
�Extended Abstract�

A Practical and Modular Implementation
of Extended Transaction Models

Roger Barga
Calton Pu

Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology

P�O� Box �����
Portland� OR �	
�������

email� fbarga�caltong�cse�ogi�edu

� Introduction

The last �ve years have witnessed the introduction of numerous extended transaction models �Elm����
These models relax the ACID properties provided by transactions� replacing them with weaker guaran	
tees� Despite their popularity� relatively little has appeared in the literature on implementing extended
transactions� We present the Re�ective Transaction Framework� a practical and modular framework
which provides the basic features of extended transactions and can be used to implement a wide range of
extended transaction models �BP�
�� We achieve modularity by applying the Open Implementation ap	
proach �Kic���� also known as meta	object protocol �KdRB���� to the design of the reective transaction
framework� We achieve practicality by basing the implementation of the reective transaction frame	
work on Gray and Reuter�s architecture �GR���� which is widely applicable to many modern transaction
processing �TP� systems�

Our proposed implementation introduces transaction adapters � add	on modules built on top of ex	
isting commercial TP components that extend their functionality to support extended transaction fea	
tures and semantics� We further demonstrate practicality by incorporating transaction adapters within
Encina� a commercial TP facility� This modular and practical design enables us to implement a wide
range of extended transaction models� and we illustrate the implementation of two independently pro	
posed extended transaction models for collaborative work �split�join model �PKH��� and cooperative
groups �MP��� RC����� and the synthesis of a new model from their combination �BP�
��

� The Re�ective Transaction Framework

Classic transactions are bracketed by the control operations Begin�Transaction� Commit�Transaction
and Abort�Transaction� while extended transactions can invoke additional operations to control their
execution� such as Split�Transaction� Join�Transaction or Join�Group� The semantics of a partic	
ular transaction model de�ne both the control operations available to transactions that adhere to that
model and the semantics of these operations� For example� whereas the Commit�Transaction operation
of the standard transaction model implies that the transaction is terminating successfully and all of its
e�ects on data objects should be made permanent in the database� the Commit�Transaction operation
of a member transaction in a cooperative transaction group implies only that its e�ects on data objects
be made persistent and visible with respect to other member transactions� To capture this distinction
requires a separation of programming interfaces to transactions in order to keep the notion of the basic
function of a transaction independent of the advanced operations required for extended transactions� and
also to be able to control implementation level concerns�

�



To design the reective transaction framework� we �rst apply the Open Implementation approach �Kic���
to separate the programming interfaces to extended transactions� and identify modular functional com	
ponents required to realize this separation� Next� we proceed to extend the underlying transaction pro	
cessing facilities to support these modular functional components via transaction adapters� We outline
these steps below� and their complete description is available in the full version of this paper �BP�
��

��� A Separation of Interfaces

The Reective Transaction Framework divides the programming interface to transactions into three
groups� This division follows the Open Implementation approach �Kic���� which separates the functional
interface from the meta interface� where the purpose of the meta interface is to modify the behavior of
the functional interface� In our division presented below� Groups � and � are functional� subdivided for
clarity only� while Group � is the meta interface that modi�es the semantics of the transaction functional
interface �Groups � and ��� The three groups are�

�� The transaction demarcation interface� Begin�Transaction� Commit�Transaction� and
Abort�Transaction�

�� The extended transaction interface �operations de�ned by each extended transaction model��

� For the split�join transaction model� it is Split�Transaction and Join�Transaction�

� For the cooperative group transaction model� it is Begin�Group� Join�Group� Commit�Group�
and Abort�Group�

�� The meta	transaction interface� de�ned by the Reective Transaction Framework� it extends the
implementation of the TP monitor to support the extended transaction interface �Group �� For
the split�join transaction model and the cooperative group model� the operations needed are�
instantiate� reflect� delegateOp� delegateLock� formDependency� and noConflict�

The transaction demarcation interface �Group �� exports the basic transaction interface� and when
used alone �Group � and � not involved� it provides classic ACID transaction semantics� The extended

transaction interface �Group �� exports a model	speci�c transaction interface for when enhanced transac	
tion functionality and semantics are required� Finally� the meta�transaction interface �Group �� exports
a modi�able interface to the underlying transaction processing facility for implementing extended trans	
action models� This separation of the programming interface to transactions de�nes a framework which
can be used to both develop advanced applications requiring extended transactions and to implement
new extended transaction models� The transaction application developer codes transactional applica	
tions using both the transaction demarcation interface �Group �� and the extended transaction interface
�Group ��� In addition� the transaction systems programmer can de�ne or synthesize new extended
transaction models by using the extended transaction interface �Group �� to specify transaction control
operations� and control their implementation using the meta	transaction interface �Group ���

Realization of extended transaction models is facilitated through the careful design of the meta	
transaction interface and its implementation� The design of the meta	transaction interface was inspired
by the ACTA framework and readers familiar with ACTA will recognize that it supports many of the
ACTA basic building blocks for describing extended transaction models� On the design side� the meta	
transaction interface is close enough to ACTA to obtain modularity and applicability to a wide range of
extended transaction models� On the implementation side� it is close enough to the Gray and Reuter TP

�



architecture �GR Architecture� to support a practical implementation on top of commercial software�
This design and implementation of the meta	transaction interface is captured in transaction adapters�

��� Implementation Through Transaction Adapters

Transaction adapters are modules built on top of an existing transaction processing facility that extend
the underlying functionality� Each transaction adapter provides a representation �model� of the underly	
ing transaction processing component for use by the meta	transaction interface �Group ��� mechanisms
for reasoning about and with such a representation� and a set of commands for controlling both the rep	
resentation and the underlying transaction facility� This set of commands is referred to as TRACS� for
TRansaction Adapter Command Set� TRACS expose features such as operation and lock delegation�
dependency tracking between transactions� and relaxed de�nitions of conict� as explicit commands by
which extended transaction models can be implemented� Thus� instead of applying operations in the
meta	transaction interface directly to the underlying transaction system� we base them on an abstract
and enhanced description of the underlying transaction system provided by transaction adapters�

Adapter
Lock

Adapter
Conflict

Adapter
LogTransaction Mgr.

Adapter

TRACS TRACS TRACS TRACS

Transaction Mgr. Log Mgr.Lock Mgr.

OLTP System

Figure �� Transaction Adapters in the Reective Transaction Framework�

Transaction adapters and their associated TRACS� as illustrated in Figure �� are built on top of and
use existing transaction processing services� For practicality we base their design on the GR Architecture�
and are currently exploring their implementation via Transarc�s Encina OLTP system� This way� TRACS
provide similar reliability to mature OLTP systems software and minimize overheads often associated
with increased exibility� In fact� overhead associated with extended transactions is incurred only when
the extended facilities provided by transaction adapters are used� and since an ACID transaction uses
only the transaction demarcation interface �Group ��� it is executed without additional overhead�

��� Realizing Extended Transactions

In the Reective Transaction Framework� a transaction is simply a partially ordered set operations on
data objects� with calls to operations in any of the three groups of interfaces� Users are not limited to a
prede�ned extended transaction model� which may or may not be appropriate for their application� nor
is a transaction restricted to a single set of extended semantics and properties� Instead� a transaction de	
clares its intention to use extended transaction properties and semantics via the instantiate command
prior to beginning execution� The e�ect of this command is the creation of entries in the transaction
adapters to represent this transaction� e�ectively creating a metatransaction� The meta	transaction com	
mand reflect assigns extended semantics to the metatransaction and supports the further re�nement
and extension of transaction properties during execution� For example� the sequence of transaction con	
trol operations presented below �rst creates a metatransaction for transaction Ti� assign it the semantics
of the Split�Join transaction model �PKH���� and begins the execution the execution of transaction Ti�

�



instantiate�Ti�� �� create metatransaction

reflect�Ti�Split�Join�� �� assign split�join transaction semantics

begin�transaction�Ti�� �� begin execution of extended transaction

A transaction with semantics beyond ACID properties is referred to as an E�transaction� When an
E	transaction invokes a transaction control operation� the metatransaction is responsible for determin	
ing which function is actually executed based on the extended semantics of the transaction� Figure �
illustrates the processing when the E	transaction Ti invokes the Split�Transaction control operation�
Thus� from the system point of view� we consider the metatransaction as an object that supplies the
extended transaction model semantics� separate from the application programmer�s view of transactions�

Meta-level Transaction

2

preTest Invariant

3

1

4 Return

Call

Implementation-level

}

Base-level Transaction

Begin

Split(TID);
Trap<Split, splitMethod> ooo

ooo

Commit;

postTest Invariant

void splitMethod(TID){

ooo

Figure �� Transaction management method execution redirection�

The transaction systems programmer can de�ne and specify the implementation of E	transaction op	
eration by de�ning another metatransaction and then substituting it� In this sense� a suitable grouping
of E	transaction operations form an extended transaction model� The sequence of metatransaction com	
mands presented below specify the implementation of the Split�Transaction control operation� Meta	
transactions are thus realized through both the metatransaction interface and the transaction adapters
and their associated TRACS�

E�splitMethod	

instantiate�T
�� �� instantiate new transaction�

reflect�T
� sj�model�� �� add transaction semantics through reflection�

delegate�lock�T
� DelegateSet�� �� delegate locks related to objects in the DelegateSet�

delegate�op�T
� DelegateSet�� �� delegate operations related to objects in the DelegateSet�

begin�T
�� �� begin execution of the new transaction�

return� �� return control to invoking transaction

�

� An Encina Implementation

One of the salient features of design of the reective transaction framework is its compatibility with the
GR Architecture� which is widely applicable to many modern transaction processing systems� One major
advantage of this compatibility is the ease for implementation of the reective transaction framework�
Instead of starting from scratch� we can extend an existing OLTP system through the de�nition and
implementation of the transaction adapters� Concretely� we are currently implementing the Transaction
Manager Adapter� Lock Adapter� and Conict Adapter �Figure �� on Encina� a commercial OLTP system
distributed by Transarc� The full version of this paper �BP�
� contains a complete description of the
implementation details�

�



The goals of our implementation e�ort are� ��� to demonstrate the practicality of the reective
transaction framework and transaction adapters� ��� to evaluate extended transaction models in a real
environment� ��� to determine how easy it is to implement a wide range of extended transaction models�
and ��� to facilitate eventual technology transfer to real users�

� Summary

We have proposed the Reective Transaction Framework to analyze and describe the interface to extended
transaction models� Early experience �BP�
� shows that the framework is general enough for a wide
range of extended transaction models� including split	transactions and cooperative groups� Using the
framework� we outline a practical and modular implementation method for extended transaction models
based on transaction adapters �

Our implementation method is practical because it builds on Gray and Reuter�s architecture �GR���
and we have a concrete design on top of Transarc Encina� Our implementation is modular because
independently proposed extended transaction models� such as split	transactions and cooperative groups�
can be implemented individually and combined on the same transaction processing system�

Currently we are applying the framework and transaction adapters implementation method to other
extended transaction models� including Epsilon Serializability �RP���� At the same time� we are using
Encina to both implement the designs outlined here and to implement extended transaction models� such
as split	transactions� cooperative groups� and Epsilon Serializability�

References

�BP��� Roger S� Barga and Calton Pu� A practical and modular implementation of extended transaction
models� Technical Report OGI�CSE�������	 Department of Computer Science and Engineering	 Oregon
Graduate Institute	 February 
����

�Elm��� Ahmed K� Elmagarmid	 editor� Database Transaction Models for Advanced Applications� Morgan
Kaufmann	 
����

�GR��� J� Gray and A� Reuter� Transaction Processing� Concepts and Techniques� Morgan Kaufmann Pub�
lishers	 
����

�KdRB�
� Gregor Kiczales	 Jim des Rivi�eres	 and Daniel G� Bobrow� The Art of the Metaobject Protocol� MIT
Press	 
��
�

�Kic�� Gregor Kiczales� Towards a new model of abstraction in software engineering� In Pro�

ceedings of the IMSA��� Workshop on Re�ection and Meta�level Architectures	 
��� See
http���www�xerox�com�PARC�spl�eca�oi�html for updates�

�MP�� B� Martin and C� Pederson� Long�lived concurrent activities� In Amar Gupta	 editor	 Distributed Object
Management	 pages 
������ Morgan Kaufmann	 
���

�PKH��� C� Pu	 G�E� Kaiser	 and N� Hutchinson� Split�transactions for open�ended activities� In Proceedings of

the Fourteenth International Conference on Very Large Data Bases	 pages ����	 Los Angeles	 August

����

�RC�� K� Ramamritham and P�K� Chrysanthis� In search of acceptability criteria� Database consistency
requirements and transaction correctness properties� In editor	 editor	 Distributed Object Management	
pages 
���� Morgan Kaufmann	 
���

�RP�
� K� Ramamrithanand C� Pu� A formal characterization of epsilon serializability� Technical Report CUCS�
�����
	 Department of Computer Science	 Columbia University	 
��
� To appear in IEEE Transaction
on Knowledge and Data Engineering	 June 
����





