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Abstract

Parallel Virtual Machine (PVM) is a widely-used software
system that allows a heterogeneous set of parallel and
serial UNIX-based computers to be programmed as a sin-
gle distributed-memory parallel machine.  In this paper,
an extension to PVM to support dynamic process migra-
tion is presented.  Support for migration is important in
general-purpose workstation environments since it allows
parallel computations to co-exist with other applications,
using idle-cycles as they become available and off-loading
from workstations when they are no longer free.  A
description and evaluation of the design and implementa-
tion of the prototype Migratable PVM system is presented
together with some performance results.

1 Introduction

PVM [1, 2, 3] is a software system that allows a hetero-
geneous network of parallel and serial computers to be
programmed as a single computational resource.  This
resource appears to the application programmer as a
potentially large distributed-memory virtual computer.
Such a system allows the computing power of widely
available, general-purpose computer networks to be har-
nessed for parallel processing.  With the rapid advances in

workstation performance, such networks already provide a
viable and affordable alternative to expensive special-pur-
pose super-computers.

General-purpose workstation networks have certain
key characteristics that must be considered when they are
to be used for parallel processing.  First, the collective
resources of the network are often shared by a potentially
large number of users running a wide range of applica-
tions.  Second, despite the high level of sharing, the con-
cept of ownership is frequently present.  In particular,
individual workstations, while available across the net-
work, are invariably owned by some specific user.  Work-
station owners are often willing to allow others to access
their workstation when it is idle, but expect dedicated
access the rest of the time.  Since most workstations are
idle most of the time [4], the key to harnessing the full
power of such systems lies in gaining access to these idle
cycles.

For PVM to gain unobtrusive access to idle cycles, it
must be able to (a) recognize when a workstation becomes
available for it to use, (b) recognize when a workstation
ceases to be available to it, and (c) migrate processes
between workstations so that work can be assigned to
newly available workstations and off-loaded from work-
stations that are being reclaimed by their owners.  Auto-
matic and timely off-loading of processes requires PVM to
be extended to support dynamic process migration.
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In this paper, Migratable PVM (MPVM), an extension
of PVM which allows parts of the parallel computation to
be suspended and subsequently resumed on other worksta-
tions is presented.  There were three key goals under con-
sideration in the design of MPVM.  First, migration had to
be transparent to both application programmer and user.
Neither the programmer nor the user needs to know that
portions of the application are migrating.  Second, source-
code compatibility with PVM had to be maintained.
Source-code compatibility would allow existing PVM
applications to run under MPVM without, or at least with
minimal, modification.  Lastly, MPVM had to be as porta-
ble as possible.

The remainder of the paper is organized as follows.
Section 2 gives an overview of PVM and the problem
addressed by this work.  Section 3 outlines the design and
implementation of MPVM, and is followed by perfor-
mance results in section 4.  Related work is presented in
section 5, a qualitative discussion of the design and imple-
mentation in section 6, and conclusions and future work in
section 7.

2 Background

MPVM is based on PVM 3.3.4 as released from Oak
Ridge National Laboratory and is part of the larger Con-
current Processing Environment, an on going research
effort [3].  This section presents an overview of the PVM
system and the problems that had to be addressed to sup-
port task migration.

2.1 PVM Overview

The PVM system consists of a daemon process called
the pvmd running on each host on a network of worksta-
tions and a run-time library called the pvmlib linked into
each application process (figure 1).  Each pvmd is
assigned a unique host ID or hid.  The pvmlib defines a
suite of PVM primitives that presents a “message-passing
parallel machine” user-interface to the application.

A PVM application is composed of Unix processes
linked with the pvmlib.  These processes, called tasks in
PVM, communicate with each other via message-passing
primitives found in the pvmlib.  Just like the pvmds, each
task is assigned a task ID or tid which uniquely identifies
each task in the virtual machine.  These tids are used to
designate the source and destination tasks for messages
(i.e., messages are addressed to tasks, not to ports or mail-
boxes).

Messages passed within the PVM system can be cate-
gorized into system messages and application messages.
System messages are used exclusively by PVM to manage
the virtual machine and perform application code requests
(e.g., spawn a new task, get information about the virtual
machine, etc.).  The application code is not aware of these
messages.  Application  messages on the other hand are
used exclusively by the PVM application.

PVM provides two routing mechanisms for applica-
tion  messages: indirect and direct routing.  The choice of
routing mechanism to use is controlled by the application
code.  By default, messages are routed indirectly.  Using
indirect routing, as illustrated in figure 1, a message from
task T2 to T3 passes through T2’s local pvmd (pvmd on
host1), through T3’s local pvmd (pvmd on host2), and
finally to T3.  Pvmd-to-pvmd communication uses UDP
socket connections while task-to-pvmd communications
use a TCP socket connection which is established during
task start-up.  In direct routing, a message from task T2 to
T4, also illustrated in figure 1, uses a TCP socket connec-
tion between T2 and T4, by-passing the pvmds altogether.
TCP connections between tasks are created “on-
demand”.  Only when tasks that have set their routing
option to use direct routing start communicating with each
other are TCP connections established.

An important aspect to remember when using PVM is
the message ordering semantics it provides.  PVM guaran-
tees that messages sent from one task to another are
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Figure 1. PVM System.  PVM is composed of dae-
mons (pvmds) running on each host of the virutal
machine and a run-time library (pvmlib) linked into
every task.
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received in the same order they were sent.  The importance
of recognizing this “guarantee” is that there are PVM
applications that take advantage of this message-ordering
semantics.  Hence, new versions of PVM such as MPVM
should maintain the same semantics.

Lastly, in PVM 3.3.4, it is possible to designate a spe-
cial task as the resource manager.  The resource manager,
also called the global scheduler (GS) in this paper, embod-
ies decision making policies [5] such as task-to-processor
allocation for sensibly scheduling multiple parallel appli-
cations.  Using a GS makes it convenient to experiment
with different scheduling policies.  In MPVM, the inter-
face between the pvmds and the GS has been extended to
accommodate task migration, allowing the GS to use
dynamic scheduling policies.

2.2 PVM task migration: the problem

Task migration is the ability to suspend the execution of
a task on one machine and subsequently resume its execu-
tion on another.  A major requirement for task migration is
that the migration should not affect the correctness of the
task.  Execution of the task should proceed as if the migra-
tion never took place.  To ensure the “transparency” of the
migration, it is necessary to capture the state of the task on
the source machine and reconstruct it on the target
machine.

The state of a task can be viewed in two ways: its state
as a Unix process and its state as a task of a PVM applica-
tion.  From the point of view of the operating system (OS),
a task is just a single process.  As such, its state includes
the processor state, the state held by the process, the state
held by the OS about the process, and the state held by the
process about the local OS.  The processor state includes
the contents of the machine registers, program counter,
program status word, etc.  This information defines exactly
where the task was executing prior to migration, and con-
sequently, where execution should resume upon restart on
the target machine.  The state held by the process itself
include the contents of its text, data (static and dynamic),
and stack segments.  The state held by the OS for the pro-
cess include signal information (e.g., blocked signals,
pending signals), open files, and socket connections to
name a few.  Other less obvious state information held by
the OS include page table entries, controlling terminals,
and process relationship information (e.g., parent/child
process relationship and process groups).  OS state held by
the process include file descriptors, process IDs, host
name, and time.  These are state information, known to the
process, that are only valid in the context of the local exe-
cution environment (local OS and host).

From the point-of-view of PVM, a task is one of a set
of tasks that makes up an application.  In this regard, a
task’s state includes its tid and the messages sent to/from
that task.  Regardless of migration, each task should be
referred to using the same tid, no message should be lost,
and all messages should be received in the correct order
(as defined by PVM).

Thus, the problem addressed by MPVM is how to cap-
ture and reconstruct the state information so that tasks can
to be migrated from one machine to another without
affecting the correctness of the entire application.

3 Design and Implementation

In this section, the design and implementation of
MPVM is described.  In order to support task migration,
both the pvmd and pvmlib had to be modified.  The modi-
fications made were also driven by the goals of source
code compatibility,  portability, and migration transpar-
ency.  To ensure source code compatibility, the modifica-
tions had to maintain the same function calls, parameters
and semantics, as provided by PVM.  To maximize porta-
bility, the migration mechanism had to be implemented at
user-level, using facilities available through standard Unix
library routines and system calls.  Migration transparency
is addressed by modifying the pvmd and pvmlib such that
the migration could occur without notifying the applica-
tion code and by providing “wrapper” functions to certain
system calls.  A more complete evaluation of these goals
are presented in a later section.

3.1 Application start-up

The primary interface to the migration mechanism in
MPVM is through the signal mechanism provided by
Unix.  That is, task migration is initiated using a migration
signal sent from the pvmd to the migrating task.  The
migrating task should have a migration signal handler
installed to catch the migration signal.  At this point, it is
only important to know that a signal handler has to be
installed for migration to work.  The function of the migra-
tion signal handler will be discussed in the next section.

To avoid explicitly modifying the source code of the
PVM application to install the signal handler,  the pvmlib
defines its own main() function which executes the neces-
sary initialization and then calls a function called Main().
When the application program is compiled, its main()
function is “renamed” to Main() using “C” macro substi-
tution facilities available through the compiler (e.g., -
Dmain=Main flag).  Thus, when the application code is
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linked with the pvmlib, the resulting executable will have
the pvmlib’s main() as the entry point, allowing execution
of the migration initialization code prior to the execution
of the application’s code.

While this solution is simple, not to mention inherently
portable, it will fail when combined with other systems
that use the same “trick” for executing code prior to the
application’s main().  The alternative, however, is to
define a customized version of the start-up code, usually
crt0.o (“C” Run-Time object module), which is more trou-
blesome to create, maintain, and port.

3.2 Migration Protocol

Once the application is up and running, it executes just
like a traditional PVM application would, until a task has
to migrate.  There are a number of reasons for a task to
migrate: excessively high machine load, machine reclama-
tion by its owner, a more suitable machine becomes avail-
able, etc.  Regardless of the rationale for migration, the
same migration mechanism can be used.

A migration protocol is used to facilitate the migration.
The migration protocol is divided into four stages as
shown in figure 2.  While the first stage addresses “when”
migration occurs, the last three stages correspond exactly
to the main components of migration: state capture, trans-
fer, and re-construction.

An important component of the migration protocol is
what is collectively called Control Messages.  These con-
trol messages or CMs are special system messages added
to the pvmds and the pvmlib for the primary purpose of
managing task migration.  Just like other system messages,
these control messages are invisible to the application
code.  There are different kinds of CMs, each of which
will be discussed in the following sections.

3.2.1 Migration event

The migration of a task is triggered by a migration
event.  This event triggers the GS which determines
whether or not tasks have to be migrated.  If so, it also
decides which tasks to migrate and to where.
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If the GS decides to migrate a task, an SM_MIG CM
(SM stands for Scheduler Message) is sent by the GS to
the pvmd on the host where the task to be migrated is cur-
rently executing.  This SM_MIG CM contains a tid and an
hid, indicating the task to be migrated and the destination
host respectively.  For brevity, the task to be migrated shall
be referred to as Mtask, the pvmd on the host where Mtask
will be migrating from as Spvmd, and the pvmd on the
destination host as Dpvmd.

3.2.2 Migration Initialization

Upon receipt of an SM_MIG CM, the Spvmd verifies
that the tid belongs to a locally executing task and that the
hid refers to a valid host (not itself).  If either of the tid/hid
is invalid, a PvmNoTask/PvmNoHost error code is sent
back to the GS via an SM_MIGACK CM.

Migration initialization is divided into two components
which occur in parallel.  The first component, local initial-
ization, involves “priming-up” Mtask for the state transfer.
The second component, remote initialization, involves the
creation of a “skeleton process” that will be the recipient
of the state information to be transferred (figure 3).

Local initialization begins when a SIGMIGRATE sig-
nal is sent from the Spvmd to Mtask (step 1’ in figure 3).
This signal is caught by the migration signal handler
installed by Mtask during its start-up (recall the applica-
tion start-up discussion).  The advantage of using a migra-
tion signal handler is two-fold: first, it allows for
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1. DM_MIG
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Figure 3. Migration Initialization.  Local initializations
(1’, 2’, and 3’) and remote initializations (1, 2, and 3)
occur in parallel and ‘sync’ at step 4 which is the final
message inidicating that process state transfer can
proceed.
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asynchronous task migration, and second, it is the main
component used in capturing the processor state.  When
the signal handler is invoked, the OS automatically stores
a copy of the processor state at the time when the process
was interrupted in the user stack.  This saved processor
state is used to restore the state of execution of the pro-
cess/task upon return from the signal handler.  Currently,
SIGUSR1 is used as the SIGMIGRATE signal.

To prepare for the process state transfer in the next
stage, the migration signal handler in Mtask flushes all
messages in the TCP socket connections it has with other
tasks (used in direct message routing), and then closes
these connections (step 2’).  It is necessary to flush these
TCP socket connections to avoid losing any message that
may be buffered in these sockets.  The details of how the
connections are flushed and closed will be discussed in a
later section.  Note that the tasks with which Mtask had a
direct TCP connection continue executing as they nor-
mally would.  In the event they send a message to Mtask,
the message will automatically be forwarded through the
pvmds.

Once the TCP connections have been flushed and
closed, Mtask sends a TM_MIG CM (TM stands for Task
Message) to Spvmd (step 3’) to tell the Spvmd that local
initialization is complete.  Mtask then blocks and waits for
a TM_MIGACK CM from the Spvmd.

While the local initialization component is executing in
the source machine, remote initialization is proceeding
simultaneously on the destination machine.  Remote ini-
tialization is triggered by a DM_MIG CM (DM stands for
Daemon Message) from Spvmd to Dpvmd (step 1, no
prime).  This CM informs the Dpvmd that a task will be
migrating to it.  Information about the migrating task such
as its tid, executable file name, parent task’s tid, etc. is
passed along in this CM.  The name of the executable file
from which the migrating task was started is particularly
important since the same executable file should be used to
start a “skeleton process” (step 2).  The executable file is
assumed to be accessible from the destination machine.
The skeleton process provides the infrastructure to which
process state can be transferred and will eventually be exe-
cuting in the context of Mtask.

State transfer has three requirements: the source of the
state, the recipient of the state, and the medium through
which the state will be transferred.  The first two compo-
nents are satisfied by Mtask and the skeleton process
respectively.  For the transfer medium, a TCP connection,
to be established at process state transfer time, is used.
For the TCP connection to be established, it is necessary
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that the skeleton process have a TCP socket to which
Mtask can “connect” to.  The decision of associating a
TCP socket with the skeleton process and making Mtask
initiate the connection was made for convenience rather
than some hard requirement.  To assign a socket to the
skeleton process, before Dpvmd starts the skeleton pro-
cess, it first creates a socket and binds it to a port address.
Following the semantics of fork()/exec(), the skeleton
process automatically inherits the socket from the Dpvmd.

In addition to making the skeleton process inherit the
socket, special arguments are also passed to the skeleton
process.  These special arguments causes the skeleton pro-
cess to execute “restart code”.  Recall that at application
start-up, some migration initialization code is first exe-
cuted prior to executing the application’s code.  Part of the
migration initialization code is to test whether the process
has to execute as a skeleton process or not, based on the
arguments passed to it.  If the process was started as a
skeleton process, it will wait for a connection on the
socket that it inherited from the Dpvmd.  If not, it executes
the code of the application.

For Mtask to be able to connect to the socket waited on
by the skeleton process, Mtask must know the port address
the socket is bound to on the destination machine.  This
port address is known to the Dpvmd.  To send the port
address to Mtask, the Dpvmd sends a DM_MIGACK CM
to the Spvmd (step 3) containing the port address and an
error code.  If the error code is zero, then the port address
is valid and can be used by Mtask to connect to the skele-
ton process.  A non-zero error code indicates that some-
thing went wrong during remote initialization and that
migration cannot proceed.  Possible error codes are Pvm-
NoFile and PvmOutOfRes.  A PvmNoFile error code
means that the executable file name of the migrating task
was not found on the destination machine.  A PvmOutOf-
Res error code means that there wasn’t enough resources
on the destination machine to start the skeleton process.
This error could be caused by several factors such as
inability to create more sockets, inability to fork() another
process, etc.  A non-zero error code causes the Spvmd to
send the GS an SM_MIGACK CM containing the error
code, similar to what it would have done given an invalid
tid or hid from an SM_MIG CM.  Sending these error
codes back to the GS allows the GS to keep track of
unsuccessful migrations, giving it an up-to-date  view of
the state the PVM system.

The last part of this stage is for the Spvmd to send a
TM_MIGACK CM to Mtask (step 4).  Recall that at the
end of the local initialization, Mtask blocks waiting for
this message.  But before the Spvmd can send this CM to

Mtask, it must be sure that both the local and remote ini-
tializations have completed.  Completion of local and
remote initializations is indicated by receipt of both the
TM_MIG CM from Mtask and the DM_MIGACK CM
from the Dpvmd.

The TM_MIGACK CM sent to Mtask contains three
items: an error code, the IP address of the destination
machine, and the port address of the socket to connect to
on the destination machine (the one the skeleton process is
waiting on).  If the error code is zero, then the migration
protocol proceeds to the next stage.  If the error code is
non-zero (for reasons mentioned above), the migration is
aborted and Mtask simply returns from the migration han-
dler and continues its execution prior to getting interrupted
by the SIGMIGRATE signal.

Conceptually, this stage of the protocol is simple.
Unfortunately, the same cannot be said for the actual
implementation.  In particular, note that while within the
migration signal handler, the CMs TM_MIG and TM_MI-
GACK are sent and received respectively.  Sending and
receiving these CMs requires the migration signal handler
to use routines in the pvmlib.  However, the pvmlib is not
re-entrant.  If the migration signal handler happened to be
invoked while Mtask was executing within the pvmlib, the
migration signal handler’s use of pvmlib routines could
corrupt data structures in the pvmlib, leading to unpredict-
able results.

The obvious solution is to make the pvmlib re-entrant.
Making the pvmlib re-entrant, however, would require a
complete re-work of the library.  The simpler but not so
elegant approach of synchronizing migration signal han-
dler invocation with the task’s execution in the pvmlib is
used.  One way of achieving this synchronization is to
block the SIGMIGRATE signal whenever task execution
enters the pvmlib.  The approach was tried and worked as
expected.  Unfortunately, blocking and unblocking signals
require system calls that incur a significant amount of
overhead.

The solution used, which gives the same result as that
of blocking signals but with much less overhead, is to set
an IN_LIB flag whenever task execution enters the pvmlib.
When the migration signal handler is invoked, this IN_LIB
flag is checked first.  If the flag is not set, the migration
signal handler can safely use pvmlib routines.  If it is set
however, the migration signal handler sets another flag
called the IS_MIG flag, indicating that the signal occurred,
and returns.  When execution of the task leaves the pvm-
lib, in addition to clearing the IN_LIB flag, the IS_MIG
flag is checked.  If the IS_MIG flag is set, the task gener-
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ates a SIGMIGRATE signal to itself.  Sending the signal to
itself “simulates” the situation when the signal was first
received, except that this time, the task is already outside
the pvmlib.

A problem arises when execution of the task blocks
inside the pvmlib such as when the user code calls a
pvm_recv() and the desired message has not yet arrived.
This situation is undesirable since the migration signal
handler will not get invoked for an indefinite amount of
time, preventing the task from migrating.  To resolve this
problem, all PVM routines that could block for an indefi-
nite amount of time were rewritten so that they blocked
outside the pvmlib.  That is, modifications were made such
that instead of having the routines block deep inside the
pvmlib as they would in the original pvmlib, they now
block on the “surface” of the pvmlib.  This change is suffi-
cient to allow the pvmlib routines used in the migration
signal handler to be executed without running into re-
entrancy problems.

3.2.3 Process State Transfer

Reaching this stage of the migration protocol implies
that the skeleton process was successfully started and that
Mtask has received the TM_MIGACK CM containing the
destination host’s IP address and the port address of the
socket the skeleton process is waiting on.

Before the state of Mtask is transferred, Mtask first
detaches from the local pvmd (Spvmd in this case) using
pvm_exit().  This call closes the TCP socket connection
Mtask has with its local pvmd.  Messages in the pvmlib
that have not yet been received by the application remain
intact in the task’s data space.

As mentioned above, migration involves capturing the
process’ state (text, data, stack, and processor context),
transferring it to another host, and reconstructing it.  The
text of the process can be taken from the executable file
from which the process was started.  It is for this reason
the skeleton process is started from the same executable
file from which Mtask was started.  Using the same exe-
cutable file automatically “migrates” the text.  The data
and stack, however, have to be read directly from Mtask’s
virtual memory.  As for the processor context, recall that
this has already been saved in the stack when the migra-
tion signal handler was invoked.  By performing the state
transfer while within the migration signal handler, coupled
with the ability to transfer/restore the stack correctly, the
processor context is preserved.

The processor context saved due to the invocation of
the migration signal handler contains information  regard-
ing where execution should resume in the user’s code.
However, if migration is to occur within the signal han-
dler, a second set of processor context information is
needed to determine where execution should resume
inside the signal handler.  Correctly resuming execution
inside the migration signal handler is necessary for the sig-
nal handler be able to “return” correctly and restore the
process context saved when the signal handler was
invoked.  For this purpose, a setjmp() is called within the
migration signal handler just before the actual state trans-
fer.  A similar approach is taken in Condor [6].

After calling setjmp(), Mtask creates a TCP socket and
using the IP address and the socket port address from the
TM_MIGACK CM, establishes a connection with the skel-
eton process on the destination host.  It is through this TCP
connection that the data and stack of Mtask is transferred.

3.2.4 Restart

After sending all the necessary state information to the
skeleton process, Mtask terminates.  It is at this point
where Mtask is officially removed from the source host.
The skeleton process, after receiving Mtask’s state, assim-
ilates it as its own.  This assimilation of state is done by
placing the received data and stack state in their appropri-
ate place in the skeleton process’ virtual address space.  A
temporary stack is used, again using the signalling facility,
while restoring the state of the real stack to avoid corrupt-
ing its contents.  After restoring all the state information
from Mtask, a longjmp() is done using the buffer saved
from the setjmp() call in the state transfer stage.  This
longjmp() causes execution to “go back” into the migra-
tion signal handler just as it was in Mtask at the time the
setjmp() was called.  It is at this point that the skeleton
process starts executing in the context of the Mtask.

Before the skeleton process could re-participate as part
of the application, it first has to re-enroll itself with the
local pvmd (Dpvmd in this case) using the pvm_mytid()
routine.  By re-enrolling to the PVM system, the skeleton
process officially becomes an MPVM task, at the same
time re-establishing its indirect communications route
with the other tasks.  As for the TCP connections that were
closed prior to the state transfer, note that direct connec-
tions are established “on demand” in PVM.  That is, only
when a message is first sent between two tasks (which
have set their routing mode to use direct routing) is the
TCP connection established.  By closing down the TCP
connections in such a way that the tasks involved “think”
that there was never a connection, direct connections with
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the just-migrated task will automatically be re-established,
using the protocol provided by PVM, once messages start
flowing between them again.

Lastly, though no longer technically part of the restart
stage, the Dpvmd sends a SM_MIGACK CM to the GS
containing an error code of zero.  This CM informs the GS
that the migration was successful and that the migrated
task is again up and running.

Figure 4 shows the timeline of the migration protocol.
Note that the migration protocol only involves the migrat-
ing task, the source pvmd, and the destination pvmd.  Mul-
tiple migrations can occur simultaneously without
interfering with each other, even if they have overlapping
pvmds.

3.3 Closing Direct TCP connections

As mentioned in the migration initialization stage
above, the TCP socket connections Mtask has with other
tasks have to be flushed and closed prior to migration.
These TCP socket connections are used for direct routing

between Mtask and the other tasks.  The TCP connections
are flushed to avoid loss of any un-received message.

Flushing and closing these TCP socket connections is
not as simple are just reading everything that could be read
from the socket and then closing them.  It is possible that
messages are still in-transit and thus not yet available for
reading.  It is also possible that the peer task (the task at
the other end of the connection) is just about to send a
message.  In either instance, the fact that nothing can be
read from the TCP socket connection does not imply that
there wouldn’t be any in the future.

To ensure that there are no messages in the connection,
in-transit or in the future, it is necessary for Mtask to
explicitly inform the peer task of its intention of closing
the connection and get an acknowledgment from the peer
task that it will no longer send messages through that con-
nection.  To inform the peer task of the intention of closing
the connection, Mtask sends an out-of-band (OOB) data,
using the MSG_OOB flag for the send() system call,
through the TCP connection.  The OOB data causes a SIG-
URG signal at the peer task.  Using this method of inform-
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Skeleton
Process

T
im

e

GS: SM_MIG

SIGMIGRATE

DM_MIG

fork()-exec()

Figure 4. Migration protocol timeline.
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ing the peer task of the connection closure has a number of
advantages.  First, it enables the peer task to respond to the
socket connection closure immediately.  Minimizing the
time it takes to take down Mtask’s TCP socket connection
is necessary to minimize the time it takes to migrate
Mtask.  Second, by testing for “exception conditions”
using select(), this method provides enough information
for the peer task to know which socket, assuming it also
has TCP socket connections with other tasks, is being
closed.  And lastly, this method involves only Mtask and
the peer task which helps minimize the overhead involved
in closing the connection.

The exact protocol used is illustrated in figure 5.
Another feature of TCP socket connections that the proto-
col uses is the ability to close only one channel of the con-
nection with the shutdown() system call.  TCP socket
connections can be pictured as two uni-directional pipes or
channels.  Using the shutdown() system call, it is possible
to close the TCP socket connection one pipe or channel at
a time.  The close() system call closes both channels at
once.

Initially, Mtask (T1) sends the OOB data to the peer
task (T2).  It then calls shutdown() to close the channel
from T1 to T2, and proceeds to read the socket (i.e., read-
ing the T2 to T1 channel) until it reads an end-of-file
(EOF).  The OOB data in the mean time causes a SIGURG
signal to be generated at the peer task, which in turn
invokes a SIGURG signal handler.  The SIGURG signal
handler at the peer task first determines which socket
caused the SIGURG signal using the select() system call,
and then reads in all it can from the socket until it reads an
EOF.  The reading of the socket until an EOF is detected,
in effect, flushes any un-received messages sent by Mtask.
The EOF is guaranteed to be detected due to the shut-
down() call in step 2.  After detecting the EOF, the signal
handler issues a shutdown() on the T2 to T1 channel.  At
this point, Mtask is still reading the socket waiting for an

Figure 5. TCP socket connection closure protocol.
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EOF on the T2 to T1 channel.  Once Mtask reads the EOF,
it knows that all the messages, both sent and received
through that socket connection have been flushed.

Three things are worth mentioning about the protocol.
First, the protocol works even if T1 and T2 are migrated
simultaneously.  Both tasks will simply go though steps 1,
2, and 3, with the shutdown() on step 2 of one task caus-
ing an EOF to be read on step 3 of the other task.  Second,
note that the SIGURG signal handler, just like the migra-
tion signal handler, uses pvmlib routines to read the mes-
sages from the socket.  Thus, the SIGURG signal handler
had to guarded against re-entrancy problems, using the
same method used for guarding the migration signal han-
dler.  Lastly, the protocol described above assumes only
one TCP  socket connection is being closed.  Typically,
either Mtask has no TCP socket connections with other
tasks or it has a number of them, all of which have to be
closed.  Instead of executing the protocol one connection
at a time, Mtask can execute steps 1 and 2 for all TCP con-
nections first before going to step 3.  This causes steps 4,
5, and 6 on all the peer tasks to be executed in parallel, fur-
ther minimizing the time it takes to take down all the con-
nections.

A drawback of this method, however, is that it doesn’t
work for Unix domain sockets.  PVM 3.3.x uses Unix
domain sockets for direct connections between tasks on
the same host since it is about 1.5x - 2x faster than TCP
sockets [7].  Unix domain sockets only work for tasks on
the same host.  Unfortunately, Unix domain sockets has no
support for OOB data.  As currently implemented, MPVM
uses TCP sockets for direct communication even for tasks
on the same host.

One last aspect related to TCP connection closure is
with regards to routing for messages from the peer tasks to
Mtask and the re-establishment of the TCP connection
after migration.  As mentioned previously, TCP connec-
tions between tasks are established on demand.  Since the
peer task has its routing option set to direct routing (which
had to be set in the first place for the just-taken-down TCP
connection to have been established), the peer task will try
to establish another TCP connection on the next message
to Mtask.  But since Mtask is migrating, this should not
happen.  Otherwise, the peer task would only be blocked
waiting for an acknowledgment from Mtask.  To address
this problem, before the SIGURG signal handler returns, a
flag inside the pvmlib is set to indicate that the peer task
should not try to establish a TCP connection with Mtask.
Messages for Mtask will then be routed indirectly through
the pvmds allowing the peer task to continue executing.
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Once Mtask has migrated and is running again, it
would be desirable for the TCP connections that were
taken down before migration to be re-established.  Since a
flag has been set on the peer tasks, no TCP connection
request will come from the peer tasks.  The request should
come from Mtask.  One option would be for Mtask to
request for a TCP connection from all the tasks it used to
have a connection with prior to returning from the migra-
tion signal handler.  However, this option would pay the
price of establishing the connection without knowing if the
connection will even be used.  This brings connection re-
establishment back to the “on demand” philosophy.

To continue supporting “on demand” TCP connection
establishment, one possibility is to inform all the peer
tasks that they could now establish a TCP connection if
they wanted to.  This option, however, would require that a
message be multicast to all the peer tasks.  The solution
taken in MPVM currently is to do nothing.  That is, a TCP
connection will be established with a peer task only if
Mtask requests for it.  This request will be generated on
the first message Mtask sends to the peer task after the
migration.  This implementation, however, implies that if
the communication between the peer task and Mtask is
always one way from the peer task to Mtask, all the mes-
sages will be routed through the pvmds.  Both options
have advantages and disadvantages.  Which one is better is
debatable.

3.4 Message Delivery on Migration

An important aspect of the MPVM implementation that
has yet to be discussed is how MPVM handles messages
for migrating/migrated tasks.  That is, how do messages
sent to Mtask find their way to the new location of Mtask.
To ensure correct delivery of messages in the presence of
migration,  support for virtual tids, message forwarding,
and message sequencing had to be built into MPVM.

Note that the problem of message delivery really only
applies to messages using indirect routing.  Direct routing
is not a problem since by definition, it uses a point-to-point
connection.  Also, recall that at migration time, direct con-
nections are taken down and messages from other tasks to
the migrating task are automatically routed indirectly
through the pvmds.  The next three sections will therefore
be presented in terms of indirectly routed messages.

3.4.1 Virtual Tids

All tasks in PVM are identified by task identifiers or
tids.  These tids are used to identify the source and destina-

tion of messages.  Tids are formed using an encoding of a
host ID and a task number [8].  The host ID or hid repre-
sents the host where the task is executing while the task
number identifies a particular task on a particular host.

The combination of the host number and the task num-
ber uniquely identifies any task in the entire virtual
machine.  One advantage of this encoding scheme is that it
allows fast routing of messages since the target host of any
message can be determined directly from the destination
tid.  However, recall that the tid of a task is part of the state
information maintained on migration.  That is, a task with
tid T1 will always be referred to as T1 regardless of where
it is actually executing.  The use of the same tid is neces-
sary to make migrations transparent to the application.
Unfortunately, the use of the same tid also implies that
there is no longer any guarantee that the host number
encoded in the tid is the actual host where the task is exe-
cuting.

MPVM gets around this problem by virtualizing tids,
thus making them location transparent.  Virtualizing the
tids is done by maintaining a table of tid-to-host mappings.
Instead of just relying on the host number encoded on the
tid as the search key for the target host, the whole tid is
used.  Note that the same host number and task number
encoding scheme is still used in generating the tids.

Each pvmd in the virtual machine maintains two tid-to-
host mapping tables: a home map and a hint map.  The
home map on host H, for example, contains a list of map-
pings for tasks that were originally started on host H,
regardless of where they are currently executing.  Note
that since these tasks were originally started on host H, the
host numbers in their tids “point” to host H as their home.
The home map on host H is always updated whenever a
task whose home is host H migrates.

Consider the example in figure 6.  In step 1, task T1 is
started in host H1.  This causes a T1→H1 entry to be
added on the home map of H1.  At some later time, step 2,
T1 migrates to host H2.  This migration causes the
T1→H1 home map entry on H1 to be updated to T1→H2,
indicating that T1 is now on H2.  The same goes for step 3
when T1 migrates to H3.  Notice from the figure that when
T1 migrated from H2 to H3, a DM_HOMEUPD CM was
sent from H2, where T1 migrated from, to H1, the home of
T1 (step 4).  This CM informs H1 that task T1 has
migrated to H3, causing H1 to update its home map.  It
was not necessary to have a DM_HOMEUPD CM when
T1 first migrated from H1 to H2 since H1 is already the
home of T1 and the home map can be updated directly.
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With the use of the home map, it is possible to deter-
mine the exact whereabouts of any given task.  For exam-
ple, using figure 6 again, if at some later time task T2 in
host H2 sends a message to T1.  The message is first
routed through the pvmd on H2 (step 5).  The pvmd on H2
determines that the destination for the message is T1 and
sends a DM_HOMEREQ CM to H1, the home host of T1
(step 6).  Recall that the home host is determined from the
host number encoded in the tid of T1.  The pvmd on H1
receives this CM and replies with a DM_HOMEACK CM
containing the T1→H3 mapping (step 7).  The pvmd on
H2 then knows that the message should be sent to H3.

When T1 terminates, the pvmd on host H3 sends a
DM_HOMEDEL CM to the pvmd on H1 indicating that
T1 has terminated.  This CM causes the home map entry
for T1 to be removed.  If at some later time a DM_HOM-
EREQ CM for T1 is received by H1, a DM_HOMEACK
CM containing an error code is sent back to the requesting
pvmd.  This error code would inform the requesting pvmd
that T1 no longer exists and the message for T1 is dis-
carded.

While this scheme works nicely, it is terribly ineffi-
cient.  To improve the performance, a hint map is used.

The hint map caches tid-to-host mappings received from
previous home map requests.  Using a hint map will mini-
mize the need for sending DM_HOMEREQ CMs to only
when there is no local copy of the mapping.  As currently
implemented, the hint map is allocated statically.  This
limits the number of mappings that could be cached.
When the hint map gets full, replacement of entries uses
the least recently used (LRU) policy.  This policy will
throw away the mapping that hasn’t been used for the
longest time.  Examples of such mappings would be those
for tasks that have terminated.  Note that the hint map
could also be updated during task migration.  For example,
when task T1 was migrated from H2 to H3, it’s possible to
update the hint map on H2 with the entry T1→H3 immedi-
ately.  This “aggressive” update of the hint map would
eliminate the need for a DM_HOMEREQ CM in step 5 of
figure 6.  In the same manner, hint map entries could be
added for newly spawned tasks.

3.4.2 Message Forwarding

With the use of home and hint maps, it is possible to
determine the exact location of any task at any time.  How-
ever, in the face of migration, these home and hint maps

Figure 6. Tid virtualization using home maps.  A task’s ‘home’ host is the host where it
was originally started and is identified by the host number encoded in the task’s tid.
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could be left in an inconsistent state.  For example, using
figure 6 again, the home map in H1 won’t reflect the
T1→H3 mapping until it receives the DM_HOMEUPD
CM.  If a DM_HOMEREQ CM arrived just before the
DM_HOMEUPD CM, the DM_HOMEACK CM reply
would contain a T1→H2 mapping which is no longer true.
Also, note that no where in the migration protocol are the
other pvmds (aside from the source pvmd, target pvmd,
and pvmd on the home host) in the virtual machine
informed of the migrated tasks’ new location.  Thus, the
hint maps on these “uninformed” pvmds could contain
old, and now invalid tid-to-host mappings.  The end result
of these invalid home and hint maps is that messages will
be sent to the wrong host.  In this case, the received mes-
sage should be forwarded to the correct host and the
invalid host/hint maps corrected.

Consider the example in figure 7.  Assuming H1 is the
home host of T1, H1 has a home map entry for T1.  In step
1, T1, which is currently in H3 (which means task T1
migrated from H1 to H3, possibly through other hosts)

migrates to H4.  At almost the same time, T2 on H2 sends
a message to T1 (step 2).  If H2 had an out-of-date hint
map, the message would be sent to H3, the previous host
of T1.  The pvmd on H3 will determine that the destination
task T1 is no longer one of its local tasks.  At this point,
there are two possibilities:  either the pvmd on H3 has an
idea of where T1 is (it has a home or hint map entry for
T1) or it doesn’t.

In the case where the pvmd has an idea of where T1 is,
H4 in this case, the pvmd on H3 will send the pvmd that
sent the message a DM_HINTUPD CM containing a
T1→H4 mapping (step 3), and then forward the message
to H4 (step 4).  The DM_HINTUPD CM will cause the
pvmd on H2 to update its hint map so that future messages
for T1 will be sent directly to H4.  Note that the mapping
the pvmd on H3 has need not necessarily be valid.  Such
would be the case if T1 migrated from H4 to some other
host again.  In that case, the message forwarding sequence
will simply repeat.

Figure 7. Message forwarding protocol.  In the first case, the pvmd on H3 has a mapping
(not necessarily valid) for T1.  In the second case, the pvmd on H3 has no mapping for T1.
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The other case to consider is when the pvmd on H3 has
no idea where T1 is currently executing.  This case is pos-
sible if T1 once migrated to H3, causing a T1→H3 hint
map entry to be added on H2, but has since moved to
another host and the T1 mapping in H3 has been removed
from its hint map due to the LRU policy.  Since the pvmd
on H3 doesn’t know of T1’s whereabouts, it sends a
DM_HOMEREQ CM to H1, the home of T1 (step 6).  It
then sends a DM_HINTDEL CM to H2, the source of the
message (step 7).  Eventually, the pvmd on H1 will reply
with a DM_HOMEACK CM to H3 containing the T1→H4
mapping (step 8).  H3 updates its hint map and then for-
wards the message to H4 (step 9).

The DM_HINTDEL CM sent to H2 in step 6 causes the
incorrect T1→H3 hint map entry on H2 to be removed,
forcing H2 to request for T1’s location from H1 on the
next message to T1.  An alternative implementation is for
H3 to wait for the DM_HOMEACK CM from H1 and send
the returned mapping to H2 using a DM_HINTUPD CM.
This method would update the hint map on H2 eliminating
the need for H2 to send a DM_HOMEREQ CM to H1 for
future messages to T1.  The drawback of this method is
that while H3 is waiting for the DM_HOMEACK CM
reply to arrive, the pvmd on H2 may be continuously send-
ing messages to H3, all of which have to be forwarded to
H4.  By sending the DM_HINTDEL CM to H2 immedi-
ately, the pvmd on H2 would be forced to get the true loca-
tion of T1 from H1, allowing the messages to be sent to
H4 directly.

3.4.3 Message Sequencing

A consequence of message forwarding, however, is that
it could break PVM’s message ordering semantics.  Con-
sider the situation in figure 8.  The situation is similar to
the example in figure 7 above except that the message H2
forwarded to H3 (message A in figure 8) takes a long time
to get to H3.  An example of why message A could be
delayed is that H2 on a different network than H1 and H3.
Since H1 and H3 are on the same network, a message
would travel faster from H1 to H3 than from H2 to H3.
The important point here is that the delay, whatever the
reason, caused message A to arrive after message B.  This
behavior is a direct violation of the PVM message passing
semantics since message A was sent before message B.  It
is therefore essential to use some sort of sequencing mech-
anism to ensure proper ordering of messages.

In standard PVM, the pvmds communicate via UDP
sockets for scalability reasons.  UDP transport, however,
has two basic restrictions.  First, a UDP message or data-
gram can only be UDPMTU (UDP Maximum Transmis-
sion Unit) bytes long.  The UDPMTU limit is host
dependent.  This restriction requires messages  larger than
UDPMTU bytes to be broken up into message fragments
or packets.  Note that when considering the effective
UDPMTU between two hosts, the smaller of the two
MTUs is used.  For example, the UDPMTU between H1
and H2 is 4096 but only 2048 for H2 and H3.  The second
restriction is that UDP is unreliable.  That is, datagram

Figure 8. Example where message forwarding breaks message order.  In this
example, messages A and B are sent from T1 but arrive at T2 in the reverse
order, in violation of the PVM message ordering semantics.
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delivery is not guaranteed.  These two restrictions requires
the pvmds to 1) have the ability to fragment and de-frag-
ment messages and 2) support message fragment re-trans-
mission to guarantee  delivery.

Taken in this context, the discussion above regarding
message forwarding really applies to message fragments
rather than whole messages.  Thinking of the example in
figure 8 in these terms (i.e., messages A and B are actually
fragments A and B of one message), it is possible that the
whole message arrives but with its contents out of order.

To address this problem, each message sent from T1 to
T2 is assigned a sequence number based on the number of
bytes already sent from task T1 to T2.  That is, the
sequence number for message N+1 is calculated as

Seq#N+1 = Seq#N + LenN

where Seq#N and Seq#N+1 are the sequence numbers of
packets N and N+1 respectively, LenN is the length of
packet N in bytes, and Seq#0 = 0 and Len0 = 0.

For example, using the UDPMTU values in figure 8
and assuming T2 is still in H2, if the first message T1
sends to T2 is 6000 bytes long. it will be broken into two
fragments with 4096 and 1904 bytes each with sequence
numbers 0 and 4096 respectively.  A second 6000 byte
message from T1 to T2 will again be broken into two frag-
ments of 4096 and 1904 bytes each but will have sequence
numbers 6000 and 10096 this time.

Since each message fragment has a unique sequence
number, it is now possible to re-arrange the fragments
even if they arrive out of order.  Note that even if frag-
ments are further fragmented, correct ordering can still be
maintained.  Fragmentation of message fragments is possi-
ble due to different UDPMTUs between hosts.  Using fig-
ure 8 again, the pvmd on H2 had to forward a message
fragment from H1 to H3.  If the fragment is 4096 bytes
long (UDPMTU between H1 and H2 is 4096), it will have
to be further fragmented into two 2048 byte fragments
since the UDPMTU between H2 and H3 is only 2048.  In
the re-fragmentation process, new sequence numbers are
calculated, using the same equation above, for each of the
fragments.  For example, if the original 4096 byte frag-
ment had a sequence number of S, after re-fragmentation,
the first fragment will have sequence number S and the
second fragment will have sequence number (S + 2048),
where 2048 is the length of the first fragment.

Note that message sequence numbers are based on
point-to-point messages.  That is, the sequence numbers

for messages from T1 to T2 are independent of the
sequence numbers of messages from T1 to any other task.
Since these sequence numbers are based on point-to-point
messages, the assignment of sequence numbers and the re-
ordering of message fragments based on these sequence
numbers is done in the pvmlib.  Also note that since the
pvmds guarantee delivery of message fragments through
re-transmission, the message re-assembly code in the
pvmlib, the code responsible for correctly sequencing
fragments into messages, need not worry about lost pack-
ets.

Another point to mention is with regards to 0-byte mes-
sages (i.e., one produced by a pvm_initsend(); pvm_-
send() code sequence).  Considering how sequence
numbers are calculated, the sequence number of a 0-byte
message N will be the same as the sequence number of
message N+1.  This situation is obviously unacceptable.
Fortunately, what the application sees as a 0-byte message
is actually a message with some header information and 0-
bytes of application data.  The message header contain
information such as the message’s tag and encoding.
Since the message headers are counted as part of the mes-
sage length, there can never be truly 0-byte messages.

While the sequencing mechanism described above
works for point-to-point messages (messages sent by
pvm_send()), it presents a problem for multicast messages
(i.e., messages sent by pvm_mcast()).

Figure 9 illustrates the multicast mechanism in PVM as
task T1 sends a multicast message to tasks T2 through T5.
In step 1, task T1 first sends a list of the target tasks (T2 ..
T5) for the multicast message.  The pvmd on H1 then
determines the hosts where the target tasks are executing.
H2 and H3 in this case.  The pvmd on H1 then sends a
message to H2 and H3 indicating that a multicast message
will be sent to all or some of their local tasks (step 2).  In
the case for H2, the message contains the tids for tasks T2
and T3 indicating that the multicast message will be for
tasks T2 and T3 only (assuming there are other tasks on
host2).  The same goes for H3.  Note that no message is
sent to H4 since T6 is not a recipient of the multicast mes-
sage.  In step 3, task T1 sends the actual message.  A copy
of the message is then sent by the pvmd on H1 to H2 and
H3 (step 4).  The pvmds on H2 and H3, knowing which
local tasks the multicast message is meant for from step 2,
send each of the target tasks a copy of the message.

The advantage of this implementation is that regardless
of the number of target tasks on H2 for example, only one
message will be sent from H1 to H2.  The pvmd on the tar-
get host is responsible for giving each target task a copy of



MPVM: A Migration Transparent Version of PVM 15 of 27

pvmd

T1

pvmd

T6

pvmd

T5

pvmd

T2
T3

T4

1.
 m

ca
st

 (
T

1.
.T

5)

2. mcast (T2, T3)

2. mcast (T4, T5)
3.

 s
en

d 
m

es
sa

ge

4. send message

4. send message

5. give T4 & T5
    a copy

5. give T2 & T3
    a copy

H1

H2

H3

H4

Figure 9. Mutilcast mechanism in PVM.  This example shows the steps involved in
sending a multicast message from T1 to tasks T2 to T5.

the resulting two message fragments would have sequence
numbers 0 and 4096.  Finally on step 5, as the pvmd on H2
gives task T2 a copy of each fragment of the message, it
adds the sequence number for T2 it got from step 2 to the
current sequence number in the fragment.  By updating the
sequence number, task T2 will receive two message frag-
ments with sequence numbers 200 (200 + 0) and 4296
(200 + 4096), which are the sequence numbers of the next
message T2 expects from T1.  Task T3 will receive two
fragments with sequence numbers 300 and 4396 and so on
for tasks T4 and T5.  Note that because the sequence num-
ber for the message fragments is reset to 0, this mechanism
will work even if the multicast message fragments get fur-
ther fragment along the way.

Aside for the modifications described above, more
changes had to be made for the multicast mechanism to
work under MPVM.  Recall that the pvmd on H1 first had
to determine the hosts on which the target tasks were exe-
cuting before it could go to step 2.  For this purpose, the
home and hint maps are used.  It is possible, however, that
some of the target tasks don’t have an entry on the home or
hint maps.  One solution is to send a DM_HOMEREQ CM
for each tasks that doesn’t have an entry, and only go to
step 2 when all the corresponding DM_HOMEACK CMs
are received.  While this solution would work, it has the
tendency to delay messages unnecessarily.  For example, if

the message.  Unfortunately, the fact that only one mes-
sage is sent out by T1 causes some problem with the
sequencing mechanism discussed above.  Conceptually, a
multicast message to N tasks is functionally equivalent to
a point-to-point message to each of the N tasks.  Since the
sequence numbering is based on the number of bytes pre-
viously sent from the sending tasks to the target task, each
of these N point-to-point messages will most likely have
different sequence numbers.  Considering only one mes-
sage is sent from the sending task for a multicast message,
there is a problem on how each of the N target tasks will
receive the message with the appropriate sequence num-
ber.

This problem is resolved by sending the “would be”
sequence number as part of the list of target tasks.  Going
back to the example in figure 9, assume that the correct
sequence number of the next message for each for the four
target tasks T2 to T5 are 200, 300, 400, and 500 respec-
tively.  In step 1, instead of sending just the list of target
tasks, the list of <tid, sequence number> pairs is sent.  The
same approach is used in step 2 where instead of just send-
ing a message containing the tids of T2 and T3 to H2, a
message containing <T2, 200> and <T3, 300> is sent.
When the actual message is sent (steps 3 and 4), the
sequence number of the message is reset to 0.  That is, if
the message is 6000 bytes long and the UDPMTU is 4096,
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the pvmd on H1 had a mapping for all but T5, tasks T2, T3
and T4 will have to wait until the pvmd on H1 gets the
DM_HOMEACK CM for T5.

To avoid unnecessarily delaying the message for all the
tasks, instead of sending a DM_HOMEREQ CM for T5,
the pvmd on H1 will assume that T5 is in its home host,
H3 in this case.  If T5 was actually on H3, then everything
is fine.  If it so happened that T5 was actually on H4, in
step 5, the pvmd on H3 will still update the sequence num-
bers for T5’s copy of the message, but will recognize that
T5 is not executing locally.  This will cause the pvmd on
H3 to execute the message forwarding mechanism
described previously on the copy of the message for T5.
Since H3 is the home node of T5, it knows exactly where
the message should be forwarded from its home map.
Also, recall that the message forwarding mechanism sends
a DM_HINTUPD CM to the source of the message, H1 in
this case.  This CM will cause the pvmd on H1 to update
its hint map so it knows where T5 is located on the next
message send or multicast involving T5.  This is the  same
sequence that would happen if the home or hint map on
the source of the multicast address had an out-of-date
entry for some of the tasks.  Such would be the case if the
pvmd on H1 had an incorrect T2→H3 mapping.  The
only difference being that a DM_HOMEREQ CM might
be generated if H3 has no idea where T2 is located.

The use of sequence numbers for multicast messages
raises an issue with regards to the message ordering
semantics defined by PVM.  As mentioned earlier, PVM
requires that messages from task A to task B should be
received in the same order they were sent.  However, this
condition actually breaks in PVM when messages are sent
using both pvm_mcast() and pvm_send() with direct
routing.  Consider the case when a message is sent from
task A to task B using pvm_mcast() followed by another
message sent via pvm_send() with direct routing.  Since
pvm_mcast() routes messages through the pvmds while
the pvm_send() uses a direct TCP connection with task B,
it is more than likely that the message sent via pvm_-
send() will get to task B first, in violation of the message
ordering semantics.  With the use of sequence numbers for
both point-to-point and multicast messages, the message
ordering semantics can be preserved.  Whether this prop-
erty gives MPVM some advantage over PVM is hard to
say.  However, at the very least, mixing pvm_mcast() and
pvm_send() with direct routing will now generate deter-
ministic application behavior.

3.5 Migrating OS state

OS held state cannot be transferred like the processor
state, the process’ data or stack.  For one thing, since the
migration mechanism is implemented at user level, not all
OS held state can be captured/reconstructed.  An example
of process state that cannot be reconstructed is the process
ID.  Recall that PVM tasks are actually Unix processes.
As such, they have assigned process IDs.  Allocation and
assignment of process IDs to processes is done entirely by
the OS kernel.

Realize that it is only necessary to migrate OS state
information that the process can observe directly.  For
example, OS kernels keep track of the page table entries of
processes.  But since processes are “usually” not con-
cerned about the specifics of these page table entries, on
migration,  the OS kernel on the target machine could be
left alone in deciding how to allocate pages and page table
entries.

The problem in migrating OS state is that the OS state a
process observes in valid only in the context of the com-
puting environment at the time the state was observed.
Changing the computing environment (e.g., the process
migrates from one host to another) would require a map-
ping of the OS state information as viewed by the process
to its equivalent in the new computing environment.  This
mapping or virtualization of OS state can be achieved to
some extent by providing “wrappers” to system calls.

Consider the case of file I/O.  To accommodate file I/O
migration, the pvmlib supplies its own file I/O routines
(e.g., open(), close(), dup(), etc.) which are wrappers for
the actual system calls.  These wrapper functions allows
the pvmlib to maintain a list of the files used by a task.
This list contain information such as the file’s name, file
access mode, file descriptor, etc.  On migration, but prior
to the actual state transfer, for each file in the used files
list, the current file pointer offset is taken and then closed.
Upon restart, each file in the list is re-opened and the cur-
rent file pointer is reset to its position prior to migration.
The pvmlib also makes sure that each re-opened file is
assigned the same file descriptor used before migration.

For file I/O migration to work, as currently imple-
mented, it is necessary that the file be available on the tar-
get host.  For simplicity, a global file system is assumed to
exist (e.g., through NFS).  Ways of getting around this
restriction are currently being investigated.  The current
MPVM pvmlib traps only commonly used file I/O system
calls such as open() and close().  There is currently no
support for fcntl() and ioctl(), for example.
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4 Quantitative Evaluation

This section presents performance results for MPVM.
The first two experiments were designed to measure the
normal case performance (i.e., no migration) of MPVM
against PVM 3.3.4 at the micro-benchmark and applica-
tion level.  The third experiment was designed to test
migration performance.  All experiments that required
timing measurements were done on two idle HP series
9000/720 workstations running HP-UX 9.03 connected
over an idle 10 Mb/sec Ethernet.  Each workstation has a
PA-RISC 1.1 processor and 64 MB main memory.

4.1 Ping

Table 1 shows the results of running a “ping” experi-
ment using PVM and MPVM.  The ping experiment was
set-up to determine the difference between the message
passing times of the two systems.  In this experiment, a
message is sent from one host to another and back.  There
is very little computation done. To take the steady state
performance for each data size, 50 messages of the appro-
priate size are first sent back and forth to “warm-up” the
system.  After which, a timed execution of 1000 ping mes-
sages was done.

As can be seen from table 1, MPVM and PVM only
differ in the order of 10ths of a millisecond.  In general,
however, MPVM is expected to be slower than PVM for
three reasons.  First, there is the additional cost of avoid-
ing potential re-entrancy problems.  Every time task exe-
cution enters/leaves the pvmlib, a flag has to be set/reset.
Second, there is the cost of virtualizing tids.  This cost
only applies for indirectly routed messages.  For every
message sent out through the daemon, a table lookup has
to be done to determine the correct location of the target

task.  The cost is even greater the first time a lookup is
done since a first time lookup would typically result in a
DM_HOMEREQ CM mapping request from the home
node of the destination task.  Lastly, there is the cost of
supporting sequence numbers.  This sequence numbering
cost is linear with the number of fragments of a message.

Notice that even as the message size increases, the per-
centage difference between the performance of PVM and
MPVM decreases despite the fact that the cost of sequence
numbering is linear with the message size (i.e., the larger
the message, the more it will be fragmented).  This result
indicates that as message size increases, the cost data
transfer increasingly dominates the cost of sending a mes-
sage.

It should also be mentioned that in the case of direct
connections between tasks in the same host, the perfor-
mance of PVM is better than that of MPVM.  This perfor-
mance difference is due to PVM’s use of Unix domain
sockets for direct connections between tasks in the same
host.  MPVM does not use Unix domain sockets because it
doesn’t support OOB data which is used for asynchronous
closure of direct connections.  Ways of getting around this
restriction are currently being investigated.

4.2 Gaussian Elimination

The Ping experiment above showed the overhead
MPVM imposes on message passing performance.
Though good for benchmarking, it can hardly qualify as a
real-world application since barely any computation was
done.  To show how MPVM affects the performance of
real-applications, a parallel Gaussian elimination program
was run using both PVM and MPVM for different matrix
sizes.  This experiment only used two machines, each task

Data size
PVM (ms) MPVM (ms)

Indirect Direct Indirect Direct
0 4.788 1.693 4.991 1.990

1024 7.566 4.035 7.760 4.321

2048 9.533 5.432 9.612  5.648

4096 17.751 10.059 18.015 10.493

8192  29.990 18.849 30.024 18.221

16384 53.370 33.694 53.353 33.871

32768 102.478 65.211 102.187 65.574

Table 1: Ping experiment results for PVM and MPVM for
both direct and indirect communication modes. The num-
bers represent the average roundtrip time of a message.
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being responsible for solving half of the matrix.  As can be
seen from Table 2, the overhead imposed by MPVM is
hardly noticeable.

4.3 Migration Cost

In this section, the cost of migrating a task is pre-
sented.  Two measures are defined.  The first is the obtru-

Matrix size PVM (sec) MPVM (sec)

80 x 80 0.448 0.453

300 x 300  3.205  3.205

500 x 500 9.311 9.375

Table 2: Gaussian elimination timing results for PVM and
MPVM.

siveness cost, i.e., the time from when the Spvmd receives
an SM_MIG CM to the time the task is removed from the
machine (i.e., the task exits).  This time represents the
minimum time an owner may have to wait before regain-
ing dedicated access to the machine.  Note that the
machine is not necessarily unusable during this time; it
just means that something else is executing other than the
owners jobs.  The second measure is the migration cost.
This is the time from when the Spvmd receives the
SM_MIG CM to the time the task has restarted on the des-
tination host.  The migration cost is essentially the obtru-
siveness cost plus the restart stage cost.  The first measure
approximates the impact of migration on the owner, the
other on the job itself.  Table 3 and figure 10 show the
obtrusiveness and migration costs for migrating the Gauss-
ian elimination program used in the previous section for
various matrix sizes.

Matrix size Process state
size (bytes)

Obtrusiveness
cost (sec)

Migration cost
(sec)

TCP transfer
time (sec)

0x0 97448 0.139 0.327 0.092

80 x 80 109736 0.257 0.361 0.103

300 x 300 277672 0.363 0.590 0.255

500 x 500 597160 0.683 0.871 0.549

1000 x 1000 2100392 1.993 2.205 1.924

2000 x 2000 8109224 7.512 8.324 7.449

Table 3: Obtrusiveness and migration costs for various matrix sizes.  The process state size indicates the
actual number of bytes transferred at migration time while the TCP transfer time indicates the time spent
in sending the appropriate amount of data through a TCP socket connection.
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Figure 10. Graph of Table 3.  This graph more clearly shows the direct relation-
ship between the state size, the TCP transfer cost, and the migration cost.
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As in the previous experiment, this experiment makes
use of two machines with one task on each machine.  The
timing measurements were taken while migrating one task
on one machine to the other.  The “process state size” indi-
cates the actual number of bytes transferred as measured at
migration time.  This state size includes static and
dynamic data and the stack.  The “TCP transfer time”
shows the time spent just transferring the same amount of
data over a TCP socket connection.  This measure pro-
vides a lower bound for the migration cost.  As can be seen
from the table, the task’s state size is the dominating factor
in the obtrusiveness and the migration cost

While the effect of the migration on the migrating task
can be quantified in terms of the migration cost, the effect
of migrating one task on the whole application cannot be
as easily defined.  In the best case, the migration of one

task may not affect the performance of the application at
all if, for example, the migrated task had the least work to
do or was blocked waiting for the other tasks anyway.  In
the worst case, the entire application could be stalled by as
much as the migration cost if, for example, migration
occurred just before a global synchronization point (e.g., a
barrier), effectively stalling all the tasks in the application
until the migrated task resumes execution.

A tightly-coupled application is likely to be affected
more than a loosely-coupled one.  Take the case of a 5-
node Gaussian elimination application (figure 11).  This
application is considered to be tightly-coupled due to the
large number of messages sent between its tasks.  The
CPU% axis represents the average % of CPU used by each
task on each host since the application started.
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Figure 11.  A 5-node parallel Gaussian elimination application.  This figure shows the effect of
migration on a tightly-coupled application.  The CPU% represents the average % of CPU used
by the application since it started.  CPU% readings were taken every 0.5 second of the applica-
tion run.  The numbers beside the host names (upper left-hand corner) represent the speed
index of each machine for this application.



20 of 27 MPVM: A Migration Transparent Version of PVM

The machines used in this experiments have varied pro-
cessing speed.  The speed index of each machine is shown
beside the host name in the figure.  The speed index was
taken using a 1-node version of the Gaussian elimination
program on each of the machines.  This difference in pro-
cessing speed accounts for the difference in CPU% usage
on the different hosts.  This result is due to the tight-cou-
pling  where the tasks on the faster machines are being
limited by the task on the slowest machine.  As expected,
the CPU% of the tasks originally running on both host2
and host4 decreased after the migrations.  This result is
due to the processor sharing that occurred when the hosts
were loaded with two tasks.  Notice, however, that the
CPU% of the task on host5 also decreased even though it
was not involved in the migration.  This again can be
attributed to the tight-coupling of the application.  In this

particular case, host4 being the slower of the two doubly-
loaded machines, becomes the bottleneck.

Compare the results in figure 11 with a similar experi-
ment shown in figure 12.  Instead of using the parallel
Gaussian elimination program, a parallel TSP solver is
used.  Note that the speed index for this application is dif-
ferent from that of the parallel Gaussian elimination pro-
gram. The parallel TSP solver is a loosely-coupled
application where each task does its own local search and
only occasionally exchanges information with the other
tasks.  The first thing to notice is that the CPU% of all the
tasks rise at the same rate on all the hosts.  This is due to
the loose-coupling of the application, allowing each task
to continue executing without being limited by the other
tasks regardless of whether they are executing on a fast or
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Figure 12. 5-node parallel TSP solver.  This figure shows the effect of migrating a task of a
loosely-coupled application.  Note that host3 is actually a 2 processor machine which is why the
CPU% of the original task running on it is not affected by the migrated task unlike in host5.  Also
note that despite the over-loading of processors (host5), the CPU% of the task on host2 contin-
ues to increase
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slow machine.  The second thing to notice is that the
CPU% of the task originally running on host3 is not
affected by the task that just migrated to it.  This is
because host3 is actually a two processor machine, and in
this case, each processor runs one task.  Compare this
result with that of host5 where both tasks are sharing one
processor.  As expected, the CPU% of the original task
would decrease due to the sharing.  The last thing to notice
in this figure is that unlike in the parallel Gaussian elimi-
nation program where the CPU% of the task that was exe-
cuting all by itself decreased (in host5), the CPU% of the
equivalent task in the parallel TSP solver, the task on
host2, didn’t decrease.  In fact, the CPU% continued to
increase, indicating that it is not affected by the doubling-
up of tasks on host5.  This result can be attributed to the
loose-coupling of the application.

The significant thing these two experiments show is
that the migration protocol in MPVM, by itself, does not
impact the performance of tasks on non-involved nodes.
The experiments also shows that task placement is another
important parameter to be considered when trying to eval-
uate the effect of migration on the whole application.  This
observation, however, is much more directed towards
scheduling policies, rather than the migration mechanism
itself.

5 Related Work

Process migration implementations can be broadly cat-
egorized as either supported at the system-level or at the
user-level.  In system-level supported implementations,
the OS kernel is involved in the migration.  Notable exam-
ples of such implementation are present in Charlotte [9], V
[10], Mosix [11, 12], Sprite [13, 14], and Mach [15].
User-level supported process migration implementations,
on the other hand, do not require services other than what
the OS ordinarily provides through its system call inter-
face.  Condor [4, 6, 16] is an example of such an imple-
mentation.  MPVM fits into this category.

Most of the literature on these systems focus on process
migration mechanism efficiency.  Efficiency is defined in
terms of application “freeze time” and state transfer cost.
Freeze time is the time during which the process is not
executing.  State transfer cost on the other hand is the cost
of transferring the process’ state.  The state transfer cost is
often the limiting factor in migration speed [17].  This
observation is in accordance with the experimental results
shown  in the previous section.  Two other categorizations
of these implementations are in terms of transparency and
residual dependency.  Transparency refers to how much,

or how little, the process is affected by the migration.  Of
particular interest is how IPC connections are maintained
with other processes.  Residual dependency refers to how
much or how little a migrated process depends on its pre-
vious host or hosts.

In Charlotte,  the entire virtual address space of a pro-
cess is transferred at migration time.  MPVM uses the
same approach.  While this approach is simple, it has
drawbacks.  First, the process is “frozen” for the entire
duration of the transfer.  Second, the entire virtual address
space is transferred even if not all pages may be used by
the process.  For IPC connections, message senders are
informed of the new location of the migrated process.  No
explicit message flushing is necessary due to kernel pro-
vided message caching and retransmission mechanisms.
The V kernel addresses the problem of prolonged freeze
time by using a technique called “pre-copying”.  In
essence, while the virtual address space is being trans-
ferred, the process is allowed to continue executing.  Once
the transfer is complete, the process is stopped, and the
memory pages that were touched by the process after the
first transfer started are re-copied.  The second-stage trans-
fer hopefully is much shorter thus minimizing the freeze
time of the process.  This technique has been shown to
reduce the freeze time significantly though it has to do
more work since some pages have to be copied more than
once.

While MPVM could benefit well from pre-copying this
technique requires access to page table entries - a require-
ment that cannot be easily satisfied at user-level.  As for
IPC, the V kernel allows messages to be dropped, while
the process is frozen.  Once the process is un-frozen, the
senders are informed of its new location and must re-send
the messages.  MPVM differs in this regard since MPVM
doesn’t drop messages.  Rather, messages are forwarded to
the new destination of a migrating task.  If the message
arrives at the destination and the migrating task hasn’t
restarted yet, the pvmds simply buffer these messages
until the migrating task is ready to receive them.

Sprite takes a different approach by making use of a
network-wide file system.  Since Sprite uses the network
file system as a backing store for virtual memory, most  of
the memory pages used by a process are already saved on
the network file system.  Hence, at migration time, all
Sprite has to do is to flush all the dirty pages of the migrat-
ing process and start-up a process on the destination host
whose pages are set-up to be demand-paged from the net-
work file system.  Mosix uses a slightly different approach
for minimizing freeze time by sending all the dirtied pages
of the migrating process directly to the target host but sets-
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up the other pages to be demand paged from the execut-
able file (e.g., the text) or zero-filled.  Again, while the
techniques used by Sprite and Mosix to minimize freeze
time could be used in MPVM, these techniques require
access to not only the OS’ page table entries, but also the
systems swap area (backing store).  As for IPC migration
transparency, Sprite, Mosix and MPVM use different
approaches.  Sprite uses the shared file system as the
medium for inter-process communication.  The file system
essentially provides a “well-known” point of communica-
tion regardless of where a process is actually executing.  In
Mosix, transparency is easily achieved since most of the
process state information is location independent by
design.  The obvious disadvantage of MPVM over these
two systems is that MPVM since MPVM is implemented
at user-level, its migration mechanism has to contend with
the peculiarities of the OS it is running on as opposed to
re-designing the OS to easily accommodate process migra-
tion.

Mach uses the concept of Copy-On-Reference (COR)
initially used in Accent [17], the precursor of Mach.  COR
semantics allows a migrating process or task (in Mach par-
lance) to be started immediately at the target node.  When
the new task references a page that hasn’t been transferred,
a page fault occurs and the page fault handler arranges for
the page to be sent from the source host (i.e., demand pag-
ing from the source’s memory).  Compared to MPVM’s
migration mechanism, this method has the advantage of
minimal freeze time and minimal state transfer cost since
only those pages actually used by the task are transferred.
However, it suffers from residual dependency, due to the
fact that resources on the source host cannot be released
until either everything has been sent or the task terminates.
This residual dependency also makes the process suscepti-
ble to failure since if any of the hosts on which the process
depends on fails, the process could also fail.  While
MPVM’s migration performance may be dwarfed by
Mach’s use of COR, MPVM doesn’t suffer from residual
dependencies.  To address the transparency problem for
IPC connections, a version of Mach that provides in-ker-
nel IPC and DSM called Mach NORMA was used.  This
method of addressing the IPC transparency issue is very
similar to that of MPVM since both systems provide a
layer of communication end-point virtualization: the in-
kernel IPC in Mach and the message forwarding and task-
to-host mappings in MPVM.

On the other side of the implementation domain are
those systems implemented at user-level, just like MPVM.
The most notable of user-level process migration imple-
mentations is Condor.  Condor was initially designed for
sequential programs.  Recently, however, support for PVM

applications was added but only as far as scheduling and
process suspension/resumption [18].  There is currently no
support of migration of PVM applications.  The main dif-
ference between Condor and MPVM is that Condor uses a
checkpoint/roll-back mechanism to achieve migration.
This design decision was made to minimize obtrusiveness.
The Condor system, from time to time, takes a snap shot
of the state of the programs it is running.  This is done by
taking a core dump of the process and merging it with the
executable file of the process to produce a checkpoint file.
At migration time, the currently running process is imme-
diately terminated.  It is later resumed on another host,
based on the latest checkpoint file.  In addition to being
minimally obtrusive, this method has the advantage of
fault-tolerance in that if something goes wrong (e.g., the
system crashes), it is still possible to restart the program
from the last checkpoint file.  Fault-tolerance is something
MPVM currently doesn’t support.  Restarting processes
based on roll-backs, however, requires idempotent file
operations, a problem MPVM does not suffer from since
the state is restarted exactly at the point where it was inter-
rupted.  Using roll-backs is particularly troublesome for a
parallel/distributed application since it would require syn-
chronous checkpointing of all the tasks or some form of
message logging mechanism.  MPVM also has the addi-
tional advantage of requiring almost no disk I/O.  Disk I/O
will only occur when transferring pages of the migrating
task that have been paged out.  Aside from the speed fac-
tor, disk space consumption is also avoided.  It is not
uncommon to see core dumps in the megabyte range.

Two systems closely related to MPVM are UPVM and
DynamicPVM.  UPVM [19], another research effort here
at OGI, addresses the problem of the course-grained distri-
bution granularity present in MPVM.  MPVM migrates
tasks at the level of whole processes.  UPVM introduces
the concept of User Level Processes (ULPs) which are
thread-like entities that are independently migratable.
Since ULPs are smaller “processing” entities than pro-
cesses, UPVM has the potential for achieving better load
balance.  As currently implemented, UPVM has two main
restrictions.  First, it only runs SPMD programs.  Second,
since all the ULPs share the address space of a single Unix
process, there is a limit on the number of ULPs the appli-
cation can have depending on the size of the virtual
address space of the process and the memory requirements
of each ULP.  DynamicPVM [20] is an extension to PVM
to support process migration, very much like MPVM, but
relies on Condor-style checkpointing.  A more detailed
comparison of both systems is unfortunately unavailable at
this time.
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6 Discussion and alternative implemen-
tations

In this section, more qualitative aspects of the design of
MPVM, its problems and alternative implementations are
discussed.

6.1 PVM Source Code Compatibility

Recall that one of the goals of MPVM is to be source
code compatible with PVM.  To this end, MPVM has
maintained the same user-interface, their parameters and
semantics, as defined by PVM.  The pvm_sendsig() rou-
tine has to be specially mentioned however.  Since MPVM
does not currently support migration of user-installed sig-
nal handlers, the use of pvm_sendsig() may behave differ-
ently for a migrated task that uses signal handlers.

A closely related aspect that affects source code com-
patibility is the use of a GS.  When a GS is used, some of
the PVM user-interface calls, pvm_spawn() for example,
are forwarded the GS.  To maintain full compatibility, the
GS should respond to these requests in a PVM compatible
way.  What the GS does with the requests it receives is
outside the control of MPVM.

6.2 Portability

Another goal of MPVM is that of portability.  This was
the motivating factor for choosing a user-level implemen-
tation.  MPVM was first implemented on HP-PA worksta-
tions running HP-UX 9.03.  It has since been ported onto
SunOS 4.1.3, DEC  OSF/1 V1.3, and AIX 3 rel 2.

Although machine dependence of the migration mecha-
nism is unavoidable, the dependence was limited by
implementing the migration mechanism using signals,
sockets, the setjmp()/longjmp() function, etc., all of
which are available on most Unix flavors.  Also, no assem-
bly language was used.  Everything is written using “C”
code.

As long as a process can determine the extents of its
data and stack segments at run-time, porting the migration
code should not be difficult.  Consider the difference
between the HP-UX and SunOS versions of MPVM for
example.  For HP-UX, the following macros are defined

#define STACK_TOP ((char *) &stk_var)
#define STACK_BASE ((char *) USRSTACK)
#define DATA_TOP ((char *) sbrk (0))
#define DATA_BASE ((char *) &__data_start)

For SunOS, the same macros are defined as

#define STACK_TOP ((char *) USRSTACK)
#define STACK_BASE ((char *) &stk_var)
#define DATA_TOP ((char *) sbrk (0))
#define DATA_BASE ((char *) &environ)

USRSTACK is a system defined macro which is the
absolute address of the beginning of the stack. Stk_var is a
local variable defined in a function where these macro def-
initions are used. &stk_var thus provides the process an
approximate top of stack address which is always more
than what is needed to restore, but only as much as the
amount of stack space used by a stack frame on a function
call.  The __data_start and environ variables define the
start of the data space under HP-UX and SunOS respec-
tively.  The __data_start variable is documented in HP-
UX.  The environ variable on the other hand is not docu-
mented but could be determined by using the nm Unix
command.  And lastly, sbrk() is a system call, which when
given the parameter 0, returns the address of the top of the
heap.  Thus, when porting to a new system, only the equiv-
alents of these four definitions need to be determined.  In
most machines, the usage of sbrk() and &stk_var should
be portable and since USRSTACK is usually defined by the
system, this leaves only the value of DATA_BASE to be
determined.

Unfortunately, there are some systems that don’t have
the USRSTACK macro defined.  In this case, the easiest
thing to do is to let the process figure out the start-of-stack
address at run-time.  One way of doing it is to get the
address of a local variable declared in the pvmlib’s main()
and “round” that address to the next higher or lower page
boundary.  Rounding up or down of the address depends
on whether the stack grows downward or upward respec-
tively.  The resulting address is the start-of-stack address.
While this work around is totally portable, it would fail if
the local variable was not allocated on the first stack page.
This situation is possible, for example, if enough com-
mand line arguments to fill-up the first page of the stack
are passed to the process.

Other potential problems are usually caused by system
interface incompatibility.  For example, some systems use
the sigvec() interface to install signal handlers while others
use sigvector().

There are special cases however that would require
more in-depth investigation.  For example, the HP-PA
workstations use space registers that contain the addresses
of a process’ text, data, and stack spaces which are guaran-
teed to be constant for the lifetime of the process.  With
migration however, these addresses are bound to change,
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and would have to be explicitly updated to the new
addresses.  Fortunately, the signalling facility in HP-UX
(as well as in other OSs) provides a third parameter to the
signal handler called the signal context.  This signal con-
text contains the processor state that was saved when the
signal was invoked.  Using the signal context, the values
of space registers can be updated before returning from the
signal handler.  Another example of this special case is
how well the longjmp() code interacts with the use of sig-
nal handlers that use a temporary stack.  Such was the case
in the OSF/1 V1.3 port.  The longjmp() code had safety-
checks that detected an error when used with a temporary
stack when in fact there is none.  Fortunately, the system
also provides a lower level _longjmp() function that is
essentially a longjmp() without the error checking.

6.3 Transparency

The decision to implement migration at user-level for
the sake of portability unfortunately had a negative impact
on MPVM’s capacity to be truly migration transparent.
MPVM can only guarantee transparency for PVM inter-
face calls and some file I/O system calls.  Again, there is
the assumption that a global-file system is used.

By implementing the migration at user-level, state
information managed by the OS kernel such as process
IDs and pending signals cannot be automatically preserved
on migration.  Additional transparency problems appear if
the task directly uses Unix facilities that depend on the
location of the task.  Examples of such facilities are shared
memory, pipes, semaphores, sockets, and shared libraries.

When developing applications of MPVM, special atten-
tion has to be given to shared libraries since most compil-
ers/linkers/bundled libraries nowadays are configured to
use shared libraries when available.  The developer should
explicitly create executable files that are statically linked.
This requirement is usually satisfied through some com-
piler or linker option.  Also, recall that the -Dmain=Main
C compiler flag should also be set.

A possible solution to address this transparency issue in
user-level implementations is to provide wrapper func-
tions just like those used for file I/O in section 3.5 for all
system calls.  These wrapper functions would serve as a
layer of indirection between the process and OS effec-
tively virtualizing the state of the OS as viewed by the pro-
cess.

6.4 Heterogeneity support

MPVM supports heterogeneity at the same level as
PVM in that processes can be started-up on both homoge-
neous and heterogeneous architectures.  However, migra-
tion can only occur within homogeneous machine pools.
For example, given ten machines (five Suns and five HPs),
a task can be started on each machine.  A  task on an HP
machine however can only migrate to any of the four other
HP machines.

The difficulty in supporting heterogenous migration is
that process state on heterogenous machines is represented
differently.  Heterogeneity can come in the form of differ-
ent processors and instruction sets, different OSs, different
memory management units, etc.  Translation of a process’
state as captured on one machine to one of a different
architecture is not easy, though there is some work being
done that addresses this problem [21].

6.5 Scalability

Recall that the migration protocol generally only
involves the migrating task, the source pvmd, the destina-
tion pvmd, and the home pvmd of the migrating task.  This
approach implies that regardless of the number of tasks on
the system, the operations required to migrate a task
remain the same.  The involvement of other tasks would
only depend on whether they have TCP connections with
the migrating task that have to be closed.  Other than that,
all other tasks will continue executing as they normally
would and will only get affected by migration if they
require a message from the migrating task (i.e., application
level synchronization).  Also, note that the migration of
one task is totally independent of the migration of another.
This “independence” property of the migration protocol
allows multiple simultaneous migrations to occur.  For
these reasons, the migration protocol in MPVM could
claim to be scalable in 1) the number of nodes, and 2) the
instability of the environment.

A factor that negatively affects the migration protocol’s
scalability, however, is the assumption of the existence of
a global file system.  MPVM currently relies on a global
file system in two ways.  First, to avoid moving the
migrating process’ text, it assumes the executable file of
the migrating process is available on the destination
machine.  Second, the current support for migration trans-
parent file I/O assumes that files available on the source
machine are also available on the destination machine.
Both of these assumptions will only be always true under a
global file system.  While such global file systems already
exist, the reality is that such file systems are not yet com-
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mon place, though it is certainly possible to “simulate”
one via NFS, for example.

6.6 Performance

As has been concluded by other studies and also from
the task migration cost measurements in section 4, the per-
formance of the migration mechanism is largely dependent
on the cost of transferring the process’ virtual address
space.  An optimization already done was not to use
checkpoint-style migration.  The initial implementation of
MPVM used a Condor-style mechanism where core
dumps were taken and a checkpoint file was generated by
merging data from the core file and original executable
file.  By moving to direct state transfer through a TCP con-
nection, however, the migration speed was increased
approximately 10x for processes which use lots of mem-
ory.

The current implementation of MPVM is very much
the same as that of Charlotte.  That is, the entire virtual
address space (data and stack at least) is transferred at
migration time.  As mentioned above, this has two draw-
backs.  The first is prolonged freeze time and the second is
possible waste of work by transferring all the pages in the
virtual address space even though not all may be used.

Unfortunately, current OSs don’t leave much of a
choice as far as user-level implementations are concerned.
The solutions presented by systems such as V and Mach
rely on virtual memory functions such as trapping page
faults, checking for dirty pages, etc.  These functions,
however, are not generally available at user-level.  Though
there is work being done to provide user-level virtual
memory management [22, 23, 24], until such functionality
becomes widely available, portable user-level process
migration implementations cannot make use of methods
available to system-level implementations

7 Conclusion

MPVM is an extension to PVM that provides for trans-
parent process migration.  Such a facility allows tasks to
be scheduled on a machine and then later moved to
another if so desired.  This ability to move tasks makes it
possible to use idle cycles on available machines and at
the same time respect ownership of those machines.  As is,
existing PVM applications can be used under MPVM with
little modification.  Migration is transparent to the applica-
tion developer as far as the PVM interface is concerned.
File I/O migration is also supported to some extent.  Ver-
sions of MPVM currently exist for HP-UX 9.03,  SunOS

4.1.3, DEC OSF/1 V1.3, and AIX 3 rel 2.  Micro-bench-
marks show that message-passing in MPVM is just
slightly slower than that of PVM.  However, tests with
real-world applications such as the Gaussian elimination
program where some amount of computation being done
show that this difference in latency is barely noticeable.

To ensure that task migration doesn’t affect the correct-
ness of the application, a strict migration protocol is used.
The protocol ensures that messages are not lost and are
received in the correct order.  The design of the protocol is
scalable such that the migration of a task is not affected by
the number of tasks in the system and multiple simulta-
neous migrations can occur.  The current limitation of the
protocol is the assumption of the use of a global file sys-
tem.

Measurements of  migration costs show that the domi-
nant factor in the migration time is the transfer of the pro-
cess’ virtual address space through the network.  This
bottleneck has been addressed by system-level process
migration implementations.  Unfortunately for user-level
implementations, unless the OS provides user-level mem-
ory management functionality, it would seem that nothing
else can done to improve the migration performance.

Though the migration mechanism requires processes to
be frozen for some time, the important thing to realize is
that this very same mechanism allows PVM applications
access to machines they couldn’t have used otherwise.  It
is now possible to have long-running applications execute
on a more powerful virtual machine owned by someone
else without worrying about getting in the way of the
owner.  Also, machine owners will likely allow others to
use of their machines knowing they will regain dedicated
access whenever they want it.  Thus, despite the cost of
migration, the ability to migrate could lead to large gains
in overall performance.

As for future work, a lot of things still have to be done
to improve migration transparency: non-reliance on a glo-
bal file system, support for migrating user-installed signal
handlers, use of Unix domain sockets for direct communi-
cation between tasks on the same host, etc.  Support for
migrating applications using X-windows will also be stud-
ied.  Another aspect being considered is the support for
fault-tolerance with the use of checkpointing.  More long-
term goals for MPVM are integration with a global sched-
uler that would make it convenient to experiment with var-
ious scheduling policies.  Integration with existing utilities
such as batch schedulers (Condor and DQS [25]), tools
(Ptools [26]), profilers and debuggers (Xpvm [27]) etc. is



26 of 27 MPVM: A Migration Transparent Version of PVM

also be being considered.  All this work is targeted for the
next generation PVM system.
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