has been tailored t o the

designer's needs, we construct the global, customized user schema. We also provide consistency checks

based on the concept schema structure and semantics, in order t o discover problems in the user schema

and t o provide feedback t o the designer about interactions among the various concept schema.

This research project includes the definition and development of an interactive schema designer with a

schema repository t o support shrink wrap schema-based design using concept schemas [29]. The focus

of this paper is on:

the definition of generic structure patterns (types) for concept schema,

'This term originated in conversations with Michael Brodie of GTE Laboratories.

the definition of the elaboration and simplification operations for concept schemas (i.e., the defi-

nition of schema modification operations).

2 Related Work

This work is inspired by the large number of complex semantic and object-oriented da ta models that

are available today for the database designer [12, 22, 27, 24, 39, 35, 36, 31, 28, 26, 21, 34, 7, 14, 301.

While the increased complexity of the models produce more accurate representations of the application,

the da ta models are more difficult t o utilize. Tools for database design have been proposed t o aid the

designer, but each of them starts the design process from scratch [33, 38, 37, 91 Metamodels are defined

by researchers t o classify and describe da ta models or schemas at a higher level of abstraction [I, 23, 21.

Our work is similar t o this research only in that the concept schema types are defined at the metamodel

level.

Our work is closely related t o research on reusing schemas. Work in this area concentrates on using

portions of schemas as modeling constructs. Most approaches proceed by extracting portions of schemas

from several similar schemas and describing the common information represented at a higher level of

abstraction. This results in a generic pattern, abstracted from one or more applications, that is hopefully

useful during the design of new schemas. Our approach is centered around the reuse of a shrink wrap

schema for an application area. We believe that a well-crafted schema within an application is likely t o

be (re)used. The concept schemas are defined based on generic structure, but are always a subset of an

application schema.

Peter Coad suggests using patterns as the building blocks for object-oriented design and construction

[15]. He states tha t a pattern standardizes small piecework into a larger chunk or unit. Patterns

are discovered among low-level elements by looking a t the relationships between them. In object-

oriented technology, he identifies patterns of relationships as generalization, specialization, whole-part,

association, and messaging. In addition, he feels that there exist other patterns that are applicable

multiple times in a single application and across different kinds of applications. He defines an object-

oriented pattern as a small grouping of classes that is likely t o be helpful again and again in object-

oriented development. Coad presents seven different patterns along with guidelines for when they are

useful [15]. Patterns as the units of reuse in this context involve multiple classes, relationships, and

message passing. Our concept schema types are defined around what he calls patterns of relationships.

He identifies some random patterns that occur in schemas whereas our concept schema types are based

on the da ta model constructs and cover the entire schema.

Antonellis e t al. [lo] refer t o information system design moving towards the design by reuse paradigm. In

this approach, applications are developed not from scratch, but by tailoring and personalizing reusable

components. This work proposes a methodology for building a library of entity-relationship schemas

and extracting reusable components from selected schemas. A reusable component is a generic entity

with an associated meta-entity that provides guidelines for reuse in an application. The schemas are

organized into a library with each schema characterized by a schema descriptor, based on structural
characteristics of the schema. Schemas of the same application are clustered based on their schema

descriptors. A metric called semantic affinity is proposed for describing the similarity between two

entities within the clusters. If the pairs of entities are sufficiently close to each other, they are presented

t o the application engineer for possible construction of a generic entity. The generic entity is defined by

factoring out the common attributes of the pair of entities [lo]. Patterns in this context are based on

entities as the unit of reuse. Reuse is supported in our approach occurring a t the concept schema level

as well as a t the shrink wrap schema level.

Bertram [4] defines a schema-pattern as a subset of an abstract data model that can be instantiated for

use in application-specific models. He specifies the components necessary t o specify a schema pattern

including: a da ta model for pattern specification, a specification of the pattern boundary and interface

across the boundary, rules for pattern usage, a description of some pattern variants, and links t o similar

patterns. In addition, the behavior of the pattern may be specified with basic functions and a state

model [4]. This information is stored in a pattern library. However, no examples of schema patterns

are presented in this paper. The main contribution of the paper is quality criteria for the evaluation of

schema patterns, similar t o those for reuse of software components. In comparison t o this work, concept

schemas are not schema patterns. Concept schemas are based on schema structure, but they are used

as a formal mechanism for decomposing a shrink wrap schema.

3 Shrink wrap schema customization with concept schemas

The focus of the research is on the schema customization process based on a shrink wrap, or predefined,

standard schema for an application. We therefore assume that a well-designed, richly-structured, stan-

dard schema has been created before the beginning of the design process. A first step in the process

requires a decomposed or concept schema-based representation of the shrink wrap schema.

During shrink wrap schema-based design, the designer considers the concept schemas one by one t o

determine how they relate to the application being designed. If the concept is deemed useful, the

concept schema can be customized for the designer's application. Designers are allowed t o customize all

of the concept schema types and may elaborate and simplify the information specified in the interface

definitions. There is a set of modifications available t o the designer and each change t o the concept

schema is subject t o constraints defined over the operation applied. For example, some operations

possible on an interface definition include adding or removing object types, relationships, and attributes.

The basic function of the schema customization process developed in this research is t o allow the user,

i.e. the schema designer, t o view and alter the standard, well-crafted or shrink wrapped schema. The

main components of the system are shown in Figure 1. The schema repository is a knowledge base

for the entire process. It holds the original shrink wrap schema used as the starting point, the concept

schemas (generated from the shrink wrap schema), the workspace for the schema under design, the

custom schema, and the mapping from the original t o the custom schema. The schema repository also

includes a knowledge component that specifies consistency rules, propagation rules, and constraints

used t o generate feedback for the designer.

The designer interacts directly with the interactive schema designer by issuing operations (to view and

alter the schema) and by receiving feedback. The feedback consists of error or informational messages

Schema Repository
Legend L==l

T I processing step

(data structure f \
0 ."
C,

Shrink Wrap Modification Operation 2
Schema Definitions 3

I i

1
/ 0

C,
m

Generate concept 5
d

Feedback E
a
z

Mdficat~ws 5: -
schemas

Workspace

A

Interactive Schema
Designer

I Generate custom
schema

v
Generate impact report
mapping

f

E 3
M
is

consistency report
v Knowledge Component

Mapping Consistency checks
Propagation ~ l e s
Constraints

\ J

Generalization relationship :

Relationship :
Aggregation relationship :

Relationship cardinality : Instance-of relationship :

Figure 2: Object Modeling Technique notation

about the requested operations. The schema designer provides a graphical interface for modifying the

concept schemas t o match the user's application. The schema designer uses windows and pull-down

menus t o guide the designer through modifications. The possible modifications are restricted according

t o the concept schema type that is being modified. Constraints are enforced on the user's changes t o

ensure that the schema specification is syntactically and semantically correct.

3.1 Notation

We adopt Rumbaugh's notation for the graphical specification of the structure of our schemas because

it has a rich, structural model. The structural notation is summarized on the inside of the front cover

of [34] and is partially reproduced in Figure 2.

The ODMG standards [ll] provide an Object Model, an Object Definition Language (ODL) t o define

interfaces t o object types that conform to the Object Model, as well as C++ and Smalltalk bindings.

We adopt ODL as the da ta definition language on which our concept schemas are formally defined and

the schema modifications are discussed. We choose ODL because it is language and database system

independent. The grammar is extended slightly in this work t o support the instance-of and aggregation

relationship types, currently not present in the Object Model or the ODL. The extended ODMG da ta

model includes the relationships of supertype, aggregation, and instance-of.

The part-of relationship is used t o express a relationship between an entity and its components. This

relationship is prevalent in CAD applications where physical products and their components are being

designed and represented. The relationship has an implicit l :N cardinality between the whole and its

components.

The instance-of relationship is used to express a relationship between a generic specification entity and

specific instances of that entity. This relationship also has an implicit l : N cardinality. The relationship

is between one generic specification and many instances of that specification.

3.2 Simplifying Assumptions, Justifications

In this section, we present the assumptions made in the research.

Good faith use - By deleting the entire shrink wrap schema and adding a completely new schema

with some of the same concepts expressed or named differently, a designer can lose many of the

benefits tha t our approach provides. We assume that he/she doesn't.

Name equivalence - We assume name equivalence of object types, attributes, relationships, and

operations. This is a simplifying assumption, but we believe that our work could be easily adjusted

t o remove this assumption.

Uniqueness - We assume that the object type names, relationship names, and attribute names

uniquely identify the type definitions, relationships, and attributes, respectively. The operation

names are unique as well, except in the case where an operation is overridden.

Semantic stability - Attributes, relationships, and methods are moved only within the generaliza-

tion hierarchy established by the shrink wrap schema. We believe that information tha t is moved

around in the schema should move between object types that are semantically similar. This im-

plies that the moves should be within the generalization hierarchy. For example, a legal move

might be t o move an attribute up the hierarchy to reside in a supertype's interface definition.

Entity Stability - An entity in the standard schema is an entity in the custom schema (or i t has

been deleted). This assumption dismisses from consideration, for example, operations that would

change an entity's representation in the shrink wrap schema t o an attribute in the custom schema.

Relationship, Attribute, Method Stability - Like entity stability, each of these constructs are either

present or absent in the custom schema, but not represented in some other structural manner.

However, they could be moved within the limits of semantic stability explained above.

Single root for generalization hierarchies - Each generalization hierarchy contains a single root

by which i t can be uniquely identified. Any hierarchy with two or more roots can be easily

transformed by creating an abstract supertype of the multiple roots.

3.3 Concept schema types

This section defines the concept schema types defined in this research. They are based on the modeling

abstractions present in the extended ODL. It is possible to algorithmically decompose a schema defined
in extended ODL into concept schemas.

3.3.1 Wagon wheel concept schema types

The basic building block for schemas is the wagon wheel concept schema type. The wagon wheel concept

schema type is inspired by object type definitions in semantic and object-oriented da ta models. A wagon

J teaches

--- -4 course I
I

Figure 3: Course Offering Concept Schema.

I I

wheel concept schema consists of one object type that serves as the focal point of the wagon wheel and

supporting attributes and relationships that emanate from the focal point. We believe that each focal

point of a wagon wheel corresponds to a different point of view in the schema, centered on one object

type.
At least one wagon wheel concept schema exists for every object type in a shrink wrap schema. It is

possible for different points of view of an object type t o result in more than one concept schema having

the same focal point. The union of all the initial concept schemas gives the original shrink wrap schema.

Structurally, the wagon wheel concept schema type, in addition t o the focal point, includes objects

that are just one relationship away from the focal point. A wagon wheel may center on object types

that participate in generalization, aggregation, or instance-of hierarchies. Generalization, aggregation,

and instance-of links of distance one from the focal point can be included in a wagon wheel because

the wagon wheel schema includes allowable relationship types. An example of a wagon wheel concept

schema tha t represents a course offering in a university setting is given in Figure 3. The course offering

object type is the focal point of the concept schema. The relationships and attributes for the course

offering form the "spokes" of the wagon wheel. The figure gives a high level view of a course offering

and does not relay all the information expressible in the data model (e.g., cardinalities, attributes,

operations). The dotted line represents an instance-of relationship between a course and an offering of

the course.

Work by Aranow on class-centered modeling [25] provides design techniques centered around classes.

He believes that classes represent concepts and that schemas should be presented t o users one class a t

a time with the class containing the supporting information similar t o our description. His research

provides for reuse of design efforts with the class as the unit of reuse.

Although we believe that wagon wheels (i.e., classes) are the basic building block for object-oriented

schemas, we are also interested in additional structure and semantics that occur beyond wagon wheels.

Course
Offering

I --------------

described-by
offered-

duration-of during

Syllabus

Length
Book

book-for
Time

Course Slot

Student Lrl
Undergraduate , , , $,, .--..I

Figure 4: Student Generalization Hierarchy

We have identified three additional concept schema types in the chosen object model.

3.3.2 Generalization hierarchies

A generalization hierarchy specifies the object types that participate in subtype/supertype relationships

and inherit information from supertype t o subtype. Defining a concept schema type for generalization

hierarchies (where other attributes and relationships are not shown) gives the designer an integrated

view of the inheritance paths between object types. For example, consider the generalization hierarchy

of students in the university conceptual schema given in Figure 4. The student generalization hierarchy

shows, for example, that a Non-thesis masters student object inherits the attributes and operations

defined on a Graduate student object type.

Each generalization concept schema describes all subclasses of the root type and allow the schema

designer t o consider the inheritance patterns, distinctly from the various wagon wheels.

3.3.3 Aggregation hierarchies

The aggregation hierarchy expresses part-of relationships between two object types. The part-of rela-

tionship has a l : N cardinality by definition. This relationship is mentioned as a possible extension t o

the Object Model [ll] and is present in some semantic data models. Figure 5 is an example of a parts

explosions for a lumber yard. The construction supplies necessary t o build a house, for instance, can

be recorded with the roof of the house consisting of plywood decking, tar paper, and shingles. These

types of hierarchies are useful in VLSI and CAD applications.

We propose a rooted aggregation hierarchy as one of our generic concept schema patterns. This concept

schema allows the designer t o consider the part-of explosion for each aggregated object and provide a

point of view that is different from wagon wheels and different from the generalization patterns.

House T
Structure +

I Finish Elmt

Q
Plumbing Re - bar F

1p-I
Widow

Figure 5: House Aggregation Hierarchy

Version of

Compiled
Vmion of

Version of 13"1
Figure 6: Software Instance-of Sequence

3.3.4 Instance-of Hierarchy

There is a benefit t o viewing a sequence of several instance-of relationships between object types as a

concept schema. The software version application concept schema from the Environmental and Molec-

ular Sciences Laboratory (EMSL) [40, 32, 17, 16, 191 schema is shown in Figure 6. This example can

be best understood by presenting objects for each of the object types. For example, the C compiler is

an application object that is related to many versions of C compilers including version 3.0. The version
3.0 may have been compiled on many different machines, each compilation creating a compiled version
3.0 executable (a compiled version of the application object). The executable is in turn installed on

many machines, each installation creating a installed version 3.0 (an installed version of application

object). We propose a generic concept schema pattern t o describe the sequence of instance-of links.

In our experience, the instance-of hierarchy has been linear with no branches. However, we are not

claiming that a branched structure is not possible.

Schedule

Student 5' Faculty v 1 lies I teaches

Time

I

Figure 7: Elaborated Course Offering

Course
Offering

3.4 Schema modifications

We propose t o formalize the simplification/elaboration process for concept schemas by restricting the

operations that can be performed. The BNF grammar in Appendix A specifies the syntax for a

complete set of schema modification operations. We initiate the discussion by considering an example

that illustrates a schema modification.

Consider the course offering concept schema from Figure 3. The designer may want t o include a course

schedule object type that consists of course offerings. In that case, the course offering concept schema

would need t o be elaborated by including an aggregation link from class schedule t o course offering.

The resulting course offering concept schema is shown in Figure 7. Consider another situation where

courses are offered by correspondence only. In this case, the course offering concept schema is simplified

by removing the time slot entity and room attribute.

We make some restrictions on the modifications in the context of shrink wrap schemas that simplify

our problem from that of schema evolution:

described-by

We do not allow modifications that change the name of interfaces, relationships, and operations.

This decision reflects our name equivalence assumption.

offered-
durationsf during

We only allow information in modify operations t o move within the generalization hierarchies.

This restricts the movement of information among similar object types, providing what we term

semantic stability.

Table 1 summarizes the operations that are allowed in the concept schemas for each of the ODL

candidates for modification. The letters A, D, and M are abbreviations for Add, Delete, and Modify.
The instance-of hierarchies allow the designer t o modify information having t o do with the instance-of

relationships. The designer is allowed t o add and delete object types and connect them with instance-
of relationships or modify the information (excluding names) about the existing relationships. The

designer can also add and delete instance-of relationships between object types.

Table 1: Operations on ODL schema definitions in the context of concept schema types. Note: disallowed
operations support name equivalence

The part-of hierarchies allow modification of the existing part-of relationships as well as operations t o

re-wire the hierarchy. These operations include the ability t o add and delete object types and part-of

relationships.

The generalization hierarchies provide several interesting operations t o move information around within

the schema. Operations, attributes, and relationships are allowed t o change object types within the

hierarchy. Each of these operations causes the inheritance pattern of information t o change within the

hierarchy. Object types can be added and deleted in the hierarchy and supertype relationships can be

added, deleted, and modified for re-wiring the generalization hierarchy.

The largest portion of the modifications are supported in wagon wheel concept schemas. The wagon

wheel concept schemas are the best choice for most modifications because they cover the entire shrink

wrap schema and they are centered around the definition of an object. Object types can be added

and deleted and the complete set of operations for the type properties, extent name and key list, are

allowed. With respect t o instance properties; attributes, relationships, and operations can be added

and deleted and existing instance information can be modified. However, modification of supertypes,

part-of relationships, and instance-of relationships is not supported in wagon wheel concept schemas;

those modifications must be addressed in their respective concept schema types.

As an example, consider the modify-relationship-target-type operation. This operation allows the de-

signer t o move the end of the relationship that is defined in an object type that participates in a

generalization hierarchy up or down the generalization hierarchy. Consider the situation in Figure 8

where a department has an employee and the employee works in a department. Now suppose that

students also work in departments, so modify the target type of worksin-a from employee t o person

t o represent this information. The relationship for Department and Employee interface definition was

originally specified in the interface definition as:

Department:
relationship set<Employee> has inverse
Employee : : w o r k s i n a

Employee :
relationship Department w o r k s i n a inverse
Department : :has

and, after the operation modify relationship target type (Employee, worksin-a, Person), now becomes

Department:
relationship set<Person> has inverse
Person: : worksin-a

Person:
relationship Department w o r k s i n a inverse
Department::has

We exclude operations that split and merge interface definitions. We believe that i t is more appropriate

t o subtype the interface definitions t o be split and t o create an abstract supertype for interface definitions

t o be merged.

3.5 Completeness of this approach

We consider whether schema modification using our approach allows a designer to make all possible

modifications (i.e., that he/she would be able to make if he/she were modifying a schema without the

Person 7
works in a <-

I 1

I Department 1-4 Employee I I Student I
has ->

Figure 8: Modify target type example

benefit of our approach). Based on the syntax of ODL, we have enumerated every possible construct

that can be modified in an ODL specification.

We consider first whether all constructs expressible in ODL are available for add, delete, and modify

operations within our approach. Consider the information in Table 2 for addition of the ODL constructs;

the deletion operations are identical, with the word "add" changed t o "delete" in the operation name.

These tables show our operations that cover the addition and deletion of the ODL candidates for

modification.

Now we consider more complicated changes to the schema. Do we prevent the user from the changing

the schema in some way? Based on our assumptions, we intentionally limit the modification operations.

For example, it is not possible t o replace an entity in the shrink wrap schema by an attribute value

in the customized schema (and retain the semantic connection between the two). However, we observe

that any construct present in the shrink wrap schema can be deleted and any new construct can be

added. In the extreme case, the entire shrink wrap schema can be deleted, and an entirely new (custom)

schema can be added. This defeats any automatic semantic integration between the two schemas. On

the other hand, it demonstrates that our approach does not prevent the user from creating any possible

schema. The modify operations are summarized in Table 3. This table does not have t o be complete,

because, as stated above, all schema modifications can be made using only add and delete operations.

Note that names are not allowed t o be modified in accordance with our assumptions of uniqueness and

equivalence of names.

4 Real-world example of shrink wrap schema based design

ACEDB provides an example of a system that has been adapted for reuse in many different applications.

This system and its successors furnish a scenario where shrink wrap schema-based design has been

performed manually, with a number of benefits, without using our research. We demonstrate here that

the kind of changes made t o ACEDB are admissible using our technology.

ACEDB is an application, with an internal database, originally developed t o study the physical mapping

da ta for the nematode genome project. The application was reused for several related projects, resulting

in a family of related, customized schemas based on the original schema. [5 , 8, 13, 20, 181. Designers

who were building similar databases picked up the ACEDB system and modified it for their purposes.

The fact that the systems must all use the same display code requires the schemas t o be similar.

Interface Definition
T v ~ e name

Operation
Add-type-definition
Add-tvr,e-definition

Type Properties
Supertype (ISA)
Extent name
Kev list

Instance Properties

Addsupertype
Add-extent-name

Addheylist

Attribute
- < r - I

Size I Add-attribute

Add-attribute

Name
Relationship

Add-attribute
Add-Relationship

" " -

Traversal path name
Inverse path name
One wav cardinalitv

T v ~ e

Add-Relationship
Add-Relationship
Add-Relationshir, - I

I Name I Add-operation I

Add-attribute

Tareet t v ~ e

Order by list
- r - I

Add-Relationship

Add-Relationship

Return type Add-operation

Argument list
Exceptions Raised

Part-of relations hi^

Inverse path name I Add-part-ofrelationship
One wav cardinality I Add-part-ofrelationship

. .

Add-operation
Add-operation

Add-r art-ofrelationship

Target type
Traversal ~ a t h name

Add-part-ofrelationship
Add-part-ofrelationship

- -- 0 . - - < r ~ I

Traversal path name I Addinstance-ofrelationship
-

Order by list
Instance-of Relationship

Tareet t v ~ e

I Inverse ~ a t h name I Addinstance-ofrelationship I

Add-part-ofrelationship
Addinstance-ofrelationship
Addinstance-ofrelationshir,

Table 2: Addition operations on ODL candidates

One way cardinality
Order by list

Addinstance-ofrelationship
Addinstance-ofrelationship

Interface Definition
Type name
Type Properties

Supertype (ISA)
Extent name
Key list

Relationship
Target type
Traversal path name
Inverse path name
One way cardinality
Order by list

O~era t ion

I Name I I

Modifysupertype
Modify-extent-name

ModifyAeylist

Modify Relationship

ModifyRelationship-cardinality
Modify Relationship-order-by

Modify-o~eration
Return type Modify-operationreturn-type

Instance Properties

Inverse path name
One way cardinality
Order by list

Instance-of Relationship
Target type
Traversal path name

Table 3: Modify operations on ODL candidates

Attribute

Type
Size
Name

Modifypart-of-cardinality
Modify-part-of-order-by

Modifyinstance-of-target-type

Inverse path name
One way cardinality
Order by list

Modifyattribute
Modifyattribute-type
Modify~ttributesize

Modifyinstance-of-cardinality
Modifyinstance-of-order-by

Figure 9: ACEDB object types

Figure 10: SacchDB object types

We have studied the schemas from two systems based on ACEDB; the Arabidopsis database (AAtDB)

for the plant thale cress, and the Saccharomyces database (SacchDB) for yeast. We have examined the

common classes in the three schemas t o determine the similarity of the system schemas. Figures 9,
10, and 11 give a subset of the object types that have the same name across the schemas along with

their interconnections by relationships. The object types have the same name and further study of the

type definitions reveals that much of the structure is the same. The object type strain in the ACEDB

schema and phenotype in the AAtDB schema are semantically equivalent terms that are used in the

animal and plant disciplines.

This scenario gives empirical evidence that shrink wrap schema-based design is feasible. A shrink

wrap schema based on the ACEDB schema could have been constructed and each of the later physical

mapping databases could have used our mechanisms to create the custom schema for their application.

Figure 11: AAtDB object types

5 Evaluation and Conclusions

First, we consider limitations to our work. Name equivalence means that things with the same name

are the same and things with different names are different. We acknowledge that database designers are

very likely t o want t o introduce local names for constructs that appear in the schema. The extension of

our work t o handle this possibility requires that the user indicate a change of name, and that the system

maintain the mapping from shrink wrap schema names t o local names. We view such an extension as

straightforward and not mainstream t o our work.

We assume tha t the object type names, relationship names, and attribute names uniquely identify the

type definitions, relationships, and attributes, respectively. This assumption complements name equiv-

alence in helping establish equivalence among schema information. We do not deal with establishing

equivalence of information that does not have the same name. Some models require that attribute

names, for example, be unique across the entire schema. Others require only that they be unique within

objects. In the latter case, an attribute name must be qualified by the object type name where the

attribute resides. Once again, we believe that the extension of our work to allow qualified names is

straightforward. Note that Rebecca Wirfs-Brock et al. recommend the use of unique names during

design t o improve the clarity of the object model [42].

We restrict the movement of attributes, relationships, and methods t o be within the generalization

hierarchy established by the shrink wrap schema. We make this choice on semantic (not simplifying)

grounds. We would argue, for example, that replacing a participant in a relationship with an object

type that is not semantically comparable results in a semantically distinct relationship.

An entity in the shrink wrap schema is either an entity in the custom schema or not in the custom

schema a t all. This assumption is in line with our belief that the shrink wrap schema is a well-crafted

representation of the application. More sophisticated modifications would allow, for example, an object

type in the shrink wrap schema t o be replaced by an attribute value or by the union of several object

types. We believe that entity, relationship, attribute, and method stability contributes t o the designer's

ability to understand the shrink wrap schema and its relationship t o the custom schema. Thus, although

it is a simplifying assumption, we believe that the changes we allow are quite intuitive. We also see
generalization of our current approach t o a more expressive set of mappings as a possibility for future

work.

Second, we consider the contribution of this work. Consider the example of building a latex document

for the first time. The task is easier if you are allowed t o start with a latex file and modify i t for your

application. In fact, a sample latex file that demonstrates basic functionality is provided with the tutorial

for using latex. The same principle holds in database design. People comprehend examples and the

shrink wrap schema provides those examples in a form relevant t o their application. A contribution of

our research lies in the ability t o use a shrink wrap schema as a starting point for modeling an application

area. The shrink wrap schema provides a well-crafted schema for the designer and ultimately leads to

better schema quality for the custom schema. Other contributing factors t o the quality of the custom

schema include the guidance and feedback provided by the interactive schema designer; this aspect of

the work is discussed elsewhere [29]. Schema quality of the shrink wrap schema can be improved by

revising the representation over time as i t is employed and reviewed by diverse design teams.

Software reusability, like object-orientation, impacts everything from management practices t o software

development standards [3]. Software practitioners often limit their definition of software t o source and

object code, but, in truth, software includes many other things such as modules, documentation, plans,

standards, analysis and design products, and quality assurance efforts. Software reusability can have a

very positive impact on software reliability, efficiency, and time to market [3]. Our research provides

reuse of the conceptual schema for database systems. The design of the successors of ACEDB [5, 8, 13,

20, 181 that have been produced manually, could, in fact, have been created using our technology.

Since our research operates using the implementation independent ODL, the techniques discussed are

broadly applicable. Our approach is not dependent on a DBMS or even a da ta model. The da ta model

provides an object-oriented approach, but there has been work, for example, on modeling in an object-

oriented model and translating the results t o other models such as entity relationship diagrams and

relational models.

Our approach simplifies the customization process for the designer by restricting the modification o p

erations available, according t o the situation. The modifications are also organized and checked by

the interactive schema design system t o provide guidance and feedback t o the designer. The language

that is created for specifying modifications formalizes the modification choices for implementation in a

system. These factors accelerate the process of schema design.

Possible applications of our work are: t o facilitate interoperation through common objects. Work in

progress [6] is attempting t o establish a Business Object Model to promote the conduct of business over

the network. In general, systems built from the same shrink wrap schema (i.e., common objects) can be

integrated for information interchange because the semantically identical constructs have already been

identified.

This paper reports on research on concept schemas and their associated modification operations that

are part of a larger research project. The complete list of activities is shown here:

1. Modifications t o ODL t o accommodate part-of and instance-of relationships.

2. Definition of generic structure patterns (types) for concept schemas.

3. Algorithms for extracting concept schemas from an ODL specification.

4. Architecture of an interactive tool for shrink wrap schema-based design.

5. Restriction of the schema modification operations possible on an ODL specification for shrink

wrap schema customization.

6. Definition of schema modification operations in the context of concept schemas.

7. Definition of the language for specifying the modification operations.

8. Discussion of the semantics and definition of constraints associated with the operations.

9. Definition of a set of constraints enforced in the interactive tool for shrink wrap schema-based

design and classification of the constraints into logical categories.

Definition of a set of rules t o show the designer the impact of the proposed modification

operation (i.e., all of the changes that follow from a given change).

Definition of a set of cautionary statements to the user in the form of feedback

10. Definition of a mapping representation that records the semantic correspondence between the

shrink wrap and customized schema.

11. Specification of an approach t o generating deliverables for designer feedback as a result of shrink

wrap schema customization.

12. Development of a prototype implementation to demonstrate the feasibility of the research.

Implementation of the schema repository as an Object Store application.

Construction of a parser for Object Store header files.

Implementation of mapping generation, user deliverables generation, constraint enforcement.

The prototype is operational, but we have not fully implemented the interactive nature of the

schema modification operations.

This paper focuses on 1,2,5,6, and 7.

Future work will include a full-featured implementation of the interactive schema designer with inter-

active feedback, impact (perhaps shown in color on the graphical view), and cautionary statements,

coupled with a field trial of the technology. Possible extensions t o this work include:

An explanation facility for the existing concept schemas can be created t o explain the information

represented in the concept schema t o the designer.

a More complex schema modification operations with well-defined semantics can be added t o provide

guidance t o the designer. The modifications can be incorporated into the schema designer along

with expected constraints and impact on the schema.

Additional constraints and rules for the knowledge component can be added to aid in the design

process. These would make life easier for the designer.

Constraint Analysis [41] can be used in the consistency check to suggest the operations that need

to be altered to enforce semantic constraints.

It may be worthwhile to include the object oriented type constructors (set-of,list-of,bag-of,array-

of), for construction of complex objects, in the data model. If that is the case, then the object-

oriented type constructors should be represented in concept schemas; we feel that they may be

implemented as a variation of aggregation.

References

[I] Carlo Batini, Giuseppe Di Battista, and Giuseppe Santucci. Structuring primitives for a dictionary
of entity relationship data schemas. IEEE Transactions on Software Engineering, 19(4):344-365,
April 1993.

[2] Z. Bellahsene. An active meta-model for knowledge evolution in an object-oriented database. In
Collette Rolland, Francois Bodart, and Corine Cauvet, editors, Proceedings of the Fifth Interna-
tional Conference, CAiSE '93, pages 39-53. Springer-Verlag, June 1993.

[3] Edward V. Berard. Essays on Object-oriented Software Engineering, volume 1. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1993.

[4] Martin Bertram. Data modelling in the large. SIGMOD Record, 23(4):8-12, December 1994.

[5] Martin J . Bishop, editor. Guide to Human Genome Computing. Academic Press, San Diego, CA,
1994.

[6] OMG BOMSIG. Proposal Draft, December 1994.

[7] G. Booch. Object-oriented Design with Applications. Benjamim Cummings, 1991.

[8] David Boone. Oregon Graduate Institute, 1995. Correspondence.

[9] M. A. Casanova, A. L. Furtado, and L. Tucherman. A software tool for modular database design.
A CM Transactions on Database Systems, 16(2) :209-234, June 1991.

[lo] S. Castano, V. De Antonellis, and B. Zonta. Classifying and reusing conceptual schemas. In
G. Pernul and A. M. Tjoa, editors, ER '92 - Entity Relationship Approach, pages 121-138. Springer-
Verlag, October 1992.

[l l] R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann Publishers,
San Mateo, CA, 1.1 edition, 1994.

[12] P. P. Chen. The entity-relationship model - towards a unified view of data. ACM Transactions on
Database Systems, 1(1):9-36, 1976.

[13] Mike Cherry. Stanford University, 1995. AAtDB and SacchDB schemas.

[14] P. Coad and E. Yourdon. Object-oriented Analysis. Yourdon Press, 1991.

[15] Peter Coad. Object-oriented patterns. Communications of the ACM, 35(9):152-159, September
1992.

[16] J . B. Cushing, D. Maier, M. Rao, D. M. DeVaney, and D. Feller. Object-oriented database sup-
port for computational chemistry. In Sixth International Working Conference on Statistical and
Scientific Database Management (SSDBM), June 1992.

[17] Judith Bayard Cushing, David Hansen, David Maier, and Calton Pu. Connecting scientific pro-
grams and da ta using object databases. IEEE Bulletin of the Technical Committee on Data Engi-
neering, 16(1):9-13, March 1993.

[18] Richard Durbin and Jean Thierry-Mieg. http://moulon.inra.fr/acedb/acedb.html. World Wide
Web, 1994.

[19] J.C. French, editor. Computational Proxies: Modeling Scientific Applications in Object Databases.
Seventh International Working Conference on Statistical and Scientific Database Management (SS-
DBM), IEEE, September 27-29 1994.

[20] Nat Goodman. Massachusetts Institute of Technology, 1995. Correspondence.

[21] K. Gorman and J . Choobineh. An overview of the object-oriented entity-relationship model (00-
ERM). In Proceedings of the Twenty-third Annual Hawaii International Conference on System
Sciences, 1991.

[22] Michael Hammer and Dennis McLeod. Database description with sdm: A semantic database model.
ACM Transactions on Database Systems, 6(3):351-386, September 1981.

[23] Shuguang Hong and Fred Maryanski. Using a meta model t o represent object-oriented da ta models.
In Z. Michalewicz, editor, Proceedings of the IEEE Data Engineering Conference (DEC), pages 11-
19, 1990.

[24] Richard Hull and Roger King. Semantic database modeling: Survey, applications, and research
issues. A CM Computing Surveys, 19 (3) :201-260, 1987.

[25] Andrew T. F. Hutt , editor. Object Analysis and Design: Description of Methods. John Wiley and
Sons, New York, 1994.

[26] G. Kappel and M. Schrefl. A behavior integrated entity-relationship approach for the design of
object-oriented databases. In C. Batini, editor, Proceedings of the Seventh International Conference
on Entity-Relationship Approach, pages 175-192, 1988.

[27] L. Kerschberg and J. E. S. Pacheco. A functional database model. Technical report, Pontifica
Universidade Catolicalo Rio de Janeiro, Brazil, February 1976.

[28] C. S. Ku, C. Youn, and H. J . Kim. An object-oriented entity-relationship model. In 1991 ISMM
International Conference on Computer Applications in Design, Simulation, and Analysis, pages
55-58, March 1991.

[29] Jimmy Langston. Object-Oriented Database Design based on a Shrink Wrap Schema. PhD thesis,
University of Southwestern Louisiana, 1995.

[30] J. Martin and J. Odell. Object-oriented Analysis and Design. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1992.

[31] S. B. Navathe and Pillalamarri. OOER: Toward making the e-R approach object- oriented. In
Proceedings of the Eighth International Conference on Entity-Relationship Approach, pages 55-76,
1989.

[32] Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352. Environmental and Molecular
Sciences Laboratory.

[33] Arnon Rosenthal and David Reiner. Tools and transformations - rigorous and otherwise - for
practical database design. ACM Transactions on Database Systems, 19(2) : 167-211, June 1994.

[34] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-oriented Modeling and Design. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

[35] Peretz Shoval. Essential information structure diagrams and database schema design. Information
Systems, 10(4):417-423, 1985.

[36] Peretz Shoval. An integrated methodology for functional analysis, process design and database
design. Information Systems, 16(1):49-64, 1991.

[37] Peretz Shoval, Ehud Gudes, and Moshe Goldstein. GISD: A graphical interactive system for
conceptual database design. Information Systems, 13(1):81-95,1988.

[38] 11-Ye01 Song and E. K. Park. Object-oriented database design methodologies. In Timothy W. Finin,
Charles K. Nicholas, and Yelena Yesha, editors, Proceedings of the First International CIKM, pages
115-140. Springer-Verlag, 1992.

[39] T. J . Teorey, D. Yang, and J . P. Fry. A logical design methodology for relational databases using
the extended entity-relationship model. ACM Computing Surveys, 18(12):197-222, June 1986.

[40] United States Department of Energy, P.O. Box 550, Richland, WA 99352. Overview of the 1993
Hanford Site-Specific Plan, March 1993.

[41] Susan D. Urban and Lois M. L. Delcambre. Constraint analysis: Identifying design alternatives for
operations on complex objects. Transactions on Knowledge and Data Engineering, 2(4):391-400,
December 1990.

[42] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-oriented Software.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990.

A BNF grammar for schema modifications

This grammar specifies the syntax of the operations allowed on the concept schemas. The inputs of the
operations are "hooks" into the ODL grammar specification; therefore, this grammar is built on top of
the ODL specification grammar. This language formalizes the specification of the schema modification
operations for an interactive tool for shrink wrap schema based design. Some of the information that
is necessary for the modification specification is implicit in the grammar. For example, the concept
schema type that the operation is defined over is specified through nonterminals in the grammar. This
information would be known in the interactive schema designer since the user would be working with
that concept schema type when the operation is issued. Also, all of the inputs t o the operation do not
have t o be explicitly entered by the designer since some may be inferred from the context in which the
operation is issued.

<ww-attribute-ops> ::= < a d d a t t r i b u t e >
I (d e l e t e a t t r i b u t e)
I (modifyattribute-type>
I <modif y a t t r i b u t e s i z e >

<wwrelationship-ops>: := <addre la t ionship>
I <de le t e re l a t ionsh ip>
I <modif y r e l a t ionship-cardinality>
I <modif y r e l a t ionship-order-by>

<ww-operation-ops> : := <add-operation> I <delete-operation>
I <modif y-operationreturn-type>
I (modify-operationarg-list>
I <modif y-operation-except i o n s r a i s e d >

<ww-part-of -ops> : : = <add-part-of r e l a t i o n s h i p >
I (de le te -par t -of re la t ionship>

<ww-instance-of-ops> ::= <add-instance-ofrelationship>
I <delete- instance-ofrelat ionship>

Cgh-attribute-ops> : : = <modif y a t t r i b u t e >
<ghirelationship_ops> : := <modifyrelationship-target-type>
<gh-operation-ops> : := <modify-operation>
<ah-part-of -ops> : : = <add-part-of r e l a t i o n s h i p >

I (delete-part-of r e l a t i o n s h i p >
I <modify-part-of-target-type>
I (modify-part-of-cardinality>
I <modif y-part-of -order-by>

<ih-instance-of -ops> : : = <addinstance-of r e l a t i o n s h i p >
I <delete-instance-of r e l a t i o n s h i p >
I (modify-instance-of-target-type>
I <modif y-instance-of -cardinal i ty>

/* operat ion spec i f i ca t ions */
<add-type-def i n i t ion> : : = add-type-definition (<typename>)
<delete-type-def i n i t i o n > : := delete-type-definition (<typename>)
<addsupertype> : : = a d d s u p e r t y p e (<typename>

<supertype>)
<dele tesuper type> : : = delete-supertype (<typename>, <supertype>)
<modif ysuper type> : : = modi fysupe r type (<typename>,

< o l d s u p e r t y p e l i s t > , <newsupe r type l i s t>) /* re-wiring isa */
< o l d s u p e r t y p e l i s t > : : = < s u p e r t y p e l i s t >
< n e w s u p e r t y p e l i s t > : := < s u p e r t y p e l i s t >
<add-extent name> : : = add-extent-name (<typename>,

(extent name>)
<delete-extentname> : : = delete-extentmame (<typename>,

(extent name>)
<modif y-extent name> : : = modify-extent-name (<typename>,

cold-extent name>, <new-extent name>)
told-extentname> : : = <extentname>
<new-extentname> ::= <extentname>
< a d d k e y l i s t > : := a d d k e y l i s t (<typename>,

< k e y l i s t >)
< d e l e t e k e y l i s t > : : = d e l e t e k e y l i s t (<typename>,

< k e y l i s t >)
< m o d i f y k e y l i s t > : : = m o d i f y k e y l i s t (<typename>,

< o l d k e y l i s t > , < n e w k e y l i s t >)
<add-at t r ibute> : : = a d d s t t r i b u t e (<typename>,

<domain-type>, [<size>] , <at t r ibu tename>)
(d e l e t e a t t r i b u t e) : : = delete-attribute (<typename>,

<a t t r ibu tename>)
<modif y a t t r i b u t e > : : = modify-attribute (<typename>,

<typename>) /* move a t t r . up/down gen. h i e r */
<modif ya t t r i bu te - type> : : = m o d i f y ~ t t r i b u t e - t y p e (

<typename>, <a t t r ibu tename>, <old-type>, <new-type>)
<old-type> ::= <domain-type>
<new-type) ::= <domain-type>
<modif y ~ t t r i b u t e s i z e) : : = modifyat t r ibute-s ize (

<typename>, <a t t r ibu tename>, < o l d s i z e > , <newsize>)
< o l d s i z e > : := <size>
<newsize> : : = <size>
< a d d r e l a t ionship> : : = addre l a t ionsh ip (<typename>,

<target-of -path>, Ctraversalqathname-1>
<inverse- t raversa lpa th>, C < a t t r i b u t e l i s t > 1)

< d e l e t e ~ e l a t i o n s h i p > : : = delete-relationship (
<typename>, <traversal_pathname-1>)

cmodif yrelationship-target-type> : : = modify-relationship (
<typename>, <traversal-pathname-I>, <old-target-type>,

<new-target-type>)
/* move r e l a t ionsh ip t a r g e t up/down gen. h i e r . */
<old-target-type> ::= <target-type>
<new-target-type> ::= <target-type,
<modifyrelat ionship-cardinal i ty> ::=

modify -relations hip-cardinality (<typename>,
(traversal-pathname-1>, <old-target-of -path>,
<new-target -of -path>)

<old-target-of -path> : : = < t a r g e t o f -path>
<new-target-of -path> : : = <target-of -path>
<modifyrelationship-order-by> ::=

modify-relationships-order-by (<typename>,
(traversal-pathname-1>, < o l d a t t r l i s t > ,

< n e w a t t r l i s t >)
< o l d - a t t r l i s t > : : = < a t t r i b u t e l i s t >
< n e w - a t t r l i s t > : : = < a t t r i b u t e l i s t >
<add-operat ion> : : = add-operation (<typename>, <return-type>,

<operationname>, [<argument l i s t> 1 , [<except ionsra ised> 1)
<delete-operation> : : = delete-operation (<typename>,

<operat ionname>)
<modif y-operat ion> : : = modify-operation (<typename>,

<operationname>, <new-typename>)
<new-typename> : : = <typename>
/* move operat ion up/down gen h i e r . */
<modif y-operat ionre turn- type> : : = modify-operation-return- type(

<typename>, <operat ionname>, coldreturn-type> ,
<newleturn-type>)

<oldre turn- type> : : = <return-type>
<newreturn-type> : := <return-type>
<modif y-opera t ionarg- l i s t> : : = modify-operation-arg-list(

<typename>, coperat ionname>, < o l d a r g l i s t > , <new-argl ist>)
< o l d - a r g l i s t > : : = <argument l i s t>
<new-arg l i s t> : : = <argument l i s t>
<modify~opera t ion~except ionsra ised> ::=

modify~operation~exceptions r a i s e d (<typename>,
<operationname>, t o ld -excep t ion l i s t> , <new-exceptionlist>)

<old -excep t ion l i s t> ::= < e x c e p t i o n l i s t >
<new-except i o n l i s t > : : = < e x c e p t i o n l i s t >
<add-part-ofrelat ionship> ::= <add-part-of-to-part-ofrelationship>

I <add-part-of -to-wholerelationship>
<add-part-of -to-part-of r e l a t i o n s h i p > : : =

add-part-of-relationship (<typename>, <collection-type>,
<target- type>, <traversal-pathname-I>,
(inverse-traversal-path>, [< a t t r i b u t e l i s t > 1)

<add-part-of -to-wholerelat ionship> : : =
add-part-of-relationship (<typename>, <target-type> ,
<traversal+athname-1>, <inverse-traversalqath>,

[< a t t r i b u t e l i s t > 1)
(de le tepar t -of r e l a t ionship> : : = delete-part-ofrelationship (

<typename>, < t raversa lpa thname- l>)
<modif yqar t -of - target -type> : : = modify-part-of-target-type (

<typename>, <traversalqathname-1>, <old-target-type> ,
<new-target-type>)

<modif y_part-of -card ina l i ty> : : = modify-part-of-cardinality (
<typename>, ctraversal-pathname-I>, <old-collect-type> ,
<new-collect-type>) /* only allowed f o r to-part-of end */

<old-collect-type> ::= <collection-type>
<new-collect-type> : := <collection-type>
<modif y-part-of -order-by> : : = modify-part-of-order-by (

<typename>, < t raversa lpa thname-I> , < o l d - a t t r l i s t > ,
< n e w - a t t r l i s t))

<add-instance-of x e l a t ionship> : : =
<addinstance-of -to-instance-ent it i e s r e l a t ionship>
I <add-instance-of - t o_gene r i c - en t i t y~e la t ionship>

<add-instance-of - to- ins tance-ent i t ies~ela t ionship> : : =
addins tance-of re la t ionship (<typename>,
<collection-type>, <target-type>, c traversalpathname-1>,
<inverse-traversalqath), C < a t t r i b u t e l i s t > I)

<add-instance-of-togeneric-entitylelationshp : :=
add-instance-of-relationship (<typename>, <target-type>,
(t raversa lpa thname- l> , < inverse- t raversa lpa th>,
[c a t t r i b u t e l i s t) I)

<de le t e ins t ance -o f r e l a t ionsh ip> ::=
delete-instance-of- relationship (<typename>,
<traversal-pathname-1>)

<modif yinstance-of -target-type> : :=
modifyinstance-of-target-type (<typename>,
< t raversa lpa thname-I> , <old-target-type> ,
<new-target-type>)

<modifyinstance-of-cardinality> : :=
modifyinstance-of-cardinality (<typename>,
< t raversa lpa thname- l> , <old-collect-type>,
<new-collect-type>)
/ * only allowed f o r to- instance-ent i t ies end of r e l a t i onsh ip */

<modif yinstance-of -order-by> : : = modify-instance-of- order-by (
<typename>, < t raversa lqa thname-I> , < o l d - a t t r l i s t > ,
< n e w - a t t r l i s t >)

