
The Distributed Interoperable Object Model and Its Application

to Large�scale Interoperable Database Systems

Ling Liu

Department of Computing Science

University of Alberta

GSB ���� Edmonton� Alberta

T�G �H� Canada

email� lingliu�cs	ualberta	ca

Calton Pu

Dept	 of Computer Science and Engineering

Oregon Graduate Institute

P	O	Box
���� Portland� Oregon

��
����� USA

email� calton�cse	ogi	edu

OGI�CSE Technical Report No� ������

Abstract

A largescale interoperable database system operating in a dynamic environment should provide uni

form access user interface to its components� scalability to larger networks� evolution of database

schema and applications� �exible composibility of client and server components� and preserve com

ponent autonomy	 To address the research issues presented by such systems� we introduce the

Distributed Interoperable Object Model �DIOM�	 DIOM�s main features include the explicit repre

sentation of and access to semantics in data sources through the DIOM base interfaces� the use of

interface abstraction mechanisms �such as specialization� generalization� aggregation and import� to

support incremental design and construction of compound interoperation interfaces� the deferment

of con�ict resolution to the query submission time instead of at the time of schema integration� and

a clean interface between distributed interoperable objects that supports the independent evolution

and management of such objects	 To make DIOM concrete� we outline the Diorama architecture�

which includes important auxiliary services such as domainspeci�c library functions� object linking

databases� and query decomposition and packaging strategies	 Several practical examples and appli

cation scenarios illustrate the usefulness of DIOM	

Index Terms� Large scale interoperable database systems� Distributed object management� Dynamic

object binding interfaces� Scalability� System evolution� Object�oriented systems

c� 	��� Ling Liu

�

� Introduction

Many papers on multidatabase systems or federated database systems
�� �� ��� ��� focused on the

resolution of schematic and semantic incompatibilities among autonomous and heterogeneous compo�

nent databases in relatively static system con�gurations� While this assumption was reasonable for

the past� recent developments in the Internet show that in the present environment a useful solution

can no longer ignore the issues of scalability and evolution� For the upcoming National Information

Infrastructure� these issues will become paramount� For example� in an e�ort to make US government

databases easily accessible to the general public� many thousands of federal� state� and local govern�

ment databases will be interconnected� Even if each participating agency changes slowly� the whole

government interoperable database will be a highly dynamic growing and evolving system�

In a modern networking environment as such� we consider interoperable database systems � software

systems that provide facilities and techniques to interoperate with several individual databases �called

component databases in this paper�� and at the same time o�er convenient uniform access to a number

of remote data sources� We believe that as the number of participating databases in the interoperation

increases rapidly� and the interoperable environment evolves dynamically� the issues of system�wide

scalability and evolution� as well as component composibility and autonomy become necessarily an

integral part of large�scale interoperable database systems� We refer to the properties of Uniform access�

Scalability� Evolution� Composibility and Autonomy as USECA properties� In large�scale dynamic

interoperable database systems� USECA properties are critical requirements� without which the system

becomes much less useful�

Our main contribution in this paper is an approach called Distributed Interoperable Objects Model

�DIOM�� to support the USECA properties of large�scale interoperable database systems� DIOM�s main

idea is to incorporate system�wide scalability and evolution support as well as component composibility

into an interoperation framework� Signi�cant features of the DIOM approach include�

� the explicit representation of and access to semantics in data sources through the DIOM base

interfaces�

� the use of interface abstraction mechanisms to support incremental design and construction of

compound interoperation interfaces�

� the decoupling of semantic heterogeneity from the representational mismatch� and

� the deferment of con�ict resolution to the query submission time rather than at the time of schema

integration�

As a result� when the number of databases that participate in the interoperation increases� the existing

applications developed earlier may continue to work without source code changes or recompilation� The

new applications may de�ne their interoperation interfaces by aggregation or generalization of existing

interfaces� or by re�nement of pre�de�ned interfaces� rather than starting from scratch� Autonomy of

the component systems is also fully respected such that component systems can evolve without consul�

tation with the interoperable system� Moreover� principled and disciplined evolution of an individual

	

component schema will cause no or minimal impact on its remote customers� Thus� the rewriting of the

application programs developed through interoperable object interfaces can be avoided or minimized in

the presence of system evolution�

Before we describe the technical details of DIOM� the USECA properties are discussed in the context

of research challenges in large�scale interoperable database systems�

��� USECA Properties as Research Challenges

With rapid advances in computer network technology� information systems connected by world�wide

high�speed networks provide great opportunities for up�to�date and rapid access to remote information

resources� Users and applications can work with remote data sources and request services across net�

works as if they were working with a single database system� Thus� uniform access to remote data

sources becomes increasingly important and critical as the interoperable database evolves dynamically

in a distributed environment� Besides uniform access� several challenges arise in the context of large�

scale interoperable database systems� including scalability and evolution of the system as a whole and

its components� as well as the �exibility in composing components and the autonomy of individual

components� Each of the USECA properties �Uniform access� Scalability� Evolution� Composibility�

and Autonomy� is important for the usefulness of a large�scale interoperable database system and each

presents a serious research challenge�

Consider Scalability� A large�scale interoperable database environment �e�g�� three hundreds databases

as opposed to three databases� presents challenging questions to the viability of both loose�coupling

approach to system development �cf�
	�� ��� and the tight�coupling integration framework that con�

centrates primarily on circumventing schematic and semantic heterogeneity �cf�
	�� ��� ��� ��� ����

As the number of databases participating the interoperable database system increases� the design of an

integrated schema involving n di�erent systems requires to reconcile an order of n� possibly con�icting

representations�i�e�� heterogeneity in semantics or in data formats�� Such activities are time consuming

and can be aggravated when incorporating the system evolution issue with the integration strategies�

Similarly� system evolution presents an equally important problem� While the number of data bases

available via networks are increasing swiftly� some component databases may also become obsolete or

temporarily inaccessible� Furthermore� even when the changes in each individual component database

schema are not frequent� the large number of component databases may add up to surprisingly frequent

schema change events at the interoperable database system level� Assuming there is only one change in

two years for any component database schema� an interoperable system with two hundred databases as

such will have to contend with one hundred changes every year� which corresponds to� on average� two

changes every week�

Another important challenge is system composibility� and more speci�cally� the need for incremental

design and construction of interoperation interfaces� This is simply because an interoperable database

system like any other software system is not constructed in �one shot�� Besides� multiple data in�

tegration e�orts to produce multiple kinds of integrated systems that involve overlapping subsets of

their component databases become increasingly desirable for those organizations that need to perform

multiple forms of integration with overlapping sets of data� Therefore� the interface de�nition language

�

of the interoperable database systems should provide interaction abstraction facilities to allow users or

applications to de�ne new or complex interfaces in terms of existing or simpler interfaces� for instance�

through interface re�nement �specialization� or interface composition �aggregation and generalization�

mechanisms�

Autonomy and Flexibility� In addition� not only should component systems and their customer set

not pay high price on autonomy in order to join the interoperation �or integration�� but the remote users

should also not have to compromise the way they prefer to understand and represent their application

semantics and be forced to surrender to a system�supplied� canonical integration schema� This implies

two interesting points� First� to preserve the autonomy of individual systems� it is essential to allow an

individual systems to treat the external users and applications and thus the interoperable systems in a

similar way as its ordinary clients unless speci�ed otherwise� Thus� the evolution of individual system

can be carried out without being interfered by the other parties in the interoperation� Second� to

respect the freedom and the �exibility in the use of the interoperable system� it is important to provide

data model independent language constructs and facilities in the interoperable object model� which

enable users and applications to request services and remote data sources either directly or through the

construction of new interfaces that present their own interest and desired representation for accessing

interoperable objects�

Of course� our list of critical issues is not exhaustive� For example� e�cient query processing is also one

of the key concerns in large�scale interoperable database systems� The query optimization strategies

that are possible in a small and controlled environment� such as those for �canned� queries to be

optimized may not be practical any more� when the environment evolves dynamically� the number of

databases increases rapidly� and the autonomy of component systems needs to be fully respected� We

believe that these research challenges are non�trivial in large�scale interoperable systems and deserve

special attentions in order to provide the cost�e�ective and robust support for the longer life span of

interoperable systems�

��� Paper Organization

The rest of the paper proceeds as follows� In order to demonstrate the practical applicability of the

DIOM approach� we start with an overview of the Diorama architecture in Section �� Diorama is an

ongoing project that aims at implementing a prototype of the DIOM approach to large scale interop�

erable database systems with USECA properties� The distributed interoperable object model �DIOM�

and the interface abstraction mechanisms are described in Section � through a number of illustrative

examples� Section � explains query compilation in DIOM databases under the Diorama architecture�

We compare our approach with related work in Section � and conclude the paper in Section ��

� The Diorama Architecture

In terms of object�oriented terminology� interoperability refers to the ability to exchange requests be�

tween objects ad to enable objects to request services of other objects� regardless of the language in

which the objects are de�ned and their physical location �e�g�� hardware platforms� operating systems�

�

DBMS�s�� Distributed interoperable objects are objects that support a level of interoperability beyond

the traditional object computing boundaries � the long�standing boundaries imposed by programming

languages� data models� process address space� and network interface
	� The abstraction of distributed

interoperable objects is captured in the Distributed Interoperable Object Model �DIOM�� explained in

Section ��

Diorama is an interoperable software architecture based on DIOM to support USECA properties� In sev�

eral ways� Diorama facilitates the construction of applications and database systems from data sources

and services provided by di�erent software vendors or application systems� First� it uses DIOM�s in�

terface de�nition language and interface manipulation language to support uniform and transparent

access to data sources across Internet� Second� Diorama provides facilities and convenient language

constructs to support the explicit representation of and access to disparate data semantics� and encour�

ages to defer the con�ict resolution to the time when query is submitted� Third� it o�ers a number of

adaptive software development techniques to support the autonomous evolution of individual compo�

nents� such as specialization mechanism for interface re�nement� aggregation mechanism for interface

composition� and adaptive transformation of DIOM interfaces into the skeleton bindings in the intended

implementation language� Fourth� Diorama supports composibility with dynamic linking and binding

of interoperable objects� Finally� it preserves autonomy through a clean interface between distributed

interoperable objects that supports independent evolution and management of such objects�

Figure 	 shows a simpli�ed picture of the Diorama architecture� At the leaf level of Figure 	 we have the

data repositories that Diorama integrates� Examples of data repositories include relational database

systems� object�oriented database systems� �le systems� document managers� image managers� video

servers� Above each repository is a repository wrapper� The main task of a repository wrapper is to

control and facilitate the external access to the data repository� based on the export schema provided

by the data repository manager at its integration into the interoperable system�

In the middle right of Figure 	� the DIOM meta object library consists of DIOM interface repository

and DIOM implementation repository� The interface repository supports dynamic linking of object

interfaces �e�g�� which data sources provide relevant information requested by a given application�� It

could be based on a commercial product� such as OLE or OpenDoc� for distributed dynamic object

linking or embedding purpose� The DIOM implementation repository contain information that allows

the object request linking subsystem to actually locate and activate objects to ful�ll the requests through

dynamic loading�

In the middle left of Figure 	� the DIOM object linking database manages the complex relationship

objects that most DIOM applications require to glue together the data in multiple repositories in some

new or useful ways� For example� in a medical insurance application� the DIOM object linking database

could be used as a persistent storage to hold a ClaimFolder object for some special medical treatment

of a patient� which an insurance agent needs to handle� A ClaimFolder object could be formed� for

example� by linking the following data that are stored in separate data repositories�

� a patient�s X�ray images stored in an image�speci�c �le repository of a radiological lab�

� a doctor�s diagnosis report stored in a document management system at doctor�s o�ce� and

�

Repository
Wrapper

Data
Repository

Object Linking & Embedding Services

Interface
Repository

Internet

SERVERS

......

Repository
Wrapper

Data
Repository

Repository
Wrapper

Data
Repository

Repository
Wrapper

Internet

Repository
Wrapper

Data
Repository

Host
Applications
(e.g., C++)

CLIENTS
......

(File Server)

DIOM Object
Linking DB

D
IO

M
 M

et
a

D
at

a
Li

ba
ra

y

Implementation
 Repository

Distributed Interoperable Object Manager

e.g. Mosaic

 GUI
(Query/Browser)

SUN/SPARC 10 SUN/SPARC 20 IBM RS6000 SUN 3/260

− DIOM−IDL Compiler
− DIOM−IML Compiler
− Distributed Query Services
 (e.g., distributed query optimizer,
 distributed query execution module,
 packaging service)
− Runtime Superviser

(ORACLE 6.0) (SYBASE 4.0) (Informix 4.0)

Figure 	� The Diorama system architecture

� a patient�s claim and the corresponding insurance agreement records stored in a relational data

base of the insurance company�

A DIOM database is a USECA view of clients on the interoperable database system� Diorama is re�

sponsible for presenting the applications with a uni�ed object�oriented view of the contents of DIOM

databases� and to process users� and applications� requests �e�g�� queries� updates on object links� and

method invocations� on the content of a DIOM database� The content of a DIOM database is de�ned

using the DIOM interface de�nition language �IDL�� A DIOM database is often composed through dy�

namically binding data from multiple data repositories provided by the underlying component systems�

All queries and request for data and services may be formulated using DIOM interface manipulation

language �IML�� The DIOM�IDL compiler �rst check the validity and the type�closure of each import

speci�cation in the DIOM interfaces� generates the complete import schema� and then performs map�

ping of IDL syntax into the DIOM repository implementation language� The DIOM�IML compiler

generates the stubs and skeleton bindings in the repository implementation language and performs the

actual mapping of DIOM�IML syntax into the implementation skeletons that can be understood by the

repository wrappers of the target data repositories� We will illustrate the functionality and the use of

DIOM IDL and IML in the later sections�

�

Diorama�s components are designed in the client�server style and dynamically bound to support inde�

pendent component evolution� On the server side� IDL syntax is mapped into the repository imple�

mentation language and generate the implementation skeletons� which will be sent to the corresponding

target data repositories� These implementation skeletons can be understood by the data repository

wrappers and easily be mapped into a collection of data access functions applicable to the correspond�

ing data repositories� On the client side� DIOM generates the interface stubs that specify the method

signatures to invoke methods of target data repositories� For instance� DIOM interfaces to C�� ap�

plications may be a set of C�� classes that act as �surrogates� for the corresponding de�nition of

the DIOM interface schema� When a component data repository evolves into a new version� and the

changes at the component level need to be re�ected at the interoperation interface level� a new DIOM

interface library or an interface schema is released as a new interface version that co�exists with the

existing versions� Thus� the existing DIOM applications may continue to work without source code

changes or recompilation�

The Diorama architecture also includes interactive browsing� navigation� and querying of the content

of a DIOM database� The �rst planned component for the browsing functionality is an HTML�based

toolkit�

Generally speaking� the DIOM database interface schemas are virtual schemas� since the data contents

are actually stored and managed by individual data repository manager �such as the individual DBMSs��

The DIOM object linking database is created and maintained only when the DIOM applications need

to have frequent access to some linking information that are not provided or cannot be derived auto�

matically through access to the individual data repositories� The DIOM linking database should be

considered just as yet another persistent data repository in the DIOM architecture� In the �rst phase�

we intend to implement the link database using an object�oriented database management system such

as ObjectStore
��

We now explain in more detail the basic concepts of DIOM and its mechanisms to further address

questions like�

� How does DIOM enable cross�database interoperability�

� What makes DIOM such a useful and unifying model�

� How does DIOM enhance the adaptiveness and robustness of the interoperable systems and their

applications in the presence of underlying data repository�based evolution or interoperation�based

evolution �such as the future changes to the interoperation interface de�nitions��

� The Distributed Interoperable Object Model

The purpose of DIOM development is to support the construction of a USECA view of data from

disparate data sources� rather than inventing yet another object�oriented data model� Recently� a

consortium of major OODBMS vendors proposed a candidate for such a model� called ODMG��� object

database standard
�	� 		� which was developed by adding database features to the OMG object model

standard� Therefore� we adopt the ODMG��� proposal as a starting point� and add a number of

�

extensions in order to build integrated views of data across multiple data repositories and to support

USECA properties�

��� A Quick Look at the Model

As in the ODMG��� standard� DIOM�s basic entity is the object� Every object has a unique identity� the

object identi�er �oid�� that can uniquely distinguish the object� thus enabling the sharing of objects by

reference� Objects are strongly typed� All objects of a given type exhibit similar behavior and a common

range of states� The behavior of objects is de�ned by a set of operations that can be executed on an

object of the type� The state of an object is de�ned by a set of properties� which are either attributes

of the object itself or relationships between the object and one or more other objects� Changing the

attribute values of an object� or the relationships in which it participates� does not change the identity

of the object� It remains the same object�

An object type is described by an interface and one or more implementations� An interface can be

seen as a strongly typed contract between objects of similar behavior or between objects that need to

corporate with each other in order to accomplish a task� It de�nes properties of a type� properties of the

instances of the type� and operations that can be invoked on them� An implementation de�nes internal

data structures� and operations that are applied to those data structures to support the externally

visible state and behavior de�ned in the interface� The combination of the type interface speci�cation

and one of the implementations de�ned for the type is referred to as a class� The use of the term

class allows a subset of the DIOM model to be consistent with C���� Multiple implementations for

a type interface is useful to support databases that span networks which include machines of di�erent

architectures� mixed languages and mixed compilers environments�

Consider the Claim Folder example mentioned in Section �� Figure � shows the contents of the

three data repositories in this example� �	� a patient�s insurance agreement and claims for special

medical treatments in a relational database� ��� a collection of X�ray images associated with each

claim stored in a �le�based image repository� and ��� a doctor�s diagnosis report stored in a C�� based

document repository� Figure � shows a sample interface schema for the Claim Folder application� This

schema contains an interface de�nitions for each type of data in the underlying data repositories� We

assume that each claim may contain more than one X�ray image but involve only one doctor�s diagnosis

report� There are a number of ways to create ClaimFolder objects by linking the patients� claims

in the relational database with their associated X�ray images and the corresponding doctors� diagnosis

reports� For example� application developers may use the base interface de�nitions in Figure � to design

the ClaimFolder objects within their programs� It is also possible to either use the DIOM interface

specialization abstraction mechanism to establish the links between the underlying data repositories

through specialized interfaces� or apply the interface aggregation abstraction mechanism to compose a

single compound interface for constructing the ClaimFolder objects� In the later case� the type de�ner

of ClaimFolder speci�es whether the link objects are maintained as persistent objects or transient

objects� The persistent option will have the ClaimFolder objects stored and managed by the link

database� whereas the transient option implies dynamic binding and composing the objects requested

�A C�� class has a single public part and a single private part� The private part corresponds to the implementation of

a class in DIOM�

�

Relational DBMS Image Repository

CREATE TABLE Insur−Agreement
(insur−no Integer NOT NULL,
 patient−name Char(40),
 patient−add Char(80),
 ins−category Integer,
 start−date Date,
 PRIMARY KEY (insurance−no)
);

CREATE TABLE Claim
(insur# Integer NOT NULL,
 claim−no Integer NOT NULL,
 claim−date Date,
 status Char(15),
 treatment Char(40),
 PRIMARY KEY (insur#, claim−no),
 FOREIGN KEY (insur#) REFERENCE
 Insurance−Agreement(insur−no)
);

Document Repository

class DiagnosisRep {
 private:
 ...
 public:
 char *text;
 int search(char *expr);
 ...
}

make_rep_db /MedicalInsur/documents
add_doc /medicalInsur/documents/claim1.text
add_doc /MedicalInsur/documents/claim2.text
...

class ImageSpec {
 private:
 ...
 public:
 ImageSpec(char *);
 ImageCaption(char);
 ...
}

class Image {
 private:
 ...
 public:
 void display(void *);
 int find−match(Char *keywords);
 ...
}

mkdir MedicalInsur/images/Xrays
import_image ~/MedicalInsur/images/Xrays claim1.gif
import_image ~/MedicalInsur/images/Xrays claim2.gif
...

Figure �� The data repository contents relevant to the medical claim folder scenario

to the target applications� In this example� we also assume that each claim may contain more than one

X�ray image but involve only one doctor�s diagnosis report�

��� Basic Concepts

����� Types and Type Properties

Types are themselves DIOM objects and may have properties themselves� For instance� each type may

have the following three properties�

� Supertypes� Object types can be de�ned by stepwise re�nement� which forms a subtype�supertype

graph� All attributes� relationships� and methods de�ned on a supertype are inherited by its

subtypes� A subtype may add additional properties and operations to introduce behavior or state

unique to instances of the subtype� It may also �override� the properties and operations it inherits

to make them specialized to the behavior and range of state values appropriate for instances of

the subtype� The formal semantics of inheritance along with subtype�supertype graph is based

on the usual notion of subtyping
�� Figure � shows the subtyping relationships between types�

and the instance�of relationship between types and their instances�

�

CREATE INTERFACE Insur−Agreement
(EXTENT Insur−Agreement
 KEY Insur−no): persistent
{
 ATTRIBUTES
 Integer insur−no;
 String patient−name;
 String patient−add;
 Integer ins−category;
 Date start−date;
);

CREATE INTERFACE Claim
(EXTENT Claims
 KEY insur#, claim−no): persistent
{
 ATTRIBUTES
 Integer insur#;
 Integer claim−no;
 Date claim−date;
 String status;
 String treatment;
);

CREATE INTERFACE DiagnosisRep
(EXTENT DiagnosisReps): persistent
{
 ATTRIBUTES
 String insur−no;
 String text;
 ...

 OPERATIONS
 int *search(char *expr);
 ...
};

CREATE INTERFACE ImageSpec
(EXTENT ImageSpecs): transient
{
 ATTRIBUTES
 ...

 OPERATIONS
 void *ImageSpec(Char *);
 Char *ImageCaption(Char);
 ...
}

CREATE INTERFACE Image
(EXTENT Images): persistent
{
 ATTRIBUTES
 Integer InsurNum;
 ...

 OPERATIONS
 void *display(void *);
 int *find−match(Char *keywords);
 ...
}

Figure �� A sample interface de�nition in DIOM�IDL

� Extents� The extent of a type denotes the set of all instances of the type� By including an extent

declaration in the type de�nition� the type de�ner instruct the DIOM system to automatically

maintain a current index to the members of this set� The actual maintenance of the extent

depends on the object binding options speci�ed for the extent� persistent or transient� The

persistent option will have the objects stored and managed by the link database� whereas the

transient option implies dynamic binding� loading� and packaging the objects requested to the

target applications� If an object is an instance of type T� then it is a member of the extent of T�

Similarly� if a type T is a subtype of type S� then the extent of T is a subset of the extent of S�

� keys� A key of an object type is a property or a set of properties that together uniquely identify

the individual instances of the type� An object type may have more than one key� The concept

of keys is similar to the concept of candidate keys in the relational data model� and is useful for

capturing the key constraints in the underlying relational databases�

����� Attributes� Relationships and Operations

The interface de�nition for each DIOM type also contains instance property and instance operation

declarations� The instance properties are the properties for which objects of the type carry values�

Each property of an object instance is either attribute property or relationship property�

�

DIOMObject

INSTANCE OF SUBTYPING OF OBJECT
INSTANCE

Type A Type B

DIOM Type

DIOM
MetaType D

Type E

METATYPETYPE

Figure �� The subtyping relationships between DIOM types

� Attributes� The attributes of a given type are speci�ed as a set of attribute signatures� Each signa�

ture de�nes the name of the attribute and the type of its legal values �e�g�� strings� numbers� etc���

Accessing an attribute returns a value� Values can be atomic values �values of atomic primitive

types�� such as integers� characters� �oating�point numbers� Boolean values� or values of structured

primitive types� such as Bit�String� Character�String� Enumeration� Date� Time� Timestamp� In�

terval� Unlike objects� values cannot be referred by means of references and therefore cannot be

shared other than copied�

� Relationships� The relationships in which objects of a give type participate are speci�ed as a set

of relationship signatures� Each relationship signature de�nes the name of the traversal function

used to refer to the related object�s�� the cardinality of the relationship� and the type of the related

object�s�� In contrast to attributes that are de�ned between an object and a value� relationships

are binary and are de�ned between objects� Since the model supports a set of built�in collection

types such as sets� lists� bags� arrays� and so on� the cardinality of a relationship �e�g�� one�to�one�

one�to�many� and many�to�many� can be described by means of the built�in collection types�

� Operations� The instance operations of a given type are the operations which objects of the type

support� An operation may take zero or more parameters with speci�ed interfaces as arguments�

and return a value or an object to the speci�ed interface� Operations are speci�ed as a set of

operation signatures� Each signature de�nes the name and the type of any arguments� the type

of returned values or objects� and the names of any exceptions �or error conditions� the operation

may incur� Many of the operations declared in DIOM are actually remote operations� Executions

of a remote operation automatically begins a nested transaction so that the calling operation is

insulated from network failures�

Due to the space limitation� we omit the discussion on the DIOM built�in type hierarchy in this paper�

Readers who are interested in this part may refer to our technical report
	��

	�

��� Advanced Concepts for Interface De�nitions

����� Base Interface and Compound Interfaces

As mentioned earlier� a type of distributed interoperable objects is de�ned by specifying its interface

in the DIOM Interface De�nition Language �DIOM�IDL�� The DIOM interfaces are classi�ed into two

categories� base interfaces and compound interfaces�

A base interface refer to the interface in which all the types involved in the de�nition are from a

single data repository� In order to build links and abstract relationships between data from di�erent

data repositories� each data type de�ned in the underlying data repositories and visible to the DIOM

system should be declared in terms of a base interface� For example� in the Claim Folders application

scenario� to build a DIOM database which not only provides users and applications with direct and

uniform access to the source data but also creates the ClaimFolder link objects based on the data from

three disparate data repositories �see Figure � and Figure ��� we may de�ne one or more base interfaces

for each of the underlying data repositories� The set of base interfaces that correspond to a given source

repository can be seen as a view over the underlying data repository� The scope of a base interface is

the corresponding data repository�

The compound interfaces are constructed through repetitive applications of the interface abstraction

mechanisms to the existing �either base or compound� interfaces� A compound interface can be seen

as a strongly typed contract between interfaces to provide a small but useful collection of semantically

related data and operations� Each interface de�nes certain expected behavior and expected responsi�

bilities of a group of objects� The scope of a compound interface is the number of data repositories

to which the interface de�nition references� Thus� a compound interface can be an external database

schema of a given data repository� or an integrated view schema over multiple data repositories� The

interface abstraction mechanisms provided by DIOM include specialization abstraction� generalization

abstraction� aggregation abstraction and the import mechanism� We will illustrate each of them through

examples in the subsequent sections�

There are a number of advantages for distinguishing between base and compound interfaces� For exam�

ple� by de�ning a base interface for each type of data in the underlying data repositories� applications of

the interoperable systems may have direct access to the data sources residing in any of the underlying

repositories through the DIOM interfaces� More importantly� it helps to establish a semantically clean

and consistent reference framework for incremental de�nition of DIOM interfaces� It also facilitates the

building of an adaptive and robust implementation architecture that allows independent evolution and

management of distributed interoperable objects� For example� queries against compound interfaces

can be easily dispatched into a package of subqueries� each against a collections of base interfaces whose

interface scope is the same repository� Finally� the distinction allows a better control to the addition of

new data types that are not presented in the underlying data repositories and that are unique to the

interface schema� because in a distributed interoperable object system� it is important to make sure that

the new types will be only those types whose instances can be unambiguously derived from instances

of the source types that are de�ned in the underlying repositories�

		

����� Interface Abstraction Mechanism� Specialization

The specialization abstraction is a useful mechanism for building a new interface in terms of some

existing interfaces through type re�nement� This mechanism promotes information localization such

that changes in an object type or its implementations can automatically be propagated to the subtypes

that are specialized versions of it� In the �rst phase of DIOM implementation� the specialization

abstraction is only supported for construction of a new interface based on one or more base interfaces

whose scope is the same data repository�

Recall the Claim Folder example� Suppose we are interested in gathering the up�to�date information

Claim

S−Claim Image
Diagnosis
Rep

S−DReport S−Image

specialization−of

CREATE INTERFACE S−Claim
(EXTENT S−Claims): transient
{
 SPECIALIZATION OF Claim;
 ...
 RELATIONSHIPS
 Set<S−Image> X−rays
 INVERSE Set<S−Claim> associatedto in S−Image;
 S−DReport has−report
 INVERSE rep−usedfor in S−DReport;
);

CREATE INTERFACE S−Image
{ EXTENT S−Images): transient
{
 SPECIALIZATION OF Image
 ...
 RELATIONSHIPS
 Set<S−Claim> associatedto
 INVERSE X−rays in S−Claim;
 ...
}

CREATE INTERFACE S−DReport
(EXTENT S−DReport): transient
{
 SPECIALIZATION OF DiagnosisRep;
 ...
 RELATIONSHIPS
 S−Claim rep−usedfor
 INVERSE has−report in S−Claim;
 ...
);

has 1:n
relationship

has 1:1
relationship

Figure �� An example for interface specialization abstraction

about a patient�s claim and the associated X�ray images as well as the corresponding doctors� diagnosis

report� However� we are not interested in maintaining the ClaimFolder relationship objects as persistent

objects in the link database� One way to do this job is to create a specialized interface that de�nes

the links of the patient�s claims with the associated Image objects and with the corresponding doctors�

diagnosis report objects through the interface re�nement mechanism� Figure � shows how each of the

base interfaces Claim� Image� and Document is specialized by adding the required relationships into its

specialized interface de�nition in DIOM�IDL� Due to the space limit� we omit the the BNF syntax of

the DIOM�IDL in this paper� Readers may refer to
	� for detail�

����� Interface Abstraction Mechanism� Generalization

The generalization abstraction provides a convenient facility to merge several semantically similar and

yet di�erent interfaces into a more generalized interface� The main idea is based on generalization

by abstracting the common properties and operations of some existing �base or compound� interfaces�

	�

As a result� it enables objects that reside on disparate data repositories to be accessed and viewed

uniformly through a generalized DIOM interface� Interface generalization mechanism also provides a

helpful means to assist the automatic resolution of representational con�icts�

Consider the following example� Suppose we have three stock trade information bases available in

the Internet� NYStockInfo� TokyoStockInfo� and FfmStockInfo� For presentation brevity� let us

assume that these three repositories are all relational databases maintained separately� Figure � shows

the relevant portion of the sample export schemas of these three stock trade data repositories� The

corresponding base interface de�nitions in DIOM�IDL are given in Figure ��

...
CREATE TABLE NYStockInfo
(stock-name Char(20),
 current-trade-USprice Double,
 latest-closing-USprice, Double,
 ...
);
...

...
CREATE TABLE JapanStockInfo
(stock-item Char(30),
 current-trade-Yenprice Double,
 latest-closing-Yenprice, Double,
 ...
);
...

...
CREATE TABLE FfmnStockInfo
(stockitem-name Char(15),
 current-trade-Gmarkprice Double,
 latest-closing-Gmarkprice, Double,
 ...
);
...

NYStock DB Repository JapanStock DB Repository

GermanStock DB Repository

Figure �� The sample source speci�cations of NYStocks� TokyoStocks� FfmStocks

To query the latest�closing price of a stock and return the result in some desired currency �e�g��

in US dollar� no matter whether the stock was traded in New York or Tokyo or Frankfurt� it is conve�

nient if we create a new interface StockTrade through generalization abstraction of the base interfaces

NYStocks� TokyoStocks� FfmStocks as shown in Figure �� The operations YentoUSD and GMtoUSD in

Figure � are system�supplied default conversion functions� which are generated based on the domain�

speci�c knowledge stored in the DIOM metadata library� For example� we may use the currency ex�

change rates of the day on which the queries are issued as the default criteria for the currency exchange

conversions�

DIOM provides facilities to support domain�speci�c library functions which can be used to resolve

large amount of representational heterogeneity and several semantic mismatches� In addition� users

may override the system�supplied library functions by de�ning their own conversion routines as part

of their interface de�nitions� When a function is called� the system �rst check whether the relevant

conversion functions exist in users� interface de�nitions� If not� the system�supplied library functions

will be invoked�

For a particular application whose domain�speci�c knowledge is not yet recorded completely in the form

of DIOM domain�speci�c library functions� it is then the DBA�s responsibility to de�ne the necessary

conversion functions within the generalization interfaces� For example� assume an application requires

information about college marks of a collection of students who come from di�erent countries� Sup�

pose we may gather such information from three disparate data repositories available in the Internet�

	�

CREATE INTERFACE NYStocks
(EXTENT NYStocks): persistent
{
 ATTRIBUTES
 String stock-name;
 Double current-trade-USDprice;
 Double latest-closing-USprice;
 ...
);

CREATE INTERFACE TokyoStocks
(EXTENT TokyoStocks): persistent
{
 ATTRIBUTES
 String stock-item;
 Double current-trade-Yenprice;
 Double latest-closing-Yenprice;
 ...
);

CREATE INTERFACE FfmnStocks
(EXTENT FfmStocks): persistent
{
 ATTRIBUTES
 String stockitem-name;
 Double current-trade-GMprice;
 Double latest-closing-GMprice;
 ...
);

CREATE INTERFACE StockTrade
(EXTENT StockTrade): transient
{
 GENERALIZATION OF NYStocks, FfmStocks, TokyoStocks;

 ATTRIBUTES
 String stockname;
 Double current-trade-price;
 Double Latest-closing-price;
 Enum Currency{USD,Yen,GM,...} currency-preferred;
 ...
 OPERATIONS
 double *get_value(Double current-trade-price,
 int currency-preferred)
 {
 ...
 switch(x.currency-preferred)
 case x.currency-preferred = 0:
 if (NYStocks(x)
 return x.current-trade-USDprice;
 else
 if (TokyoStccks(x))
 return YentoUSD(x.current-trade-Yenprice);
 else
 if (FfmStocks(x))
 return GMtoUSD(x.current-trade-GNprice);
 else < exception-handling >
 case x.currency-preferred = 1:
 ...
 };
 ...
};

Figure �� Creating a new interface StockTrade based on generalization

Students��� Student�� and Student��� We want the receiving results to be represented in a chosen

making scheme uniformly no matter what marking schemes were used in the source data� For example�

Students�� uses the marking scheme of A to E� called grade� whereas Students�� uses the point

scheme of one to ten� The score scheme is used by Students�� in the third repository in which the

highest mark is 	��� Suppose the receiver�s preferred marking scheme is based on score scale� and there

is no domain�speci�c library functions for such marking scheme conversion� Figure � shows an example

of how a DBA may specify his�her own conversion functions for converting the marking scheme used in

each data repository to the receiver�s preferred marking scheme�

Alternatively� users may also choose to specify and store these conversion functions as domain�speci�c

knowledge in the DIOM metadata library� The DIOM system will provide standard header �les to allow

application developers to use the domain�speci�c library functions in a similar way as the usage of C��

library functions�

����� Interface Abstraction Mechanism� Aggregation

The aggregation abstraction is a mechanism that allows to compose a new interface from a number of

existing interfaces such that objects of the container interface may access the objects of component

interfaces directly� As a result� the operations de�ned in the component interfaces can be invoked via

the container�s interface� The aggregation abstraction mechanism is a useful facility for implementing

	�

CREATE INTERFACE Int-Students
(EXTENT Int-Students): transient
{
 GENERALIZATION OF Students-1, Students-2, Students-3;

 ATTRIBUTES
 String sname;
 String mark;
 Enum Mark {grade, point, score} scheme-preferred;
 ...
 OPERATIONS
 void *get_value(char *mark, int scheme-preferred)
 {
 ...
 if (Students-1(self))
 mark(self) = gradetoscore(grade(self));
 else
 if (Students-2(self))
 mark(self) = pointtoscore(point(self));
 else
 if (Students-3(self))
 mark(self) = score(self);
 else
 < print error message >;
 };
 ...
};

Figure �� An example of user�de�ned conversion functions in IDL

behavioral composition
	�� 	� and ad�hoc polymorphism
� based on coercion of operations�

Recall the Claim Folder example given earlier� We have so far presented two alternative approaches

that generate the ClaimFolder objects through linking the claims with the relevant images and the cor�

responding doctors� report� The �rst approach is to let application developers design the ClaimFolder

objects within their programs based on the base interface de�nitions given in Figure �� The second

approach is to use the interface specialization mechanism to establish links between the underlying

data repositories� In fact� we may take the third alternative approach by creating link objects of

type ClaimFolder through interface aggregation abstraction mechanism as shown in Figure �� As a

Image Diagnosis
Rep

Claim
Folder

Claim

CREATE INTERFACE ClaimFolder
(EXTENT ClaimFolders): persistent
{
 AGGREGATION OF Claim, Image, DiagnosisRep;

 RELATIONSHIPS
 Claim claims;
 Set<Image> X−ray−pictures;
 DiagnosisRep report;
 OPERATIONS
 void *get_value(ClaimFolder);
 void *set_value(ClaimFolder);
 ...
);

Figure �� An example of creating a new interface using aggregation abstraction mechanism

result� a compound interface is constructed for processing ClaimFolder objects� If the type de�ner

of ClaimFolder speci�es that the link objects be maintained as persistent objects� then once the

ClaimFolder objects are formed� they will be stored in the link database� When the transient option

is used� it noti�es the system that each subsequent query over the ClaimFolder objects will be carried

out through the dynamic binding and loading of the objects from the underlying data repositories�

Another bene�t of using interface aggregation abstraction is to minimize the impact of component

	�

schema changes over the application programs working with the existing interoperation interfaces� For

example� consider the ClaimFolder� Suppose a new image repository� called CAT�Scan is added into the

Claim Folder application� After creating a base interface for CAT�Scan� we can simply compose a new

compound interface ClaimFolderNew by aggregation of the original interface schema ClaimFolder with

the base interface for the CAT�Scan image repository� and add the necessary links between CAT�Scan

and ClaimFolder� Thus� the existing programs may continue to work with the original ClaimFolder

interface schema� No source code modi�cation is necessary� At the same time� the new applications can

work with the new interoperation schema�

����	 The Import Mechanism

The import mechanism is designed for importing selected portions of the data from a given export

schema� instead of importing everything that is available� For a data repository that manages complex

objects� the import mechanism performs the automatic checking of type closure property and referen�

tial integrity of the imported types�classes� The type closure property refers to the type consistency

constraint over subtype�supertype hierarchy such that whenever a type�class is imported� all the prop�

erties and operations it inherits from its supertypes have to be imported together� The referential

integrity property refers to the type �completeness� rule on object reference relationships� and is used

to guarantee that there is no dangling reference within the imported schema�

Using the import mechanism� a number of bene�ts can be obtained� First� by means of the import

mechanism� users may simply specify the key information that are of interest to their intended applica�

tions� The system will automatically infer the rest of the types�classes that need to be imported in order

to preserve the referential integrity and type closure property� Second� the use of import mechanism

allows users to customize the source data during the importing process by hiding irrelevant portions

of objects imported� Similarly� users may add derived data as well� Third� when an application is

interested in many types of data from a single data repository� using the import mechanism may also

relieve the database administrators from the tedious job of speci�cation of base interfaces for each of

the source data types� Last but not least� the import mechanism encourages to minimize the impact of

component schema changes on the applications of interoperable systems�

Consider the example shown in Figure 	�� where the export source database schema UnivDB� consists of

Person� Employee� Department� Professor� Staff� Student� TA� RA and Course� We omit the

syntactical de�nition of the source schema in Figure 	� for presentation brevity� Suppose an application

want to create a University interface by importing only a portion of the data from the source schema

UnivDB�� which is related to teaching faculty or TAs� We may specify the University interface by

using the DIOM import facility as shown in Figure 		�a�� Three types are explicitly imported from

UnivDB�� They are Person� TA and Professor� For the BNF syntax of the IDL import speci�cation�

readers may refer to our technical report
	�� According to the referential integrity and type closure

property� the type Course needs to be imported as well� because the Course objects are referenced by

the imported types such as Professor and TA �see Figure 		�b���

However� there is no need to import the entire type structure of Address� Department� RA� Staff�

even though they are not explicitly excluded �hidden� from the import list in the University speci��

cation� The reasons are the following�

	�

Object

Person Department Course

Student

TA

RA

Employee

Professor

Staff

empno: Integer
salary: Real

ssn: Integer
name: String
address: Address

major: Department
age-range: String

ta-of: Course

faculty-of: Department
teach: {Course}

dname: String
chair: Person

courseno: String
offered-by: Department
instructor: Professor

s1 s2

r1 r2

t1 t3t2

f1 f3f2 f4

e1 e2

d1 d3d2
c1 c2

project:
String

object
instance

object
type

instance-of subtype-of

Address

street: String
zipcode: String
country:String

referenc-to

Figure 	�� A sample source schema of the source database UnivDB�

� The reference to Address objects from Person is the only reference� and is explicitly excluded in

the University interface speci�cation through HIDE facility associated to the import mechanism�

Thus there is no need for importing Address into the University schema� Similarly� there is no

need to import RA and Staff either�

� In principle� if two types T and S that have indirect subtyping relationship are imported explicitly�

and there are types T�� T�� ���� Tk in between T and S in the subtype�supertype type hierarchy�

then all the properties and operations that are locally de�ned in T�� ���� Tk are imported

implicitly as the properties and operations of type S unless being hidden explicitly� Therefore�

although the type Student is not in the import list� properties of Student which are not explicitly

hidden� such as age�range� are imported as the properties of TA objects�

� Since type Department is explicitly excluded from the importing list through the HIDE TYPE

facility associated with the import mechanism� all the references to Department objects from the

imported objects should be modi�ed accordingly� Hence� attribute faculty�of in the Professor

objects is modi�ed from domain type Department to refer to the department name of type String�

Now let us discuss how the import mechanism may help to minimize the impact of component schema
changes on the applications at interoperable system level� Suppose after the University interface is
created� the component database UnivDB� is changed by the following schema update transactions�

T�� adding new attributes such as dept�location� total�num�emp to the Department objects�

T�� modifying the attribute of age�range to a larger scope�

T�� adding a new attribute weekly�wk�hrs to the Employee objects	

	�

CREATE INTERFACE University
(EXTENT University): dynamic
{
 FROM UnivDB1
 IMPORT TYPES Person, TA, Professor;
 HIDE TYPES Deparrtment;

 TYPE Person
 HIDE address;
 TYPE Professor ISA Person
 HIDE empno, salary;
 TYPE TA ISA Person
 HIDE major, empno, salary;

 ADD TYPE CS-Prof ISA Professor
 select * from Professor
 where faculty-of = "CS";
 ADD TYPE EE-Prof ISA Professor
 select * from Professor
 where faculty-of = "EE";
 ...
};

courseno: String
instructor: Professor

Object

Person Course

TA
Professor

ssn: Integer
name: String

age-range: String
ta-of: Course faculty-of: String

teach: {Course}

t1 t3t2

f1

f3f2

f4

c1 c2s1 s2 r1 r2 e1 e2

CS-Prof EE-Prof

(a) Creating interface University using
 the importing mechansim (b) The resulting interface schema inferred by the

 facilities that support the importing mechanism

Figure 		� Creating a DIOM interface by importing a portion of the source database UnivDB�

Not surprisingly� the updates T	 and T� require no changes to the source code of the applications which

work with the University interface schema� Consider T	� since the University interface speci�cation

in Figure 		 has explicitly excluded Department through HIDE TYPE facility� any later change to the

source data type Department will be transparent to the users of the University interface schema�

Thus the execution of T	 has no change e�ect on the applications that use the interoperation interface

schema University� For the schema update T�� since it modi�es the domain of attribute age�range

by augmenting it� thus there is no con�ict or illegal data resulted from the programs developed earlier

that access the TA objects in the University schema�

In the case of the component schema update T�� there is no need to rewrite the interoperation interface

University or to modify the source code of the existing programs that work with the University

schema� However� a new version of the University interface will be generated in order to provide

the new applications with up�to�date information� This is simply because in the speci�cation of the

compound interface University� only two properties empno� salary are explicitly hidden from the

source type Employee� According to the type closure property� this implies that any later extension

to type Employee in the component repository should be visible through the Professor objects in

the University interface� because of the inheritance relationship between Employee and Professor in

the source repository UnivDB�� In order to add the Employee�s new attribute weekly�wk�hrs to the

Professor objects� the only action the DIOM system needs to take� after noti�ed of the component

update T�� is to recompile the University schema� and save the recompilation result into a new version

of the University interface� called UniversityNew� This new interface is seen as a specialized version of

the original University interface� As a result� the existing programs which use the Professor objects

via the original University interface may continue to work as before� while the new applications can

	�

work with the UniversityNew interface�

Generally speaking� by using DIOM interface abstraction mechanisms� as long as the changes in the

source data repositories is information�preserving or information�augmenting� the rewriting or recompi�

lation of the source code of the existing programs that have been developed at the interoperable system

level can be avoided�

� Queries in DIOM databases

Even though DIOM is object�oriented� SQL�style query access to DIOM databases should be supported�

The DIOM interface manipulation language �IML� is designed as an object�oriented extension of SQL�

The design follows a number of assumptions� First� IML by itself is not computationally complete�

However� queries can invoke methods� and conversely methods supported in any host language can

include queries� Second� IML should provide declarative access to objects and thus can be optimized

with known optimization techniques� In this section� we outline the DIOM query model and illustrate

the IDL�IML compilation process under the Diorama framework through an example�

Recall the Claim Folder application given in Section �� Suppose the interface schema of Claim Folder

consists of the base interfaces Claim� Insur�Agreement� Image� ImageSpec� DiagnosisRep as de�
�ned in Figure �� and the compound interface ClaimFolder as speci�ed in Figure �� The following
query is written in DIOM�IML against the Claim Folder interface schema�

SELECT I	patient�name� I	insur�no� Set
F	X�ray�pictures�

FROM ClaimFolder F� Insur�Agreement I

WHERE F	report	search
�dental� �bridge��

AND I	insur�no �� F	claims	insur�

AND
F	claims	claim�date � I	start�date� � ���

This query asks for the patients who have a claim for insurance of the special �dental bridge� treatment

and who have received the insurance premium within three months ��� days�� The desired query answer

form is the name and the insurance number of the patients and the corresponding set of X�ray images�

This query contains a number of path expression �such as F�claims�claim�date� for traversal of the

relationships de�ned by ClaimFolder link objects� It also includes the method invocation of search�	

associated with DiagnosisRep�

Figure 	� illustrates the procedure of how a DIOM query is processed under the Diorama architecture�

Suppose this query is embedded in a host program language as shown in the upper left box of Figure 	��

First� the program containing the query will be passed to the IDL�IML preprocessor� After syntax

analysis� query optimization and decomposition� the IDL�IML preprocessor generates a data access

path module for each query embedded in the host program� and returns a modi�ed source �le in which

all the IML queries are replaced by DIOM system calls to the corresponding access path modules� At

the linking stage� the object code is linked with the access path modules� The dynamic binding and

linking to the remote data sources and services requested are loaded� The DIOM runtime executable

code is produced�

The IDL�IML preprocessor itself consists of four basic modules as shown in Figure 	�� They are syntax

analyzer� optimization module� query dispatch module and code generation module�

	�

#include <stdio.h>

int main(argc, *argv[])
{
 ...

$DECLARE cf FOR
 select I.patient-name, I.insur-no,
 Set(F.X-ray-pictures)
 from ClaimFolder F,Insur-Agreement I
 where F.report.search("dental"&&"bridge")
 and I.insur-no == F.claims.insur#
 and (F.claims.claim-date - I.start-date)<90;
$OPEN cf;
 while ... {
 $FETCH cf INTO ...
 ...;
 }
$CLOSE CURSOR cf;
 ...
}

������������
������������
������������
������������
������������
������������
������������
������������

IDL/IML Preprocessor

Syntax
Analysis Optimization

Query
Dispatch

Code
Generation

#include <stdio.h>
#include diomlib.h
#include dsklib.h

int main(argc, *argv[])
{
 ...

 CALL diom_XPRE('XP', ...);
 ...
}

modified source file

source file

DB access module

- a collection of subqueries in the form of
 repository implementation language

- query return format structure
- query execution plan

DIOM Runtime Subsystem

C++ Compiler

Object Code
Linker

Object Linking & Embedding Services

Executable Code

DIOM Runtime

Metadata Library

- Interface Repository
- Library of Domain
 Specific functions
- Implementation
 Repository
- System Catalog

Figure 	�� Accessing data from the DIOM database

� Syntax analysis module takes an IML query as input� checks its syntax and produce a syntax

tree expression of the query�

� Optimization module takes the query syntax tree as input� and performs a number of tasks�

including�

 Replace the names used in the query with internal implementation object names according

to the DIOM metadata library�

 Decompose the query into a number of smaller queries� each runnable on an individual

repository� Then group those which run on the same repository into one skeleton binding

on the server side� and generate a stub for each skeleton binding� including the stub in the

header �le of the client program�

 Perform authorization and security checking to verify whether the users may access the

collection of objects or the corresponding source data repositories� based on the records in

the system catalog� For instance� in the Claim Folder query above� the application should

have access permission to all the three source data repositories�

��

 Use the optimization strategies and the statistics available to the DIOM distributed query

processor to de�ne the synchronization sequence for remote access among all the subqueries�

Prepare the plan for combining results to be returned by the number of smaller queries into

the desired query answering form� And then generate an access path module in the repository

implementation language�

However� if the statistics required for optimization of a set of subqueries over a particular data

repository is not available� which is a common case� then the optimization of the subqueries will be

carried out by the individual source repository independently� For instance� suppose the example

query be decomposed into three subqueries subQ�� subQ�� and subQ�� The execution sequence

is �subQ� jj subQ�� �
 subQ�� It means the execution of subQ� and subQ� can be submitted to

the corresponding repositories in parallel� Either the result of subQ� or subQ� will be used as

the selection condition of subQ� against the image repository� Assume that it is not possible to

collect enough statistics for optimization of subQ� and subQ�� the preprocessor will then choose

one from the two subqueries subQ� and subQ� according to the semantic information implied in

the interface schema� In this example� subQ� is chosen� because based on the selection condition�

only one object will be returned from subQ�� whereas each patient may have more than one claim�

thus more than one diagnosis report �see Figure 	� for illustration��

 select I.patient-name, I.insur-no, F.X-ray-pictures
 from ClaimFolder F, Insur-Agreement I
 where F.report.search("dental" && "bridge")
 and I.insur-no == F.claims.insur#
 and (F.claims.claim-date - I.start-date) <= 91;

Temp1 = select I.patient-name, I.insur-no
 from Claim C, Insur-Agreement I
 where (C.claim-date - I.start-date) <= 91
 AND I.insur-no == C.insur#

Temp2 = select D.insur-no
 from DiagnosisRep D
 where D.search("dental" && "bridge");

Temp3 = select P.insur-num, P.display()
 from Image P Temp2 T
 where P.insur-num = T.insur-no;

PackPlan = select T1.patient-name, T1.insur-no, T3.display()
 into patient-name, insur-no, X-ray-pictures
 from Temp1 T1, Temp2 T2, Temp3 T3
 where T1.insur-no = T2.insur-no
 AND T1.insur-no = T3.insur-num;

subQ1 subQ2

subQ3

in parallel

Figure 	�� Accessing data from the DIOM database

� Query dispatchmodule will be responsible for invoking the object linking and embedding services

�	

to submit each group of subqueries to the corresponding source repository for execution and collect

the subquery result�

� Code generation module takes the access path module as input and generate machine language

code� This code will be linked together with the object code of the application program written

in a host programming language �e�g�� C����

In the �rst stage of our Diorama prototype implementation� we intend to use the software products

such as OLE from Microsoft and DSOM from IBM as tools for dynamic remote object linking purpose�

� Related Work

Over the last decade� many published results on database interoperability have primarily focused on

resolving schematic and semantic incompatibilities arising from autonomy of the underlying databases�

They use two integration strategies� tight�coupling and loose�coupling
��� Tight�coupling insists on

total schema integration� Since the creation and maintenance of such an integrated schema has been

recognized as a fundamental roadblock towards system scalability and evolution� tight�coupling is gener�

ally considered a small�system strategy� In contrast� loose�coupling goes to another extreme by favoring

zero schema integration� for example� by promoting integration and interoperability via a multidatabase

query language
��� 	�� It does not require the existence of an integrated schema� leaving many re�

sponsibilities� such as resolving semantic mismatch� dealing with multiple representations of data� and

coping with dynamic system evolution� to the users�

Recent research in database interoperability has started to pay more attention to interoperation archi�

tectures that support both tight�coupling and loose�coupling �cf�
�� �� 	�� ��� �	�� DIOM has been

motivated by the mediator architecture
��� �	 and the Context Interchange approach
��� 	�� For

example� the idea of using repository wrapper to bridge between the interoperable database system and

the individual component repositories is to some extent encouraged by the mediator approach� The in�

telligent integration of information through query compilation is also supported in the DIOM framework�

Comparing with the Context Interchange proposal� both approaches support explicit representation of

semantics underlying disparate data sources and heterogeneous receivers� However� in contrast to the

shared ontology model used in the Context Interchange proposal� DIOM provides an interface de�nition

language and a semantically rich and clean framework that allows independent evolution and manage�

ment of distributed interoperable objects� DIOM also includes a number of abstraction mechanisms as

well as strategies for incremental design and construction of the interoperation interfaces� for distributed

query decomposition and packaging� for generation of optimal data access plan� and for dynamic object

linking and embedding�

In addition� a number of proposals have competed as the basic enabling technologies for implementing

interoperable objects in distributed and dynamic object computing environments� Examples include

Microsoft�s Object Linking and Embedding �OLE�� IBM�s System Object Model �SOM� and its dis�

tributed version �DSOM�� OMG�s Common Object Request Broker Architecture �CORBA�� and CI labs

OpenDoc� Many of these are available as deployed software packages� The emergence of these technolo�

gies also demonstrates that the continued evolution of object�oriented programming and object�oriented

��

database management systems are converging into language�independent and distributed object com�

puting� Although these proposals are clearly practical and important� they focus primarily on the

software interface problem� not the USECA properties in large scale interoperable database systems�

DIOM can be seen as a glue that spans and integrates these interface models�

Another related �eld is the area of Distributed Object Management
	�� A representative e�ort is

the ongoing research at GTE Labs
	� to divide object models into components and then map them

into each other� Another example is the BLOOM model
�� which is a semantic data model that

includes abstractions such as specialization� generalization� and aggregation� Compared to these more

formal models� DIOM is designed to support the USECA properties and it combines abstractions with

a practical implementation path�

� Conclusion

We have introduced the Distributed Interoperable Object Model �DIOM� and described a concrete

instance of DIOM in the Diorama project� Diorama and DIOM have been designed to address the

research challenges in large scale interoperable database systems� Uniform access� Scalability of network�

Evolution of system components� Composibility of component databases� and preservation of Autonomy

�USECA properties��

Our main contributions in this paper are the following� First� the use of base interfaces to model

data from individual repositories and compound interfaces to model the desired links among remote

data sources not only present a useful method for design and construction of interoperable databases

from disparate data sources� but also provide a semantically clean framework for allowing independent

evolution and management of distributed interoperable objects� Second� the interface abstraction mech�

anisms provided in DIOM� such as import and hide� aggregation� generalization and specialization� allow

incremental design and construction of new interfaces in terms of the existing ones� For example� by

combining the import facility with the aggregation and generalization abstraction mechanisms� one can

easily build a new interface by adding additional properties and operations to the existing interfaces�

The composibility as such is very important for the organizations which perform multiple interoperable

projects with overlapping sets of data� Third� the design of both the DIOM interfaces and the Diorama

architecture have given the full respect to the autonomy of component systems� There is no need for

component systems to request an agreement from the interoperable system in the presence of compo�

nent evolution� Furthermore� all the information�preserving and information�augmenting changes in the

component systems will have no impact on the use of the interoperable interfaces� To our knowledge� the

DIOM interface abstraction mechanisms are original with respect to the support for USECA properties�

In addition� con�ict resolution is considered secondary to the explicit representation of disparate data

semantics in DIOM� Thus� the DIOM approach does not require any commitment to a canonical� prede�

�ned integration representation of component databases� Con�icts do not have to be resolved once for all

in a static integrated schema� Instead� we encourage decoupling the resolution of semantic heterogeneity

from representational heterogeneity� Much of con�ict resolutions are deferred to the query submission

time� More importantly� the con�ict resolution is not hard�wired in the interoperation interface schema�

Users may de�ne their preferred query answering formats or update the existing conversion functions

��

whenever necessary� Thus� automatic recognition and resolution of semantic con�icts can be supported�

We believe that the framework developed in this paper presents an interesting step towards supporting

the USECA properties in large scale interoperable database systems�

Finally� we would like to state that the DIOM approach presented in this paper proposes an adaptive

framework and a collection of techniques for incremental design and construction of interoperation

interfaces� rather than a new object model� This framework is targeted towards large scale interoperable

database systems operating in today�s dynamic� growing� and evolving environment� which require the

support of USECA properties�

References

��� M	 Betz	 Interoperable objects� laying the foundation for distributed object computing	 Dr� Dobb�s Journal�

Software Tools for Professional Programmer� October �

�	

��� M	 Bright� A	 Hurson� and S	 H	 Pakzad	 A taxonomy and current issues in multidatabase systems	 IEEE

Computer Magazine� March �

�	

��� S	 M	 C	 Goh and M	 Siegel	 Context interchange� overcoming the challenges of largescale interoperable

database systems in a dynamic environment	 In Proceedings of International Conference on Information and

Knowledge Management� �

�	

��� L	 Cardelli	 A semantics of multiple inheritance	 In G	 Kahn� D	 MacQueen� and G	 Plotkin� editors�

Semantics of Data Types� pages �����	 Springer Verlag� �
��	

��� L	 Cardelli and P	 Wegner	 On understanding types� data abstraction� and polymorphism	 ACM Computing

Surveys� ���������� December �
��	

��� M	 Castellanos� F	 Saltor� and M	 GarciaSolaco	 A canonical model for interoperability among object

oriented and relational databases	 In Proceedings of the ���� International Workshop on Distributed Object

Management� Edmonton� Canada� August �

�	

��� J	 C	Lamb� G	Landis and D	 Weinreb	 The objectstore database system	 Communications of the ACM�

������� �

�	

��� D	 D	Fang� S	Ghandeharizadeh and A	 Si	 The design� implementation� and evaluation of an objectbased

sharing mechanism for federated database systems	 In Proceedings of International Conference on Data

Engineering� Vienna Austria� �

�	

�
� A	 K	 Elmagarmid and C	 Pu	 Special Issue on Heterogeneous Databases	 ACM Computing Surveys� Vol	

��� No	 �� September �

�	

���� E	Sciore� M	Siegel� and A	Rosenthal	 Using semantic values to facilitate interoperability among heterogeneous

information systems	 ACM Trans� Database Syst�� Vol	 �
� No	 � June �

�	

���� W	 Kim	 Observations on the odmg
� proposal	 ACM SIGMOD RECORD on Management of Data� ������

March �

�	

���� W	 Kim and J	 Seo	 Classifying schematic and data heterogeneity in multidatabase systems	 IEEE Computer

Magazine� ������������ �

�	

���� W	 Litwin and A	 Abdellatif	 An overview of the multidatabase manipulation language mdsl	 In Proceedings

of the IEEE 	
�
� �
��	

��

���� L	 Liu	 A recursive object algebra based on aggregation abstraction for complex objects	 Journal of Data

and Knowledge Engineering� ��������� �

�	

���� L	 Liu and R	 Meersman	 Activity model� a declarative approach for capturing communication behavior

in objectoriented databases	 In Proceeding of the ��th International Conference on Very Large Databases�

Vancouver� Canada� �

�	

���� L	 Liu and C	 Pu	 The distributed interoperable object model and its application to large scale interoperable

database systems	 Technical report� University of Alberta� Feb	 �

�	

���� F	 Manola and S	 Heiler	 An approach to interoperable object models	 In Proceedings of the ���� International

Workshop on Distributed Object Management� Edmonton� Canada� August �

�	

���� M	 Ozsu� U	 Dayal� and P	 Valduriez� editors	 Distributed Object Management� Edmonton� Canada� August

�

�	 Morgan Kaufmann	

��
� C	 Pu	 Superdatabases for composition of heterogeneous databases	 In Chapter in IEEE Computer Society

Tutorial Multidatabase Systems� An Advanced Solutions for Global Information Sharing� ed	 A	R	 Hurson�

M	W	 Bright� and S	Pakzad	

���� S	 Ram	 Special Issue on Heterogeneous Distributed Database Systems	 IEEE Computer Magazine� Vol	 ���

No	 ��� December �

�	

���� R	Cattell�ed�	 The Object Database Standard� ODMG��� Release ����	 Morgan Kaufmann� �

�	

���� M	 Shan	 Pegasus architecture and design principles	 In Proceedings of ACM�SIGMOD Annual Conference

on Management of Data� �

�	

���� A	 Sheth	 Special Issue in Multidatabase Systems	 ACM SIGMOD Record� Vol	��� No	 �� December �

�	

���� A	 Sheth and V	 Kashyap	 So far �schematically� yet so near �semantically�	 In Proceeding of the IFIP

WG��� Database Semantics� Victoria� Australia� �

�	

���� A	 Sheth and J	 Larson	 Federated database systems for managing distributed� heterogeneous� and au

tonomous databases	 ACM Trans� Database Syst�� Vol	 ��� No	� �

�	

���� M	 Siegel and S	 Madnick	 A metadata approach to solving semantic con�icts	 In International Conference

on Very Large Data Bases� �

�	

���� M	 Siegel and S	 Madnick	 Context interchange� sharing the meaning of data	 In ACM SIGMOD RECORD

on Management of Data� ��� � ��

��	

���� W	 T	Landers and W	Kent	 Language features for interoperability of databases with schematic discrepancies	

In Proceedings of ACM�SIGMOD Annual Conference on Management of Data� �

�	

��
� V	 Ventrone and S	 Heiler	 Semantic heterogeneity as a result of domain evolution	 ACM SIGMOD RECORD

on Management of Data� ������ �

�	

���� G	 Wiederhold	 Mediators in the architecture of future information systems	 IEEE Computer Magazine�

March �

�	

���� G	 Wiederhold	 Intelligent integration of information	 In Proceedings of ACM�SIGMOD Annual Conference

on Management of Data� �

�	

��

