
A revised version of this paper appears in SOSP���� Copper Mountain Resort� CO� December �����

Dream and Reality�

Incremental Specialization in a Commercial Operating System�

Andrew Black� Charles Consel� Calton Pu� Jonathan Walpole�

Crispin Cowan� Tito Autrey� Jon Inouye� Lakshmi Kethana and Ke Zhang

Technical Report ������

Department of Computer Science and Engineering

Oregon Graduate Institute of Science � Technology

�synthetix�request�cse�ogi�edu�

March �	� ����

Abstract

Conventional operating system code is written to deal with all possible system states� and
performs considerable interpretation to determine the current system state before taking action�
A consequence of this approach is that kernel calls which perform little actual work take a
long time to execute� To address this problem� we use specialized operating system code that
reduces interpretation� but still behaves correctly in the fully general case� We show that
specialized operating system code can be generated and bound incrementally as the information
on which it depends becomes available� We extend our specialization techniques to include the
notion of optimistic incremental specialization� a technique for generating specialized kernel code
optimistically for system states that are likely� but not certain� to occur� The ideas outlined in
this paper allow the conventional kernel design tenet of �optimizing for the common case� to
be extended to the domain of adaptive operating systems� We also show that aggressive use
of specialization can produce in�kernel implementations of operating system functionality with
performance comparable to user�level implementations�

We demonstrate that these ideas are applicable in real�world operating systems by describing
a re�implementation of the HP�UX �le system� Our specialized read system call reduces the
cost of a single byte read by 	
�� and an � KB read by 

�� while preserving the semantics of
the HP�UX read call� By relaxing the semantics of the HP�UX read we were able to cut the
cost of a single byte read system call by more than an order of magnitude�

�This research is partially supported by ARPA grant N��������������� and grants from the Hewlett�Packard
Company	

�



� Introduction

Much of the complexity in conventional operating system code arises from the requirement to
handle all possible system states� A consequence of this requirement is that operating system code
tends to be �generic�� performing extensive interpretation and checking of the current environment
before taking action� One of the lessons of the Synthesis operating system ���� is that signi	cant
gains in e
ciency can be made by replacing this generic code with specialized code� The specialized
code performs correctly only in a restricted environment� but it is chosen so that this restricted
environment is the common case�
By way of example� consider a simpli	ed Unix File System interface in which open takes a path

name and returns an �open 	le� object� The operations on that object include read� write� close�
and seek� The method code for read and write can be specialized� at open time� to read and
write that particular 	le� because at that time the system knows� among other things� which 	le
is being read� which process is doing the reading� the 	le type� the 	le system block size� whether
the inode is in memory� and if so� its address� etc� Thus� a lot of the interpretation of 	le system
data structures that would otherwise have to go on at every read can be done once at open time�
Performing this interpretation at open time is a good idea if read is more common than open� and
in our experience with specializing the Unix 	le system� loses only if the 	le is opened for read and
then never read�
Through extensive use of this kind of specialization Synthesis achieved improvement in kernel

call performance ranging from a factor of � to a factor of �� ���� for a subset of the Unix system
call interface� However� the performance improvements due directly to code specialization were
not separated from the gains due to other factors� including the design and implementation of a
new kernel in assembly language� and the extensive use of other new techniques such as lock
free
synchronization and software feedback�
The work described in this paper examines the bene	ts of specialization more directly� in the

context of a commercial Unix operating system �HP
UX� ��� and the C programming language�
The experiments described here focus on the specialization of the read system call� which retains
the standard Unix semantics� We further extend the work done in Synthesis ���� by showing how
specialization can be done incrementally and optimistically�
The remainder of the paper is organized as follows� Section � elaborates on the notion of

specialization� and de	nes incremental and optimistic specialization� Section � describes the appli

cation of specialization to the HP
UX read system call� Section � analyses the performance of our
implementation� Section � compares the dream with reality and discusses the key areas for future
research� Related work is discussed in section �� Section � concludes the paper�

� What is Specialization�

Specialization has its conceptual roots in the 	eld of partial evaluation �PE� ��� ���� In general� PE
takes a program and a list of bindings for some �but not all� of the free variables� and produces a
restricted program in which the values for those variables are referenced directly� as constants� PE
then does aggressive constant folding and propagation� and dead code elimination� Traditionally�
PE has been performed o�
line in a single step�
In the read example of Section �� if the read code is partially evaluated with the invariant

that the open 	le variable is bound to a particular 	le� then all of the data structure analysis to
determine whether the 	le is local or remote� the device on which it resides� its block size� etc� can
be done once at PE time� rather than repeatedly at read time� The fact that the speci	c open

�



	le object becomes known only at runtime �during open� means that the PE must be performed
on
line�
Given a list of invariants� which may be learned either statically or at run
time� a combination of

on
line and o�
line PE should be capable of generating the required specialized code� For example�
the Synthesis kernel ���� performed the �conceptual� PE step just once� at runtime during open� It is
in principle possible to apply the on
line partial evaluator again at every point where new invariants
become known �i�e�� some or all of the points at which more information becomes available about
the bindings that the program contains�� We call this repeated application of an on
line partial
evaluator incremental specialization ����
The discussion so far has considered generating specialized code only on the basis of known

invariants� i�e�� bindings that are known to be constant� In an operating system� there are many
things that are likely to be constant for long periods of time� but may occasionally vary� For
example� it is likely that 	les will not be shared concurrently� and that reads to a particular 	le
will be sequential� We call these assumptions quasi�invariants� If specialized code is generated�
and used� on the assumption that quasi
invariants hold most of the time� then performance should
improve� However� the system must correctly handle the cases where the quasi
invariants do not
hold�
Correctness can be preserved by guarding every place where quasi
invariants may become false�

For example� suppose that specialized read code is generated based on the quasi
invariant �no con

current sharing�� A guard placed in the open system call could be used to detect other attempts
to open the same 	le concurrently� If the guard is triggered� the read routine must be �unspe

cialized�� either to the completely generic read routine or� more accurately� to another specialized
version that still capitalizes on the other invariants and quasi
invariants that remain valid� We
call the process of replacing one version of a routine by another �in a di�erent stage of specializa

tion� replugging� We refer to the overall process of specializing based on quasi
invariants optimistic

specialization� Because it may become necessary to replug dynamically� optimistic specialization
requires incremental specialization�
If the optimistic assumptions about a program�s behavior are correct� the specialized code will

function correctly� If one or more of the assumptions become false� the specialized code will break�
and it should be replugged� This transformation will be a win if specialized code is executed many
times� i�e�� if the savings that accrue from the optimistic assumption being right� weighted by the
probability that it is right� exceed the additional costs of the replugging step� weighted by the
probability that it is necessary �see Section � for details��
The discussion so far has described incremental and optimistic specialization as forms of on
line

PE� However� in the operating system context� the full cost of code generation must not be incurred
at runtime� The cost of runtime code generation can be avoided by generating code templates

statically and optimistically at compile time� At kernel call invocation time� the templates are
simply 	lled in and bound appropriately�

� Specializing HP�UX read

To explore the real
world applicability of the techniques outlined above� we applied incremental
and optimistic specialization to the HP
UX ���� read system call� read was chosen as a test case
because it is a frequently used and well
understood piece of code and is representative of many other
Unix system calls� The HP
UX implementation of read is also representative of many other Unix
implementations� Therefore� we expect our results to be applicable to other Unix
like systems�

�



��� Overview of the HP�UX read Implementation

To understand the nature of the savings involved in our specialized read implementation it is 	rst
necessary to understand the basic operations involved in a conventional Unix read implementation�
Assuming that the read is from a normal 	le and that its data is in the bu�er cache� the basic steps
are as follows �����

�� System call startup� privileged promotion� switch to kernel stack� and update user structure�

�� Identify the 	le and 	le system type� translate the 	le descriptor number into a 	le descriptor�
then into a vnode number� and 	nally into an inode number�

�� Lock the inode�

�� Identify the block� translate the 	le o�set value into a logical �	le� block number� and then
translate the logical block number into a physical �disk� block number�

�� Find the virtual address of the data� 	nd the block in the bu�er cache containing the desired
physical block and calculate the virtual address of the data from the 	le o�set�

�� Data transfer� Copy necessary bytes from the bu�er cache block to the user�s bu�er�

�� Process another block�� compare the total number of bytes copied to the number of bytes
requested� goto step � if more bytes are needed�

�� Unlock the inode�

�� Update the 	le o�set� lock 	le table� update 	le o�set� and unlock the 	le table�

��� System call cleanup� update kernel pro	le information� switch back to user stack� privilege
demotion�

The above tasks can be categorized as either interpretation� traversal� locking� or work� In

terpretation involves activities such as conditional and case statement execution� and examining
parameters and other system state variables to derive a particular value� Traversal is basically a
matter of dereferencing and includes function calling and data structure searching� Locking in

cludes all synchronization
related activities� Work is the fundamental task of the call� In the case
of the read� the only work is to copy the desired data from the kernel bu�ers to the user�s bu�er�
Ideally� all of the tasks performed by a system call should be in the work category� Unfortunately�

in the case of read steps �� �� �� �� �� and �� consist mostly of interpretation and traversal� and
steps �� �� and most of � are locking� Only step � and a small part of � can be categorized as work�

��� Invariants and Quasi�Invariants for Specialization

Our specialized version of read� called is read� is specialized according to the invariants and
quasi
invariants listed in table �� Only fs constant is a true invariant� the remainder are quasi

invariants�
The fs constant invariant states that 	le system constants such as the 	le type� 	le system

type� and block size do not change once the 	le has been opened� This invariant is known to hold
because of Unix 	le system semantics� Based on this invariant� is read can avoid the traversal
costs involved in step � above� Our is read implementation is specialized� at open time� for regular
	les residing on a local 	le system with a block size of � KB� It is important to realize that the
is read code is enabled� at open time� for the speci	c 	le being opened� Reading any other kind
of 	le requires the use of the standard HP
UX read�
It is also important to note that the is read path is specialized for the speci	c process per


forming the open� That is� we assume that the only process executing the is read code will be
the one that performed the open that generated it� The major advantage of this approach is that

�



Table �� Invariants

�Quasi
�Invariant Description Savings

fs constant Invariant 	le system
parameters�

Avoids step ��

no fp share No 	le pointer sharing� Avoids most of step � and allows
caching of 	le o�set in 	le descriptor�

no holes No holes in 	le� Avoids checking for empty block
pointers in inode structure�

no inode share No inode sharing� Avoids steps � and ��

no user locks No user
level locks� Avoids having to check for user
level
locks�

read only No writers� Allows optimized end of 	le check�

sequential access Calls to is read inherit 	le
o�set from previous is read

calls

For small reads� avoids steps �� �� �� ��
�� �� ��

a private per
process per
	le read call has well
de	ned access semantics� reads are sequential by
default�
Specializations based on the quasi
invariant sequential access can have huge performance

gains� Consider a sequence of small �say � byte� reads by the same process to the same 	le� The
	rst read performs the interpretation� traversal and locking necessary to locate the the kernel
virtual address of the data it needs to copy� At this stage it can specialize the next read to simply
continue copying from the next virtual address� avoiding the need for any of the steps �� �� �� �� �� ��
and �� This specialization is predicated not only on the sequential access and no fp share

quasi
invariants� but also on other quasi
invariants such as the assumption that the next read won�t
cross a bu�er boundary� and the bu�er cache replacement code won�t have changed the data that
resides at that virtual memory address� The next section shows how these assumptions can be
guarded�
The no holes quasi
invariant is also related to the specializations described above� Contiguous

sequential reading can be specialized down to contiguous byte
copying only for 	les that don�t
contain holes� since hole traversal requires the interpretation of empty block pointers in the inode�
The no inode share and no fp share quasi
invariants allow exclusive access to the 	le to be

assumed� This assumption allows the specialized read code to avoid locking the inode and 	le table
in steps �� �� and �� They also allow the caching �in data structures associated with the specialized
code� of information such as the 	le pointer� This caching is what allows all of the interpretation�
traversal and locking in steps �� �� �� �� � and � to be avoided�
In our current implementation� all invariants are validated in open� when specialization happens�

A specialized read routine is not generated unless all of the invariants hold�

��� Guards

Since specializations based on quasi
invariants are optimistic� they must be adequately guarded�
Guards detect the impending invalidation of a quasi
invariant and invoke the replugging routine
�section ���� to unspecialize the read code� Table � lists the quasi
invariants used in our imple

mentation and the HP
UX system calls that contain the associated guards�

�



Table �� Guards

Quasi
Invariant HP
UX system calls that may invalidate invariant

no fp share creat� dup� dup�� fork� sendmsg�

no holes open

no inode share creat� fork� open� truncate

no user locks lockf� fcntl

read only open

sequential access lseek� readv

Quasi
invariants such as read only and no holes can be guarded in open since they can only
be violated if the same 	le is opened for writing� The other quasi
invariants can be invalidated
during other system calls which either access the 	le using a 	le descriptor from within the same
or a child process� or access it from other processes using system calls that name the 	le using a
pathname� For example� no fp share will be invalidated if multiple 	le descriptors are allowed
to share the same 	le pointer� This situation can arise if the 	le descriptor is duplicated locally
using dup� if the entire 	le descriptor table is duplicated using fork� or if a 	le descriptor is passed
though a Unix domain socket using sendmsg� Similarly� sequential access will be violated if
the process calls lseekor readv�
The guards in system calls that use 	le descriptors are relatively simple� The 	le descriptor pa


rameter is used as an index into a per
process table� if a specialized 	le descriptor is already present
then the quasi
invariant will become invalid� triggering the guard and invoking the replugger� For
example� the guard in dup only responds when attempting to duplicate a 	le descriptor used by
is read� Similarly� fork checks all open 	le descriptors and triggers replugging of any specialized
read code�
Guards in calls that take pathnames must detect collisions with specialized code by examining

the 	le�s inode� We use a special �ag in the inode to detect whether a specialized code path is
associated with a particular inode�
Two quasi
invariants discussed in section ���� but not listed in table � are the assumption that

cached bu�ers are not replaced between calls to is read and the assumption that successive calls
to is read hit the same bu�er� The 	rst of these quasi
invariants can be guarded by altering the
bu�er cache replacement strategy slightly� The second is �guarded� explicitly using interpretation
code in the fast
path code�
With the exception of lseek� triggering any of the guards discussed above causes the read

code to be replugged back to the general purpose implementation� lseekis the only instance of
respecialization in our implementation� when triggered� it simply updates the 	le o�set in the
specialized read code�
To guarantee that all invariants and quasi
invariants hold� open checks that the vnode meets all

the fs constant and no holes invariants and that the requested access is only for read� Then
the inode is checked for sharing� If all invariants hold during open then the inode and 	le descriptor
are marked as specialized and an is read path is set up for use by the calling process on that 	le�
Setting up the is read path amounts to allocating a private per
	le
descriptor data structure for
use by the is read code which is sharable� The inode and 	le descriptor markings activate all of
the guards atomically since the guard code is permanently present�

�



��� The Replugging Algorithm

Replugging components of an actively running kernel is a non
trivial problem that requires a paper
of its own� The problem is simpli	ed here for two reasons� First� our main objective is to test the
feasibility and bene	ts of specialization� Second� specialization has been applied to the replugging
algorithm itself� For kernel calls� the replugging algorithm should be specialized� simple� and
e
cient�
The 	rst problem to be handled during replugging is synchronization� If a replugger were execut


ing in a single
threaded kernel with no system call blocking in the kernel� then no synchronization
would be needed� Our environment is a multiprocessor� where kernel calls may be suspended�
Therefore� the replugging algorithm must handle two sources of concurrency� ��� interactions be

tween the replugger and the process whose code is being replugged and ��� interactions among other
kernel threads that triggered a guard and invoked the replugging algorithm at the same time� To
simplify the replugging algorithm� we make two assumptions that are true in many Unix systems�
�A�� kernel calls cannot abort� so we do not have to check for an incomplete kernel call to is read�
and �A�� there is only one thread per process� so multiple kernel calls cannot concurrently access
process level data structures�
The second problem that a replugging algorithm must solve is the handling of executing threads

inside the code being replugged� We assume �A�� that there can be at most one thread executing
inside specialized code� This is the most important case� since in all cases so far we have specialized
for a single thread of control� This assumption is particularly easy to justify in Unix environments�
To separate the simple case �when no thread is executing inside code to be replugged� from the
complicated case �when one thread is inside�� we use a �inside
�ag�� The 	rst instruction of the
specialized read code sets the inside
�ag to indicate that a thread is inside� The last instruction
in the specialized read code clears the inside
�ag�
To simplify the synchronization of threads during replugging� the replugging algorithm uses a

queue� called the holding tank� to stop the thread that happens to invoke the specialized kernel call
while replugging is taking place� Upon completion of replugging� the algorithm activates the thread
waiting in the holding tank� The thread then resumes the invocation through the unspecialized
code�
For simplicity� we describe the replugging algorithm as if there were only � cases�specialized

and non
specialized� The paths take the following steps�

�� Check the 	le descriptor to see if this 	le is specialized� If not� branch out of the fast path�

�� Set inside
�ag�

�� Branch indirect� This branch leads to either the holding tank or the read path� It is changed
by the replugger�

Read Path�

�� Do the read work�

�� Clear inside
�ag�

Holding Tank�

�� Clear inside
�ag�

�� Sleep on the per
	le lock to await replugger completion�

�� Jump to standard read path�

�



Replugging Algorithm�

�� Acquire per
process lock to block concurrent repluggers� It may be that some guard was
triggered concurrently for the same 	le descriptor� in which case we are done�

�� Acquire per
	le lock to block exit from holding tank�

�� Change the per
	le indirect pointer to send readers to the holding tank �changes action of
the reading thread at step � so no new threads can enter the specialized code��

�� Spinwait for the per
	le inside
�ag to be cleared� Now no threads are executing the specialized
code�

�� Perform incremental specialization according to which invariant was invalidated�

�� Set 	le descriptor appropriately� including indicating that the 	le is no longer specialized�

�� Release per
	le lock to unblock thread in holding tank�

�� Release per
process lock to allow other repluggers to continue�

The way the replugger synchronizes with the reader thread is through the inside
�ag in com

bination with the indirection pointer� If the reader sets the inside
�ag before a replugger sets the
indirection pointer then the replugger waits for the reader to 	nish� If the reader takes the indirect
call into the holding tank� it will clear the inside
�ag which will tell the replugger that no thread is
executing the specialized code� Once the replugging is complete the algorithm unblocks any thread
in the holding tank and they resume through the new unspecialized code�
In most cases of unspecialization� the general case� read� is used instead of the specialized

is read� In this case� the 	le descriptor is marked as unspecialized and the memory is read

occupies is marked for garbage collection at 	le close time�

��� Cost�Bene	t Analysis

Specialization reduces the execution costs of the fast path� but it also requires additional mecha

nisms� such as guards and replugging algorithms� to maintain system correctness� By design� guards
are located in low frequency execution paths and in the rare case of quasi
invariant invalidation�
replugging is performed� We have also added code to open to check if specialization is possible�
and to close to garbage collect the specialized code after replugging� An informal performance
analysis of these costs and a comparison with the gains is�

Overhead �
X

i

f isyscall �Guard
i �Open � Close� fReplug �Replug ���

Overhead� fis � is read � �fTotalRead � fis� � readHP�UX ���

In equation �� Overhead includes the cost of guards� the replugging algorithm� and the increase
due to initial invariant validation� specialization and garbage collecting for all 	le opens and closes�
Each Guardi �in di�erent kernel calls� is invoked fsyscall

i times� Similarly� Replug is invoked
fReplug times� A small part of the cost of synchronization with the replugger is born by is read

�the setting and resetting of inside
�ag�� but overall is read is much faster than read �Section ���
In equation �� fis is the number of times specialized is read is invoked and fTotalRead is the total
number of invocations to read the 	le� Specialization wins if the inequality � is true�

�



Table �� HP
UX read versus is read using Benchmark � �in CPU cycles�
Experiment � byte read �K �
byte read � KB read �� KB read

read ���� ���������� ���� ������

is read ���� ���������� ���� ������

read�is read ratio ��� ����� ����� �����

is read �normalized� ���� ���� ���� ����

� Performance Results

The following sections outline a series of microbenchmarks to measure the performance of the
incrementally and optimistically specialized read fast path� as well as the overhead associated with
guards and replugging� All of the experiments were run with a warm bu�er cache in order to
prevent device I�O costs from dominating the results� The use of specialization to optimize the
device I�O path and make better use of the bu�er cache is the subject of a separate study currently
underway in our group�
The experimental environment for the benchmarks was a Hewlett
Packard ���� series ��� G��

���������� ��� dual
processor server running in single
user mode� This server is con	gured with
��� MB of RAM� The two PA���� ��� processors run at �� MHz and each contains one MB of
instruction cache and one MB of data cache�

��� Performance of the read Fast Path

The 	rst microbenchmark is designed to measure best case read performance� The program consists
of a tight loop that opens the 	le� gets a timestamp� reads N bytes� gets a timestamp� and closes
the 	le� Timestamps are obtained by reading the PA
RISC�s interval timer� a processor control
register that is incremented every processor cycle �����
The benchmark result is best case in the sense that it makes optimal use of the processor�s data

cache during copyout�� by choosing the target of the read to be a page
aligned user bu�er whose
addresses do not con�ict in the processor�s data cache with those of the 	le system�s bu�er block�
Table � compares the performance of HP
UX read with is read for reads of one byte� � KB�

and �� KB� In all cases� is read performance is better than HP
UX read� For single byte reads�
is read takes only half the time of HP
UX read� For larger reads� the performance gain is not so
large because the overall time is dominated by data copying costs� However� even reads of �� KB
improve by about �� �
The results presented in table � are from operations performed in a controlled environment with

minimal memory e�ects� However� they they are not indicative of normal operations where reads
from 	les are sequential� using multiple 	le system bu�ers� To address this restriction� the second
microbenchmark reads a � MB 	le sequentially using 	xed sized reads to the same page
aligned
user bu�er� Before running the benchmark� the 	le is searched to load it into the bu�er cache� The
benchmark ensures that the 	le is not present in the processor�s data cache by zero
	lling a � MB
user bu�er before opening the 	le� Figure � illustrates the results of this benchmark for HP
UX
read and is read using � KB and �� KB reads�
There are two things to notice in 	gure �� First� using median values� the performance improve


ment of is read over HP
UX read has dropped by about �� for the � KB case� and � for the ��
KB case� The reduction in improvement compared to the 	rst benchmark is due to the uniformly
increased cost of the copyout operation which is caused by less favorable cache conditions�

�



10000

15000

20000

25000

30000

35000

0 100 200 300 400 500 600

T
im

e 
(c

yc
le

s)

iteration

"HPUX read"
"is_read"


a� � KB read results

100000

120000

140000

160000

180000

200000

220000

240000

0 10 20 30 40 50 60 70 80

T
im

e 
(c

yc
le

s)

iteration

"HPUX read"
"is_read"


b� �� KB read results

Figure �� HP
UX read versus is read using Benchmark �

Second� the step at one MB ����th � KB read and ��th �� KB read�� resulting from our zero
	ll
approach to removing the 	le contents from the data cache� Zero
	lling the bu�er also 	lls the
data cache with �dirty� data� which requires memory writeback� After the 	rst one MB no more
writeback is required�

��� The Cost of the Initial Specialization

The performance improvements in the read fast path come at the expense of overhead in other
parts of the system� The most signi	cant impact occurs in the open system call� which is the point
at which the specialized read path is generated� open has to check � predicates for a total of about
�� instructions and a lock�unlock pair� If specialization can occur it needs to allocate some kernel
memory and 	ll it in� close needs to check if the 	le descriptor is or was specialized and if so� free
the kernel memory� A kernel memory alloc takes ��� cycles and free takes ��� cycles�
The impact of this work is that the new specialized open call takes ���� cycles compared to

���� cycles for the standard HP
UX open system call� In both cases� no inode traversal is involved�
As expected� the cost of the new open call is higher than the original� However� notice that the
increase in cost is small enough that a program that opens a 	le and reads it once can still bene	t
from specialization�

��� The Cost of Nontriggered Guards

The cost of guards can be broken down into two cases� the cost of executing them when they
are not triggered� and the cost of triggering them and performing the necessary replugging� This
sub
section is concerned with the 	rst case�
Guards are associated with each of the system calls shown in table �� As noted elsewhere� there

are two sorts of guards� One checks for specialized 	le descriptors and is very cheap� the other
for specialized inodes� Since inodes can be shared they must be locked to check them� The lock
expense is only incurred if the 	le passes all the other tests 	rst� A lock�unlock pair takes ���
cycles� A guard requires � temporary registers� � loads� an add� and a compare� �� cycles� and then

��



a function call if it is triggered� It is important to note that these guards do not occur in the data
transfer system calls� except for readv which is not frequently used�
In the current implementation� guards are 	xed in place �and always perform checks� but they

are triggered only when specialized code exists� Alternatively� guards could be inserted in
place
when associated specialized code is generated� Learning which alternative performs better requires
further research on the costs and bene	ts of specialization mechanisms�

��� The Cost of Replugging

There are two costs associated with replugging� One is the overhead added to the fast path in
is read for checking if it is specialized and calling read if not� and for writing the inside
�ag bit
twice� and the indirect function call with zero arguments otherwise� A timed microbenchmark
shows this cost to be �� cycles�
The second cost of replugging is incurred when the replugging algorithm is invoked� This cost

depends on whether there is a thread already present in the code path to be replugged� If so�
the elapsed time taken to replug can be dominated by the time taken by the thread to exit the
specialized path� The worst case for the read call occurs when the thread present in the specialized
path is blocked on I�O� We are working on a solution to this problem which would allow threads
to �leave� the specialized code path when initiating I�O and rejoin a replugged path when I�O
completes� but this solution is not yet implemented�
In the case where no thread is present in the code path to be replugged� the cost of replugging

is determined by the cost of acquiring two locks� one spinlock� checking one memory location and
storing to another �to get exclusive access to the specialized code�� To fall back to the generic read
takes � stores plus address generation� plus storing the specialized 	le o�set into the system 	le
table which requires obtaining the File Table Lock and releasing it� After incremental specialization
two locks have to be released� An inspection of the generated code shows the cost to be about ���
cycles assuming no lock contention� The cost of the holding tank is not measured since that is the
rarest subcase and it would be dominated by spinning for a lock in any event�
Adding up the individual component costs� and multiplying them by the frequency� we can

estimate the guarding and replugging overhead attributed to each is read� Assuming that ���
is read happen for each of guarded kernel calls �fork� creat� truncate� open� close and
replugging�� less than �� cycles are added as guarding overhead to each invocation of is read�

� Discussion

��� The Dream vs� The Reality

The experimental results described in Section � show the performance of our current is read

implementation� At the time of writing this implementation was not fully specialized� some invari

ants were not used and� as a result� the measured is read path contains more interpretation and
traversal code than is absolutely necessary� Therefore� the performance results presented above are
conservative� Even so� the results show that optimistic specialization can improve the performance
of both small and large reads�
At one end of the spectrum� assuming a warm bu�er cache� the performance of small reads is

dominated by control �ow costs� Through specialization we are able to remove� from the fast path� a
large amount of code� concerned with interpretation� data structure traversal and synchronization�
Hence� it is not surprising that the cost of small reads is reduced signi	cantly�

��



At the other end of spectrum� again assuming a warm bu�er cache� the performance of large
reads is dominated by data movement costs� Our experimental results show that byte copying costs
are in turn dominated by cache e�ects�� Specialization can reduce the number of cache con�icts
between the source and destination of byte copies that occur in sequential reads to the same user
bu�er� We are working on specializing the 	le system�s bu�er allocation code to choose bu�er cache
blocks that avoid con�icts with previous read bu�ers�
In both cases� the use of specialization removes overhead from the fast path by adding overhead

to other parts of the system� speci	cally� the places at which the specialization� replugging and
guarding of optimistic specializations occur� Our experience has shown that generating specialized
implementations is easy� The real di
culty arises in correctly placing guards and making policy
decisions about what and when to specialize and replug� In existing kernels� guards are di
cult to
place correctly because it is non
trivial to identify all of the places that the optimistic specialization
depends on� This problem is due� in part� to the lack of encapsulation in programming languages
such as C� We are currently working on a restricted C programming language� called C��� and a set
of associated tools to help solve these problems� Ultimately� automatic guard placement requires
new programming language and compiler technology�
Similarly� the choice of what to specialize� when to specialize� and whether to specialize opti


mistically are all non
trivial policy decisions� In our current implementation we made these decisions
in an ad hoc manner� based on our expert knowledge of the system implementation� semantics and
common usage patterns� A more systematic approach would require� at the very least� some ac

curate pro	ling information to determine when the savings due to a potential specialization will
exceed its associated guarding and replugging costs�

��� Interface Design and Kernel Structure

From early in the project� our intuition told us that� in the most specialized case� it should be
possible to reduce the cost of a read system call that hits in the bu�er cache� It should be little
more than the basic cost of data movement from the kernel to the application�s address space� i�e��
the cost of copying the bytes from the bu�er cache to the user�s bu�er� In practice� however� our
specialized read implementation costs considerably more than copying one byte� The cost of our
specialized read implementation is ���� cycles� compared to approximately ��� cycles for entering
the kernel� 	elding the minimum number of parameters� and carefully copying a single byte out to
the application�s address space�
Upon closer examination� we discovered that the remaining ���� cycles were due in part to

constraints that were placed upon our design by an over
speci	cation of the UNIX read implemen

tation� For example� the need to always support statistics
gathering facilities such as ptrace and
times requires every read call to record the time it spends in the kernel� Another example is the
constraint that data has to be delivered to a bu�er in the application�s address space rather than a
register� This forces the read call to incur signi	cant costs associated with a careful copyout that
ensures that page
faults and security violations do not occur while executing the copy in kernel
mode� For reads of only a single byte� a more sensible implementation would return the data in a
register in much the same way as the stdio library getc call�
To push the limits of a kernel
based read implementation� we implemented a special one
byte

read system call� called readc� which returns a single byte in a register� just like the stdio library

�On processors with virtually indexed caches
 such as the PA�RISC
 con�icts depend on the choice of virtual
addresses for the source and target of the copy	 On processors with physically indexed caches
 con�icts depend on
the choice of physical addresses for the source and target of the copy	

��



getc call� In addition to the optimizations used in our specialized is read call� readc avoids
switching stacks� omits ptrace support� and skips updating pro	le information� The performance
of the resulting readc implementation is �� cycles� Notice that aggressive use of specialization can
lead to a readc system call that performs within a factor of two of a pure user
level getc which
costs �� cycles in HP
UX�s stdio library� This result is encouraging because it shows the feasibility
of implementing operating system functionality at kernel level with performance similar to user

level libraries� Aggressive specialization may render unnecessary the popular trend of duplicating
operating system functionality at user level ��� ��� for performance reasons�
Another commonly cited reason for moving operating system functionality to user level is to

give applications more control over policy decisions and operating system implementations� We
believe that these bene	ts can also be gained without duplicating operating system functionality at
user level� Following an open
implementation �OI� philosophy ����� operating system functionality
can remain in the kernel� with customization of the implementation supported in a controlled
manner via meta interface calls ����� A strong lesson from our work and from other work in
the OI community ���� is that abstractly speci	ed interfaces� i�e�� those that do not constrain
implementation choices unnecessarily� are key to the gaining the most bene	t from techniques such
as specialization�

� Related Work

There are several other projects and approaches that are �adaptive� in some sense� In the operating
systems area� the SPIN kernel ��� at the University of Washington is a good example� SPIN allows
applications to dynamically load executable modules� called spindles� into the kernel� These spindles
are written in a type
safe programming language to ensure that they do not a�ect adversely kernel
operations� SPIN allows applications to extend the OS kernel interface in a custom fashion through
co
existence� while incremental specialization extends kernel interfaces only through meta interfaces�
keeping the applications at the user level�
The Flex project ��� at University of Utah is building the Mach � microkernel using specialization

techniques� Synthetix and Flex are complementary in their goals� Flex needs to implement a
production quality Mach microkernel� Synthetix is developing tools and methodology that apply
to a wide range of environments� including HP
UX and Mach as primary demonstration systems�
A third signi	cant OS project aiming at adaptiveness is the Substrate Object Model ��� at

University of Notre Dame� They propose to use customizable objects to implement extensible and
�exible kernel services� Substrates are currently being used to extend the AiX operating system�
They use a combination of substrates� e
cient cross
domain RPC based on shared virtual memory�
and extended the AiX dynamic loader to load subclasses into the kernel�
The Apertos operating system ���� supports objects and meta
objects explicitly� Apertos sup


ports dynamic recon	guration by moving an object into a new meta
space� An object�s behavior
can be modi	ed by its meta objects� including kernel objects� Up to now� Apertos has not used
specialization to improve its performance�
Other examples of related systems include� the Chorus�MiX commercial operating system �����

which has specialized execution paths� and the Kernel ToolKit project at Georgia Tech ���� which
supports online and o� line object recon	guration� and of course� Synthesis ���� ���� which was
discussed in the Introduction�

��



	 Conclusions

This paper has introduced the concepts of incremental and optimistic specialization� These concepts
re	ne previous work on kernel optimization using dynamic code generation in Synthesis ���� ����
and can be applied to commercial operating system kernels�
We have demonstrated incremental and optimistic specialization in an experiment on the Unix

File System of HP
UX� a commercial operating system� The experimental results show that signif

icant performance improvements can be gained for three representative cases� �� for �
byte read�
�� for �K
byte reads� and and �� for ��K
byte reads�
An important 	nding in our experiments is the signi	cant cost of guaranteeing the correctness

of specialized code� De	ning the invariants and quasi
invariants that allow specialization� and
using them to specialize kernel code� turned out to be relatively easy� Creating and inserting the
appropriate guards that detect the invalidation of quasi
invariants required a signi	cant amount of
e�ort�
Our experience shows the promise of incremental and optimistic specialization� However� be


fore this approach can become pervasive� a more clearly de	ned programming methodology and
support tools are needed� These are the topic of our current research� Fully automated incremental
specialization is still a long way o� and requires new programming language technology and partial
evaluation tools�


 Acknowledgements

Bill Trost of Oregon Graduate Institute and Takaichi Yoshida of Kyushu Institute of Technology
performed the initial study of the HP
UX read and write system calls� identifying many quasi

invariants to use for specialization� Bill also implemented some prototype specialized kernel calls
that showed promise for performance improvements� Luke Horno� of University of Rennes con

tributed to discussions on specialization and tools development�

References

��� Thomas B� Alexander� Kenneth G� Robertson� Dean T� Lindsey� Donald L� Rogers� John R� Obermeyer�
John R� Keller� Keith Y� Oka� and Marlin M� Jones II� Corporate Business Servers� An Alternative to
Mainframes for Business Computing� Hewlett�Packard Journal� �	�������
� June �����

�
� Thomas E� Anderson� Brian N� Bershad� Edward D� Lazowska� and Henry M� Levy� Scheduler Activa�
tions� E�ective Kernel Support for the User�Level Management of Parallelism� ACM Transactions on
Computer Systems� �
����	����� February ���
�

��� Arindam Banerji and David L� Cohn� An Infrastructure for Application�Speci�c Customization� In
Proceedings of the ACM European SIGOPS Workshop� September �����

��� Brian N� Bershad� Craig Chambers� Susan Eggers� Chris Maeda� Dylan McNamee� Przemyslaw Pardyak�
Stefan Savage� and Emin Gun Sirer� SPIN � An Extensible Microkernel for Application�speci�c Op�
erating System Services� Technical Report ���
��
�� Department of Computer Science� University of
Washington� February �����

�	� John B� Carter� Bryan Ford� Mike Hibler� Ravindra Kuramkote� Je�rey Law� Lay Lepreau� Douglas B�
Orr� Leigh Stoller� and Mark Swanson� FLEX� A Tool for Building E�cient and Flexible Systems�
In Proceedings of the Fourth Workshop on Workstation Operating Systems� pages ����


� Napa� CA�
October �����

��



��� Frederick W� Clegg� Gary Shiu�Fan Ho� Steven R� Kusmer� and John R� Sontag� The HP�UX Operating
System on HP Precision Architecture Computers� Hewlett�Packard Journal� ����
����

� December
�����

��� C� Consel and O� Danvy� Tutorial notes on partial evaluation� In ACM Symposium on Principles of
Programming Languages� pages ����	
�� �����

��� C� Consel� C� Pu� and J� Walpole� Incremental specialization� The key to high performance� modularity
and portability in operating systems� In Proceedings of ACM Symposium on Partial Evaluation and
Semantics�Based Program Manipulation� Copenhagen� June �����

��� Eric DeLano� Will Walker� and Mark Forsyth� A High Speed Superscalar PA�RISC Processor� In
COMPCON ��� pages �����
�� San Francisco� CA� February 
��
� ���
�

��
� A� Gheith� B� Mukherjee� D� Silva� and K� Schwan� KTK� Kernel support for con�guration objects and
invocations� Technical Report GIT�CC������� College of Computing� Georgia Institute of Technology�
February �����

���� Kieran Harty and David R� Cheriton� Application�controlled physical memory using external page�
cache management� In Proceedings of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems 	ASPLOS�V
� pages �������� Boston� MA� October
���
�

��
� Hewlett�Packard� PA�RISC ��� Architecture and Instruction Set Reference Manual� second edition�
September ���
�

���� Gregor Kiczales� Towards a new model of abstraction in software engineering� In
Proc� of the IMSA��� Workshop on Re�ection and Meta�level Architectures� ���
� See
http���www�xerox�com�PARC�spl�eca�oi�html for updates�

���� Gregor Kiczales� Jim des Rivi�eres� and Daniel G� Bobrow� The Art of the Metaobject Protocol� MIT
Press� �����

��	� H� Massalin and C� Pu� Threads and input�output in the Synthesis kernel� In Proceedings of the Twelfth
Symposium on Operating Systems Principles� pages ����

�� Arizona� December �����

���� Marshall K� McKusick� William N� Joy� Samuel J� Le�er� and Robert S� Fabry� A Fast File System for
UNIX� Transactions on Computer Systems� 
������������ August �����

���� C� Pu� H� Massalin� and J� Ioannidis� The Synthesis kernel� Computing Systems� ���������
� Winter
�����

���� M� Rozier� V� Abrossimov� F� Armand� I� Boule� M� Gien� M� Guillemont� F� Herrman� C� Kaiser�
S� Langlois� P� Leonard� and W� Neuhauser� Overview of the Chorus distributed operating system� In
Proceedings of the Workshop on Micro�Kernels and Other Kernel Architectures� pages ������ Seattle�
April ���
�

���� P� Sestoft and A� V� Zamulin� Annotated bibliography on partial evaluation and mixed computation�
In D� Bj�rner� A� P� Ershov� and N� D� Jones� editors� Partial Evaluation and Mixed Computation�
North�Holland� �����

�

� Yasuhiko Yokote� The Apertos Re�ective Operating System� The Concept and Its Implementation� In
Proceedings of the Conference on Object�Oriented Programming Systems� Languages� and Applications
	OOPSLA
� pages �������� Vancouver� BC� October ���
�

��


