
Neural Computation 8(3), 1996, PP463-491.

A Smoothing Regularizer
for Feedforward and Recurrent Neural Networks

Lizhong Wu and John Moody
Oregon Graduate Institute, Computer Science Dept., Portland, OR 97291-1000

Email: lwu@cse.ogi.edu and moody@cse.ogi.edu

Abstract

We derive a smoothing regularizer for dynamic network models by requiring robustness in prediction
performance to perturbations of the training data. The regularizer can be viewed as a generalization
of the first order Tikhonov stabilizer to dynamic models. For two layer networks with recurrent
connections described by

Y �t� � f
�
WY �t� �� � V X�t�

�
� Ẑ�t� � UY �t� �

the training criterion with the regularizer is

D �
1
N

NX
t�1

jjZ�t�� Ẑ��� I�t��jj2 � ��
2��� �

where � � fU� V�Wg is the network parameter set, Z�t� are the targets, I�t� � fX�s�� s �
1� 2� � � � � tg represents the current and all historical input information, N is the size of the training
data set, �� 2��� is the regularizer, and is a regularization parameter. The closed-form expression
for the regularizer for time-lagged recurrent networks is:

�� ��� �
�jjU jjjjV jj

1� �jjW jj

h
1� e

�jjWjj�1
�

i
�

where jj jj is the Euclidean matrix norm and � is a factor which depends upon the maximal value
of the first derivatives of the internal unit activations f� �. Simplifications of the regularizer are
obtained for simultaneous recurrent nets (� �� 0), two-layer feedforward nets, and one layer linear
nets. We have successfully tested this regularizer in a number of case studies and found that it
performs better than standard quadratic weight decay.

1 Introduction

One technique for preventing a neural network from overfitting noisy data is to add a regularizer to the
error function being minimized. Regularizers typically smooth the fit to noisy data.1 Well-established
techniques include ridge regression (see Hoerl & Kennard (1970a, 1970b)), and more generally spline
smoothing functions or Tikhonov stabilizers that penalize the mth-order squared derivatives of the function
being fit, as in Tikhonov & Arsenin (1977), Eubank (1988), Hastie & Tibshirani (1990) and Wahba (1990).
These methods have recently been extended to networks of radial basis functions (Powell (1987), Poggio
& Girosi (1990), Girosi, Jones & Poggio (1995)) and several heuristic approaches have been developed for
sigmoidal neural networks, for example, quadratic weight decay (Plaut, Nowlan & Hinton (1986)), weight
elimination (Scalettar & Zee (1988),Chauvin (1990),Weigend, Rumelhart & Huberman (1990)), soft weight
sharing (Nowlan & Hinton (1992)) and curvature-driven smoothing (Bishop (1993)).2 Quadratic weight
decay (which is equivalent to ridge regression) and weight elimination are frequently used “on-line” during
stochastic gradient learning. The other regularizers listed above are not generally used with on-line algorithms,
but rather with “batch” or deterministic optimization methods. All previous studies on regularization have
concentrated on feedforward neural networks. To our knowledge, recurrent learning with regularization has
not been reported before.

In Section 2 of this paper, we develop a smoothing regularizer for general dynamic models which is derived by
considering perturbations of the training data. We demonstrate that this regularizer corresponds to a dynamic
generalization of the well-known first order Tikhonov stabilizer. We then present a closed-form expression
for our regularizer for two layer feedforward and recurrent neural networks, with standard weight decay
being a special case. In Section 3, we evaluate our regularizer’s performance on a number of applications,
including regression with feedforward and recurrent neural networks and predicting the U.S. Index of Industrial
Production. The advantage of our regularizer is demonstrated by comparing to standard weight decay in both
feedforward and recurrent modeling. Finally, we discuss several related questions and conclude our paper in
Section 4.

2 Smoothing Regularization

2.1 Prediction Error for Perturbed Data Sets

Consider a training data set fP : Z�t��X�t�g, where the targets Z�t� are assumed to be generated by an
unknown dynamical system F ��I�t�� and an unobserved noise process:

Z�t� � F ��I�t�� �
��t� with I�t� � fX�s�� s � 1� 2� � � � � tg � (1)

Here, I�t� is the information set containing both current and past inputs X�s�, and the
��t� are independent
random noise variables with zero mean and variance ��2. Consider next a dynamic network model Ẑ�t� �
F ��� I�t�� to be trained on data set P , where� represents a set of network parameters, and F � � is a network
transfer function which is assumed to be nonlinear and dynamic. We assume thatF � � has good approximation
capabilities, such that F ��P � I�t�� 	 F ��I�t�� for learnable parameters �P .

Our goal is to derive a smoothing regularizer for a network trained on the actual data set P that in effect
optimizes the expected network performance (prediction risk) on perturbed test data sets of form fQ :

1Other techniques to prevent overfitting include early stopping of training (which can be viewed as having an effect
similar to weight decay [Sjöberg & Ljung (1992, 1995)]) and using prior knowledge in the form of hints (see Abu-Mostafa
(1995), Tresp, Hollatz & Ahmad (1993), and references therein). Smoothing regularization can be viewed as a special
class of hints.

2Two additional papers related to ours, but dealing only with feed forward networks, came to our attention or were
written after our work was completed. These are Bishop (1995) and Leen (1995). Also, Moody & Rögnvaldsson (1995)
have recently proposed several new classes of smoothing regularizers for feedforward nets.

Z̃�t�� X̃�t�g. The elements of Q are related to the elements of P via small random perturbations
z�t� and

x�t�, so that

Z̃�t� � Z�t� �
z�t� � (2)

X̃�t� � X�t� �
x�t� � (3)

The
z�t� and
x�t� have zero mean and variances �z2 and �x2 respectively. The training and test errors for
the data sets P and Q are

DP �
1
N

NX
t�1

�Z�t�� F ��P � I�t���
2 (4)

DQ �
1
N

NX
t�1

�Z̃�t�� F ��P � Ĩ�t���
2 � (5)

where �P denotes the network parameters obtained by training on data set P , and Ĩ�t� � fX̃�s�� s �
1� 2� � � � � tg is the perturbed information set of Q. With this notation, our goal is to minimize the expected
value of DQ, while training on DP .

Consider the prediction error for the perturbed data point at time t:

d�t� � �Z̃�t�� F ��P � Ĩ�t���
2 � (6)

With Eqn (2), we obtain

d�t� � �Z�t� �
z�t�� F ��P � I�t�� � F ��P � I�t��� F ��P � Ĩ�t���
2�

� �Z�t�� F ��P � I�t���
2 � �F ��P � I�t��� F ��P � Ĩ�t���

2 � �
z�t��
2

�2�Z�t�� F ��P � I�t����F ��P � I�t��� F ��P � Ĩ�t��� � 2
z�t��Z�t�� F ��P � Ĩ�t���� (7)

Assuming that
z�t� is uncorrelated with �Z�t��F ��P � Ĩ�t��� and averaging over the exemplars of data sets
P and Q, Eqn(7) becomes

DQ � DP �
1
N

NX
t�1

�F ��P � I�t��� F ��P � Ĩ�t���
2 �

1
N

NX
t�1

�
z�t��
2

�
2
N

NX
t�1

�Z�t�� F ��P � I�t����F ��P � I�t��� F ��P � Ĩ�t��� � (8)

The third term,
PN

t�1 �
z�t��
2, in Eqn(8) is independent of the weights, so it can be neglected during the

learning process. The fourth term in Eqn(8) is the cross-covariance between �Z�t� � F ��P � I�t��� and
�F ��P � I�t��� F ��P � Ĩ�t���. We argue in Appendix A that this term can also be neglected.

2.2 The Dynamic Smoothing Regularizer and Tikhonov Correspondence

The above analysis shows that the expected test error DQ can be minimized by minimizing the objective
function D:

D �
1
N

NX
t�1

�Z�t�� F ��� I�t���2 �
1
N

NX
t�1

�F ��P � I�t��� F ��P � Ĩ�t���
2 � (9)

In Eqn (9), the second term is the time average of the squared disturbance jj ˆ̃Z�t� � Ẑ�t�jj2 of the trained
network output due to the input perturbation jjĨ�t��I�t�jj2. Minimizing this term demands that small changes

in the input variables yield correspondingly small changes in the output. This is the standard smoothness
prior, namely that if nothing else is known about the function to be approximated, a good option is to assume
a high degree of smoothness. Without knowing the correct functional form of the dynamical system F � or
using such prior assumptions, the data fitting problem is ill-posed.

It is straightforward to see that the second term in Eqn (9) corresponds to the standard first order Tikhonov
stabilizer.3 Expanding to first order in the input perturbations
x, the expectation value of this term becomes:

1
N

NX
t�1

�F ��P � Ĩ�t��� F ��P � I�t���
2

�
	

1
N

NX
t�1

�
tX

s�1

�F ��P � I�t��

�X�s�

x�s�

�2�

� �2
x

1
N

NX
t�1

tX
s�1

�
�F ��P � I�t��

�X�s�

�2

� (10)

If the dynamics are trivial, so that the mapping F � has no recurrence, then:

�F ��P � I�t��

�X�s�
� 0 for s �� t � (11)

and Eqn (10) reduces to

�2
x

1
N

NX
t�1

�
�F ��P �X�t��

�X�t�

�2

� (12)

This is the usual first order Tikhonov stabilizer weighted by the empirical distribution.

In Eqns (12) and (10), �2
x plays the role of a regularization parameter that determines the compromise

between the degree of smoothness of the solution and its fit to the noisy training data. This is the usual
bias/variance tradeoff (see Geman, Bienenstock & Doursat (1992)).

A reasonable choice for the value of �2
x is to set it proportional to the average squared nearest neighbor distance

in the input data. For normalized input data (eg. where each variable has zero mean and unit variance), one
can estimate the average nearest neighbor distance as:

 	 �2
x 	 �N�2�D � (13)

where D is the intrinsic dimension of the input data (less than or equal to the number of input variables) and
� is a geometrical factor (of order unity in low dimensions).

To summarize this section, the training objective function D of Eqn (9) can be written in approximate form
as:

D 	
1
N

NX
t�1

�Z�t�� F ��� I�t���2 �
1
N

NX
t�1

tX
s�1

�
�F ��P � I�t��

�X�s�

�2

� (14)

where the second term is a dynamic generalization of the first order Tikhonov stabilizer.

2.3 Form of the Proposed Smoothing Regularizer for Two Layer Networks

Consider a general, two layer, nonlinear, dynamic network with recurrent connections on the internal layer 4

as described by
Y �t� � f

�
WY �t� �� � V X�t�

�
Ẑ�t� � UY �t� �

(15)

3Bishop (1995) has independently made this observation for the case of feedforward networks.
4Our derivation can easily be extended to other network structures.

whereX�t�, Y �t� and Ẑ�t� are respectively the network input vector, the hidden output vector and the network
output; � � fU� V�Wg is the output, input and recurrent connections of the network; f� � is the vector-valued
nonlinear transfer function of the hidden units; and � is a time delay in the feedback connections of hidden
layer which is pre-defined by a user and will not be changed during learning. � can be zero, a fraction, or an
integer, but we are interested in the cases with a small � .5

When � � 1, our model is a recurrent network as described by Elman (1990) and Rumelhart, Hinton &
Williams (1986) (see Figure 17 on page 355). When � is equal to some fraction smaller than one, the network
evolves 1

� times within each input time interval.6 When � decreases and approaches zero, our model is
the same as the network studied by Pineda (1989), and earlier, widely-studied recurrent networks7 (see, for
example, Grossberg (1969), Amari (1972), Sejnowski (1977) and Hopfield (1984)). In Pineda (1989), � was
referred to as the network relaxation time scale. Werbos (1992) distinguished the recurrent networks with
zero � and non-zero � by calling them simultaneous recurrent networks and time-lagged recurrent networks
respectively.

We show in Appendix B that minimizing the second term of Eqn(9) can be obtained by smoothing the output
response to an input perturbation at every time step, and we have:

jj ˆ̃Z�t�� Ẑ�t�jj2 � ��
2��P �jjX̃�t��X�t�jj2 for t � 1� 2� � � � � N � (16)

We call �� 2��P � the output sensitivity of the trained network �P to an input perturbation. ��
2��P � is

determined by the network parameters only and is independent of the time variable t.

We obtain our new regularizer by training directly on the expected prediction error for perturbed data sets Q.
Based on the analysis leading to Eqns (9) and (16), the training criterion thus becomes

D �
1
N

NX
t�1

�Z�t�� F ��� I�t���2 � ��
2��� � (17)

As in Eqn (14), the coefficient in Eqn(17) is a regularization parameter that measures the degree of input
perturbation jjĨ�t�� I�t�jj2. Note that the subscript P has been dropped from �, sinceD is now the training
objective function for any set of weights. Also note in comparing Eqn (17) to Eqn (14) that the sum over
the past history indexed by s no longer appears, and that a trivial factor 1

N

PN
t�1 � 1 has been dropped.

These simplifications are due to our minimizing the zero-memory response at each time step during training
as described after Eqn (71) in Appendix B.

The algebraic form for �� ��� as derived in Appendix B is:

�� ��� �
�jjU jjjjV jj

1� �jjW jj

�
1� exp

�
�jjW jj � 1

�

��
� (18)

for time-lagged recurrent networks (� 	 0). Here, jj jj denotes the Euclidean matrix norm.8 The factor �

5When the time delay � exceeds some critical value, a recurrent network becomes unstable and lies in oscillatory
modes. See, for example, Marcus & Westervelt (1989).

6When � is a fraction smaller than one, the hidden node’s function can be described by:

Y �t� k� � 1� � f
�
WY �t� �k � 1�� � 1� � V X�t�

�
for k � 1� 2� � � � �

1
�
�

The input X�t� is kept fixed during the above evolution.
7These were called additive networks .
8The Euclidean norm of a real M �N matrix A is

jjAjj �
	
tr�AT

A�

 1

2 �

�
MX
i�1

NX
j�1

a
2
ij

� 1
2

where AT is the transpose of A and aij is the element of A.

depends upon the maximal value of the first derivatives of the activation functions of the hidden units and is
given by:

� � max
t�j

j fj
��oj�t�� j � (19)

where j is the index of hidden units and oj�t� is the input to the jth unit. In general, � � 1. 9 To insure
stability and that the effects of small input perturbations are damped out, it is required that

�jjW jj � 1 � (20)

The regularizer Eqn(18) can be deduced for the simultaneous recurrent networks in the limit � �� 0 by:

���� � �0��� �
�jjU jjjjV jj

1� �jjW jj
� (21)

If the network is feedforward, W � 0 and � � 0, Eqns (18) and (21) become

���� � �jjU jjjjV jj � (22)

Moreover, if there is no hidden layer and the inputs are directly connected to the outputs via U , the network
is an ordinary linear model, and we obtain

���� � jjU jj � (23)

which is standard quadratic weight decay (Plaut et al. 1986) as is used in ridge regression (see Hoerl &
Kennard (1970a, 1970b)).

The regularizer (Eqn(22) for feedforward networks and Eqn (18) for recurrent networks) was obtained by
requiring smoothness of the network output to perturbations of data. We therefore refer to it as a smoothing
regularizer. Several approaches can be applied to estimate the regularization parameter , as in Eubank
(1988), Hastie & Tibshirani (1990) and Wahba (1990). We will not discuss this subject in this paper.

After including a regularization term in training, the weight update equation becomes

�� � ��r�D

� ��fr�DP � r����
2����g � (24)

where � is a learning rate. With our smoothing regularizer, r���� 2���� is computed as:

���
2

�uij
�

2�� 2

kUk2uij (25)

���
2

�vij
�

2�� 2

kV k2 vij (26)

���
2

�wij
�

2��� 2

kWk

�
� 1

�
h
1� exp

�
1��kWk

�

�i � 1
1� �kWk

�
�wij (27)

where uij , vij and wij are the elements of U , V and W respectively. For simultaneous recurrent networks,
Eqn (27) becomes

��2

�wij
�

2��2

kWk

�
1

1� �kWk

�
wij � (28)

9For instance, f ��x� � �1 � f�x��f�x� if f�x� � 1
1�e�x

. In this case, � � max j f��x�� j� 1
4 at x � 0. If jxj

is much larger than 0, then f�x� operates in its asymptotic region, and j f��x�� j will be far less than 1
4 . In fact, � is

exponentially small in this case.

When standard weight decay is used, the regularizer for Eqn(15) is:

�2
weight decay��� � jjU jj2 � jjV jj2 � jjW jj2 � (29)

The corresponding update equations for this case are:

��2

�uij
� 2uij (30)

��2

�vij
� 2vij (31)

��2

�wij
� 2wij � (32)

In contrast to our smoothing regularizer, quadratic weight decay treats all network weights identically, makes
no distinction between recurrent and input/output weights, and takes into account no interactions between
weight values.

In the next section, we evaluate the new regularizer in a number of tests. In each case, we compare the
networks trained with the smoothing regularizer to those trained with standard weight decay.

3 Empirical Tests

In this section, we demonstrate the efficacy of our smoothing regularizer via three empirical tests. The first
two tests are on regression with some synthetic data, and the third test is on predicting the monthly U.S. Index
of Industrial Production.

3.1 Regression with Feedforward Networks

We form a set of data generated by a pre-defined function G. The data are contaminated by some degree
of zero-mean Gaussian noise before being used for training. Our task is to train the networks so that they
estimate G. We will first study function estimation with feedforward networks, and then extend it to the case
recurrent networks.

Data:

The data in this test are synthesized with the function

s�x� �

�
1

1 � e�a�x�b�
�

1
1 � e�a�x�b�

�
�
 � (33)

where x is uniformly distributed within ��10� 10�,
 is normally distributed with zero mean and variance �2,
and a and b are two constants. In our test, we set a � 1 and b � 5.

Model:

The model we have used for the above data is a two-hidden unit, feedforward network with sigmoidal functions
at hidden units and a linear function at a single output unit. It can be described as

Z�x� � u0 �
u1

1 � e��v1x�v10�
�

u2

1 � e��v2x�v20�
� (34)

The model overall has 7 weight parameters.

Table 1: Comparison the performances (as measured by Eqn(35)) between the feedforward networks trained
with the smoothing regularizer and those trained with standard weight decay for the function estimation. The
results shown are the mean and the standard deviation over 10 models with different initial weights.

Number of Train Noise With Standard With Smoothing
-ing Patterns Variance Weight Decay Regularizer

0.1 0.037
0.011 0.020
0.003
11 0.5 0.137
0.003 0.076
0.028

1.0 0.151
0.000 0.117
0.011
0.1 0.014
0.003 0.010
0.000

21 0.5 0.061
0.004 0.048
0.042
1.0 0.097
0.005 0.068
0.009
0.1 0.011
0.000 0.008
0.000

41 0.5 0.038
0.001 0.028
0.000
1.0 0.066
0.001 0.050
0.000

Performance Measure:

The criterion to evaluate the model performance is the true Mean Squared Error (MSE) minus the noise
variance �2:

D �

Z x0

�x0

�G�x�� Z�x��2p�x�dx � (35)

where G�x� is the noiseless, source function as shown in the first part of Eqn(33), Z�x� is the network
response function as given by Eqn(34), and p�x� is the probability density of x. In this experiment, p�x� is
uniformly distributed within ��x0� x0� and x0 � 10.

Results:

Comparisons between the smoothing regularizer and standard weight decay are listed in Table 1. The
performance comparisons are made for a number of cases. The numbers of training patterns are varied from
11, 21 and 41. The noise variances are from 0�1, 0�5 to 1�0. To observe the effect of the regularization
parameters, we did not use their estimated values. Instead, the regularization parameters for both the
smoothing regularizer and standard weight decay are varied from 0 to 0�1 with step-size 0�001. Figure 1
shows the downsampled training and test errors versus the regularization parameters. The performances in
Table 1 are the optimal results over all these regularization parameters. This gives the best potential result each
network can obtain. Unlike our other tests in real world applications, neither early stopping nor validation
was applied in this test. Each network was trained over 5000 epochs. It was found that for all networks,
the training error did not decrease significantly after 5000 training epochs. With these conditions, the task
to prevent the network from over-training or over-fitting is completely dependent on the regularization. We
believe that such results will more directly reflect, and more precisely compare, the efficacy of different
regularizers.

Table 1 shows that the potential predictive errors with the smoothing regularizer are smaller than those with
standard weight decay.

Figure 2 gives an example and compares the approximation functions obtained with standard weight decay
and our smoothing regularizer to the true function. We can see that the function obtained with our smoothing
regularizer is obviously closer to the true function than that obtained with standard weight decay.

10
−3

10
−2

10
−1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Regularization Parameters

T
ra

in
in

g
E

rr
or

With Smoothing Reg.

With Weight Decay

10
−3

10
−2

10
−1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Regularization Parameters

T
es

t E
rr

or

With Smoothing Reg.

With Weight Decay

Figure 1: Training (upper panel) and test (lower panel) errors versus regularization parameters. Networks
trained with ordinary weight decay are plotted by ‘+’, and those trained with smoothing regularizers are
plotted by ‘�’. 10 different networks are shown for each case. The curves are the median errors of these 10
networks.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

2

2.5

x

f(
x)

Figure 2: Comparing the estimated function obtained with our smoothing regularizer (dashed curve) and that
with standard weight decay (dotted curve) to the true function (solid curve). The ‘+’ plots 21 training patterns
that are uniformly distributed along the x axis and normally distributed along the f�x� direction with noise
variance 1. The model is a two-node, feedforward network.

3.2 Regression With Recurrent Networks

Data:

For recurrent network modeling, we synthesized a data sequence of N samples with the following dynamic
function:

x�t� � 10

�
2t

N � 1
� 1

�
(36)

y1�t� �
1

1 � e�a�x�t��y2�t�1��b�
(37)

y2�t� �
1

1 � e�a�x�t��y1�t�1��b�
(38)

s�t� � y1�t� � y2�t� �
�t�� (39)

where t � 0� 1� � � � � N � 1,
�t� is normally distributed with zero mean and variance �2, and a � 1 and b � 5
are two constants. Two dummy variables, y1�t� and y2�t�, evolve from their previous values. In our test, we
initialize y1�t� � y2�t� � 0.

Model:

The model we have used for the above data is a two-hidden unit, recurrent network with sigmoidal functions
at hidden units and a linear function at a single output unit. The output of a hidden unit is time-delayed and
fed back to another hidden unit input. It can be described as

y1�t� �
1

1 � e��w1y2�t�1��v1x�t��v1 0�
(40)

y2�t� �
1

1 � e��w2y1�t�1��v2x�t��v2 0�
(41)

z�t� � u0 � u1y1�t� � u2y2�t� (42)

where y1�t� and y2�t� correspond to the two hidden-unit outputs. The model overall has 9 weight parameters.

Results:

The performance measure is the same as Eqn(35) in the case for feedforward networks. Table 2 lists the
performances of the recurrent networks trained with standard weight decay and those with our smoothing
regularizer. The table shows the results with the best value of regularization parameters. It again shows that,
in all case, the smoothing regularizer outperforms standard weight decay. For all networks listed in Table 2,
the numbers of training patterns are varied from 11, 21 and 41. The noise variances are from 0�1, 0�5 to 1�0.
The regularization parameters for both the smoothing regularizer and standard weight decay are varied from
0 to 0�1 with step-size 0�001.

3.3 Predicting the U.S. Index of Industrial Production

Data:

The Index of Industrial Production (IP) is one of the key measures of economic activity. It is computed and
published monthly. Our task is to predict the one-month rate of change of the index from January 1980 to
December 1989 for models trained from January 1950 to December 1979. The exogenous inputs we have
used include 8 time series such as the index of leading indicators, housing starts, the money supply M2, the
S&P 500 Index. These 8 series are also recorded monthly. In previous studies by Moody, Levin & Rehfuss
(1993), with the same defined training and test data sets, the normalized prediction errors of the one month
rate of change were 0�81 with the neuz neural network simulator, and 0�75 with the proj neural network
simulator. 10

10The neuz networks were trained using stochastic gradient descent, early stopping via a validation set, and the PCP

Table 2: Comparison between the recurrent networks trained with the smoothing regularizer and those trained
with standard weight decay for the function estimation task. The results shown are averaged over 10 different
initial weights.

Number of Train Noise With Standard With Smoothing
-ing Patterns Variance Weight Decay Regularizer

0.1 0.035
0.006 0.020
0.002
11 0.5 0.123
0.008 0.067
0.007

1.0 0.151
0.000 0.111
0.015
0.1 0.014
0.001 0.009
0.000

21 0.5 0.058
0.002 0.037
0.001
1.0 0.095
0.004 0.071
0.001
0.1 0.009
0.000 0.006
0.000

41 0.5 0.032
0.001 0.024
0.005
1.0 0.057
0.001 0.039
0.016

Model:

We have simulated feedforward and recurrent neural network models. Both models consist of two layers.
There are 9 input units in the recurrent model, which receive the 8 exogenous series and the previous month
IP index change. We set the time-delayed length in the recurrent connections � � 1. The feedforward model
is constructed with 36 input units, which receive 4 time-delayed versions of each input series. The time-delay
lengths are 1, 3, 6 and 12, respectively. The activation functions of hidden units in both feedforward and
recurrent models are tanh functions. The number of hidden units varies from 2 to 6. Each model has one
linear output unit.

Training:

We have divided the data from January 1950 to December 1979 into four non-overlapping sub-sets. One
sub-set consists of 70% of the original data and each of the other three subsets consists of 10% of the original
data. The larger sub-set is used as training data and the three smaller sub-sets are used as validation data.
These three validation data sets are respectively used for determination of early stopped training, selecting
the regularization parameter and selecting the number of hidden units.

We have formed 10 random training-validation partitions. For each training-validation partition, three net-
works with different initial weight parameters are trained. Therefore, our prediction committee is formed by
30 networks.

The error of committee is the average of errors of all committee members. All networks in the committee
are trained simultaneously and stopped at the same time based on the committee error of a validation set.
The value of the regularization parameter and the number of hidden units are determined by minimizing the
committee error on separate validation sets.

Results:

Table 3 lists the results over the test data set. The performance measure is the normalized prediction error as

regularization method proposed by Levin, Leen & Moody (1994) The proj networks were trained using the Levenburg-
Marquardt algorithm, and network pruning after training was accomplished via the methods described in Moody & Utans
(1992). The internal layer nonlinearities for the neuz networks were sigmoidal, while some of the proj networks included
quadratic nonlinearities as described in Moody & Yarvin (1992).

Table 3: Normalized prediction errors for the one-month rate of return on the U.S. Index of Industrial
Production (Jan. 1980 - Dec. 1989). Each result is based on 30 networks.

Model Regularizer Mean
 Std Median Max Min Committee
Recurrent Smoothing 0.646
0.008 0.647 0.657 0.632 0.639
Networks Weight Decay 0.734
0.018 0.737 0.767 0.704 0.734

Feedforward Smoothing 0.700
0.023 0.707 0.729 0.654 0.693
Networks Weight Decay 0.745
0.043 0.748 0.805 0.676 0.731

used in Moody et al. (1993), which is defined as

DQ �

P
t�Q�S�t��

ˆS�t��2P
t�Q�S�t�� S̄�2

� (43)

where S�t� stands for the observations, Q represents the test data set and S̄ is the mean of S�t� over the
training data set. This measure evaluates prediction accuracy by comparing to a trivial predictor that uses the
mean of the training data as its prediction.

Table 3 also compares the out-of-sample performance of recurrent networks and feedforward networks trained
with our smoothing regularizer to that of networks trained with standard weight decay. The results are based
on 30 networks. As shown, the smoothing regularizer again outperforms standard weight decay with 95%
confidence (in t-distribution hypothesis) in both cases of recurrent networks and feedforward networks. We
also list the median, maximal and minimal prediction errors over 30 predictors. The last column gives the
committee results, which are based on the simple average of 30 network predictions. We see that the median,
maximal and minimal values and the committee results obtained with the smoothing regularizer are all smaller
than those obtained with standard weight decay, in both recurrent and feedforward network models.

Figure 3 plots the changes of prediction errors with the regularization parameter in recurrent neural network
modeling. As shown by the figure, the prediction error over the training data set increases with the regular-
ization parameter, the prediction errors over the validation and test data sets first decrease and then increase
with the regularization parameter. The optimal regularization parameter with the least validation error is
0�8 with our smoothing regularizer and 0�03 with standard weight decay. In all cases, we have found that
the regularization parameters should be larger than zero to achieve optimal prediction performance. This
confirms the necessity of regularization during training in addition to early stopped training.

We have observed and compared the weight histogram of the networks trained with our smoothing regularizer
and those with standard weight decay. As demonstrated in Figure 4, although the distribution has heavy
tail, most weights parameters in the networks with the smoothing regularizer are more concentrated on
small values. Its distribution is more like a real symmetric �-stable (S�S) 11 distribution rather than a
Gaussian distribution. This is also consistent with the soft weight-sharing approach proposed by Nowlan &
Hinton (1992), in which a Gaussian mixture is used to model the weight distribution. We thus believe that
our smoothing regularizer provides a more effective means to differentiate “essential” large weights from
“irrelevant” small weights than does standard weight decay.

With and Without Early Stopping of Training:

The results shown in Table 3 and Figures 3 and 4 are for networks trained with both the regularization and
early stopping techniques. From Figure 3, we see that the prediction performance is far worse than the
optimum if the network is trained with just early stopping and no regularization (� 0).

Another case is that the network is trained with regularization and without early stopping. We compare the

11See, for example, Shao & Nikias (1993).

0 0.2 0.4 0.6 0.8 1 1.2
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Regularization Parameter

P
re

di
ct

io
n

E
rr

or

Smoothing Regularizer
Training

Validation

Test

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.65

0.7

0.75

0.8

0.85

0.9

Regularization Parameter

P
re

di
ct

io
n

E
rr

or

Quadratic Weight Decay

Training

Validation

Test

Figure 3: Regularization parameter vs normalized prediction errors for the task of predicting the U.S. Index
of Industrial Production. The example given is for a recurrent network trained with either the smoothing
regularizer (upper panel) or standard weight decay (lower panel). For the smoothing regularizer, the optimal
regularization parameter which leads to the least validation error is 0�8 corresponding to a test error of 0�646.
For standard weight decay, the optimal regularization parameter is 0�03 corresponding to a test error of 0�734.
The new regularizer thus yields a 12% reduction of test error relative to that obtained using quadratic weight
decay.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Weight

F
re

qu
en

cy

With Smoothing Regularizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Weight

F
re

qu
en

cy

With Standard Weight Decay

Figure 4: Comparison of the weight histogram between the recurrent networks trained with our smoothing
regularizer and those with standard weight decay. Each histogram summarizes 30 networks trained on the IP
task. The smoothing regularizer yields a symmetric �-stable (or lepto-kurtic) distribution of weights (large
peak near zero and long tails), whereas the quadratic weight decay produces a distribution that is closer to
a Gaussian. The smoothing regularizer thus distinguishes more sharply between “essential” (large) weights
and “non-essential” (near-zero-valued) weights. The near-zero-valued weights can be pruned.

Table 4: Comparison of prediction performance of the networks trained with and without early stopping of
training. Results given in the table are the normalized prediction errors for the IP task as those shown in
Table 3. All the results are based on 30 recurrent networks. Whether trained with early stopping or not, the
networks are both trained with the smoothing regularizer.

Training Mean
 Std Median Max Min Committee
With Early Stopping 0.646
0.008 0.647 0.657 0.632 0.639

Without Early Stopping 0.681
0.057 0.664 0.938 0.643 0.657

performances between the networks trained with regularization and early stopping and the networks trained
with regularization but without early stopping in Table 4. For the latter networks, those 10% of the data
originally used for early stopping are now used in training. All other training conditions are the same for both
cases. From the table, we see that the performance of networks without early stopping is slightly worse than
those with regularization and early stopping simultaneously. However, the difference is small in terms of the
median or committee errors, even though the deviation of prediction errors has increased.

Stability Analysis:

In Section 2, we found that Eqn(20) (i.e. �jjW jj � 1) must hold to insure stability and that the effects of
small input perturbations are damped out. Figure 5 shows the value of �jjW jj of the trained networks. The
networks trained with the optimal regularization parameter satisfy the inequality, and those networks trained
with regularization parameters which are much larger or smaller than the optimal value do not satisfy the
stability requirement.

4 Concluding Remarks and Discussions

Regularization in learning can prevent a network from overtraining. Several techniques have been developed
in recent years, but all these are specialized for feedforward networks. To our best knowledge, a regularizer
for a recurrent network has not been reported previously.

We have developed a smoothing regularizer for recurrent neural networks that captures the dependencies
of input, output, and feedback weight values on each other. The regularizer covers both simultaneous and
time-lagged recurrent networks, with feedforward networks and single layer, linear networks as special cases.
Our smoothing regularizer for linear networks has the same form as standard weight decay. The regularizer
developed depends on only the network parameters, and can easily be used.

A series of empirical tests has demonstrated the efficacy of this regularizer and its superior performance
relative to standard quadratic weight decay. Empirical results show that the smoothing regularizer yields
a real symmetric �-stable (S�S) weight distribution, whereas standard quadratic weight decay produces a
normal distribution. We therefore believe that our smoothing regularizer provides a more reasonable constraint
during training than standard weight decay does. Our regularizer keeps “essential” weights large as needed
and, at the same time, makes “non-essential” weights assume values near to zero.

We conclude with several additional comments. As described in Eqn(19), to bound the first derivatives of
the activation functions in the hidden units, we have used their maximal value without considering different
nonlinearities for different nodes and ignoring their changes with time. We have extended our smoothing
regularizer to take into account these factors. Due to the page limit, we cannot include these extensions in
this paper.

In the simulations conducted in this paper, we have fully searched over the regularization parameter values
by using a validation data set. This helps us observe the effect of the regularization parameter, but it is time

0 0.5 1 1.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Regularization Parameter

ga
m

m
a

||W
||

Figure 5: Regularization parameter vs �jjW jj of trained recurrent networks. The networks are trained to
predict the U.S. Index of Industrial Production. For each regularization parameter, 30 networks have been
trained. Each network has four hidden units. The smoothing regularizer and early stopping are both used
during learning. From Figure 3, we have known the optimal regularization parameter for these networks is 0�8.
This figure plots the mean values of �jjW jj of these 30 networks with the error bars indicating the maximal
and minimal values. As shown, the networks with the optimal regularization parameter have �jjW jj � 1.
This confirms the networks’ stability, in the sense that the network response to any input perturbation will be
smooth.

consuming if the network and the training data set are large.

Stability is another big issue for recurrent neural networks. There is alot of literature on this topic, for example,
Hirsch (1989) and Kuan, Hornik & White (1994). In our derivation of the regularizer, we have found that
�jjW jj � 1 must hold to insure the effects of small input perturbations are damped out. This inequality can
be used for diagnosing the stability of trained networks as shown in Figure 5. It can also be appended to our
training criterion Eqn(17) as an additional constraint.

Werbos & Titus (1978) proposed the following cost function for their pure robust model

D �
PX
t�1

NoX
i�1

�
zi�t�� ẑi�t�

�zi�1� jwij�

�2

� (44)

In the model, wi was, in fact, a weight parameter in a feedback connection from the output to the input, but
it was pre-defined in the range 0 � wi � 1 and kept fixed after being defined. Werbo and Titus’s new cost
function actually had a similar effect as our smoothing regularizer. As they claimed, the biggest advantage of
their new cost function was its ability to shift smoothly in different environments.

A Neglecting the Cross-Covariance

We neglect the cross-covariance term in Eqn (8)

2
N

NX
t�1

�Z�t�� F ��P � I�t����F ��P � I�t��� F ��P � Ĩ�t��� (45)

for two reasons. First, its expectation value will be small, and secondly, its value can be rigorously bounded
with no qualitative change in our proposed training objective function in Eqn (9).

Noting that the target noise
� is uncorrelated with the input perturbations
x and assuming that model bias
can be neglected, the expectation value of Eqn (45) taken over possible training sets will be small:

hZ�t�� F ��P � I�t��i � hF ��I�t��� F ��P � I�t��i� h
��t�i

� Model Bias� 0 	 0 � (46)

Note here that �P are the weights obtained after training.

In addition, the expectation value of Eqn (45) taken over the input perturbations
x will be zero to first order
in the
x:

hF ��P � Ĩ�t��� F ��P � I�t��i 	

tX

s�1

�F ��P � I�t��

�X�s�

x�s�

�
� 0 � (47)

Of course, many nonlinear dynamical systems have positive Lyapunov exponents, and so the second order
and higher order effects in these cases can’t be ignored.

Although its expectation value will be small, the cross covariance term in Eqn (8) can be rigorously bounded.
Using the inequality 2ab � a2 � b2, we obtain:

2
N

NX
t�1

�Z�t�� F ��P � I�t����F ��P � I�t�� � F ��P � Ĩ�t���

�
1
N

NX
t�1

�Z�t�� F ��P � I�t���
2 �

1
N

NX
t�1

�F ��P � I�t��� F ��P � Ĩ�t���
2

� DP �
1
N

NX
t�1

�F ��P � I�t��� F ��P � Ĩ�t���
2
� (48)

Minimizing the first term DP and the second term 1
N

PN
t�1�F ��P � I�t�� � F ��P � Ĩ�t���2 in Eqn (8) during

training will thus automatically decrease the effect of the cross-covariance term. Using this bound, instead of
the small expectation value approximation, will in effect multiply the first two terms in Eqn (8) by a factor
of 2. However, this amounts to an irrelevant scaling factor and can be dropped. Thus, our proposed training
objective function Eqn (9) will remain unchanged.

B Output Sensitivity of a Trained Network to its Input Perturbation

For a recurrent network of form given by Eqn (15):

Y �t� � f
�
WY �t� �� � V X�t�

�
� Ẑ�t� � UY �t� � (49)

this appendix studies the output perturbation12

�2
ẑ�t� � k ˆ̃Z�t�� Ẑ�t� k

2
(50)

in response to an input perturbation

�2
x�t� � k X̃�t��X�t� k

2
� (51)

The output perturbation will depend on the weight parameter matrices U , V and W . The sizes of the U , V
and W are No �Nh, Nh �Nh and Nh �Ni. The numbers of output, hidden and input units are No, Nh and
Ni respectively.

By expressing the inputs to the hidden units as an Nh-dimensional column vector

O�t� � �o1�t�� � � � � oNh
�t��T � WY �t� �� � V X�t� (52)

and using the mean value theorem, 13 we get
f�Õ�t��� f�O�t�� � f

��O��t���Õ�t��O�t�� � (53)

where f�O�t�� � �f1�o1�t��� � � � � fNh
�oNh

�t���T , f�Õ�t�� � �f1�õ1�t��� � � � � fNh
�õNh

�t���T and f
��O��t��

is a diagonal matrix with elements �f ��O��t���jj � fj
��o�j�t��. fj

�� � is the first derivative of fj� � and
min�õj�t�� oj�t�� � o�j �t� � max�õj�t�� oj�t��.

With Schwarz’s inequality, the output disturbance can be expressed as:

�2
ẑ�t� � k U f�Õ�t��� U f�O�t�� k

2

� �2k U k2k Õ�t��O�t� k
2

(54)
where

� � max
t�j

j f �j�o
�
j �t�� j � (55)

For a feedforward network, O�t� � V X�t�, we obtain

�2
ẑ�t� � ��jjU jjjjV jj�2

�2
x�t� � (56)

We now consider the case of recurrent networks. A recurrent network usually satisfies the following dynamic
function: 14

�
dO�t�

dt
� W f�O�t��� O�t� � V X�t� ��� (57)

12The time varying quantities in Eqns (50) and (51) should not be confused with their associated ensemble averages �2
z

and �2
x defined in Section 2.

13See, for example, Korn & Korn (1968). Also, assume that all fj� � are continuous and continuously differentiable.
14We can obtain O�t� �� � WY �t� � V X�t� �� and Y �t� � f�O�t�� by substituting the following approximation

into Eqn(57):
dO�t�

dt
�

O�t� ���O�t�

�
�

Here, we assume that � is small. Note that such a dynamic function has also been used to describe the evolution process
of recurrent networks by other researchers, for example, Pineda (1988) and Pearlmutter (1989).

where dO�t�
dt

� � do1�t�
dt

� � � � �
doNh �t�

dt
�T . If we define

�2
o�t� � k Õ�t�� O�t� k

2
� (58)

then
d�2

o�t�

dt
� 2

	
Õ�t��O�t�

T �dÕ�t�
dt

�
dO�t�

dt

�
� (59)

With Eqn(57) and by assuming � 	 0

dÕ�t�

dt
�
dO�t�

dt
�

1
�
fW

	
f�Õ�t��� f�O�t��

�
	
Õ�t��O�t�

� V

	
X̃�t� ���X�t� ��

g� (60)

We get

d�2
o�t�

dt
�

2
�
f
	
Õ�t��O�t�

T
W
	
f�Õ�t��� f�O�t��

�k Õ�t��O�t� k

2
�
	
Õ�t��O�t�

T
V
	
X̃�t� ���X�t� ��

g � (61)

Using the mean value theorem and Schwarz’s inequality again, we obtain the following equations

k
	
Õ�t��O�t�

T
W
	
f�Õ�t��� f�O�t��

k � �jjW jj�2

o�t� (62)

for the first term in the right hand side of Eqn(61) and

k
	
Õ�t��O�t�

T
V
	
X̃�t� �� �X�t� ��

k � �o�t�jjV jj�x�t� �� (63)

for the third term of Eqn(61).

During the evolution process of the network, the input perturbation �x�t� is assumed to be constant or to
change more slowly than �o�t�. This is true when � is small. 15 Therefore, the �x�t� is replaced by �x in the
following derivation. With Eqns (62) and (63), Eqn(61) becomes

d�2
o�t�

dt
�

2
�

	
�jjW jj�2

o�t�� �2
o�t� � �o�t�jjV jj�x

(64)

or
d�o�t�

dt
�

1
�

	�
�jjW jj � 1

�
�o�t� � jjV jj�x

(65)

due to �o�t� 	 0. For notational clarity, define

a � �jjW jj � 1� and b � jjV jj � (66)

so that Eqn(65) becomes
d�o�t�

dt
�

1
�

	
a�o�t� � b�x

� (67)

Integration of Eqn(67) from t � 1 to t yields the solutions

�o�t� �

�
�o�t� 1� �

b�x

a

�
exp

�a
�

�
�
b�x

a
for a �� 0 ; (68)

�o�t� � �o�t� 1� �
b�x

�
for a � 0 � (69)

One sees that �o�t� depends on the current input perturbation �x as well as its previous value �o�t � 1�.
�o�t � 1� again depends on its previous values, so the current �o�t� is dependent on its all previous input

15See Footnote 6 in Section 2 for justification.

perturbations and the whole evolution process of the network learning. One also sees, to insure stability and
that the effects of small input perturbations are damped out, the following inequality is required:

a � 0 or equivalently �jjW jj � 1 � (70)

By replacing �x�t� back, we can rewrite Eqn (68) as

�o�t� � �o�t� 1� exp
�a
�

�
�

b

a

h
exp

�a
�

�
� 1

i
�x�t� � (71)

The first term in the right hand side is the zero-input response (when �x�t� � 0) and the second term is the
zero-memory response (when �o�t� 1� � 0). If we can minimize the zero-memory response at every time
step t, �o�0�� �o�1�� � � � � �o�t� 1� will all be small. Moreover, due to its monotonically decreasing response
function, the zero-input response will damp out. Therefore, the zero-input response can be ignored and we
can focus only on how to minimize the zero-memory response of �o�t�.

The zero-memory response of �o�t� in Eqns (69) and (71) becomes

�o�t� �
b�x�t�

a

h
exp

�a
�

�
� 1

i
for a �� 0 ; (72)

�o�t� �
b�x�t�

�
for a � 0 � (73)

Substituting Eqns (72) and (73) into Eqn(54) along with the definitions of a and b in Eqn(66), we obtain

�2
ẑ�t� �

�
�jjU jjjjV jj

1� �jjW jj

�
1� exp

�
�jjW jj � 1

�

���2

�2
x�t� for �jjW jj �� 1 ; (74)

�2
ẑ�t� �

�
�jjU jjjjV jj

�

�2

�2
x�t� for �jjW jj � 1 � (75)

Figure 6 plots the function:

G� ��jjW jj� �
1� exp

�
�jjW jj�1

�

�
1� �jjW jj

(76)

with �jjW jj � 1 and � � 0�1� 0�5� 1� 2. The figure depicts the effect of �jjW jj and � to the regularizer. As
shown, the regularizer becomes more and more sensitive to the change of recurrent weights as the time delay
� decreases. When � �� 0, �2

ẑ�t� is bounded by:

�2
ẑ�t� �

�
�jjU jjjjV jj

1� �jjW jj

�2

�2
x�t� for �jjW jj � 1 � (77)

When W � 0 and � � 0, the model becomes a feedforward network and the deduced form of Eqns (74) and
(77) with W � 0 and � � 0 is the same as Eqn(56). Therefore, the forms for feedforward networks and
single-layer, linear networks can also be expressed by Eqns (74) or (77), as special cases.

By defining

�� ��� �
� k U kk V k

1� � kW k

�
1� exp

�
�jjW jj � 1

�

��
� (78)

���� � �0��� �
� k U kk V k

1� � kW k
(79)

we obtain

�2
ẑ�t� � ��

2����2
x�t� (80)

� �2����2
x�t� � (81)

Therefore, the network output disturbance �2
ẑ�t� to its input perturbation �2

x�t� can be approximated by Eqns
(80) and (81). This concludes the derivation of Eqns (17), (18) and (21).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

gamma ||W||

G
_{

ta
u}

(g
am

m
a

||W
||)

tau=2

tau=1

tau=0.5

tau=0.1

Figure 6: Change of G� ��jjW jj� as the function of �jjW jj and � . G� ��jjW jj� is defined by Eqn(76).

Acknowledgements

We would like to thank T. Leen and the reviewers for their valuable comments on our first manuscript, T.
Rögnvaldsson, S. Rehfuss and Laiwan Chan for their proofreading our revised manuscript, and F. Pineda of
Johns Hopkins University for discussing Eqn(57) with us. We also thank the other members of the Neural
Network Research Group at OGI for their various suggestions.

References

Abu-Mostafa, Y. (1995), ‘Hints’, Neural Computation 7(4), 639–671.

Amari, S. (1972), ‘Characteristics of random nets of analog neural-like elements’, IEEE Transactions on
Systems, Man and Cybernetics SMC-2, 643–653.

Bishop, C. (1993), ‘Curvature-driven smoothing: a learning algorithm for feedforward networks’, IEEE
Transactions on Neural Networks 4(5), 882–884.

Bishop, C. (1995), ‘Training with noise is equivalent to Tikhonov regularization’, Neural Computation
7(1), 108–116.

Chauvin, Y. (1990), Dynamic behavior of constrained back-propagation networks, in D. Touretzky, ed.,
‘Advances in Neural Information Processing Systems 2’, Morgan Kaufmann Publishers, San Francisco,
CA, pp. 642–649.

Elman, J. (1990), ‘Finding structure in time’, Cognition Science 14, 179–211.

Eubank, R. L. (1988), Spline Smoothing and Nonparametric Regression, Marcel Dekker, Inc.

Geman, S., Bienenstock, E. & Doursat, R. (1992), ‘Neural networks and the bias/variance dilemma’, Neural
Computation 4(1), 1–58.

Girosi, F., Jones, M. & Poggio, T. (1995), ‘Regularization theory and neural networks architectures’, Neural
Computation 7, 219–269.

Grossberg, S. (1969), ‘On learning and energy-entropy dependence in recurrent and nonrecurrent signed
networks’, Journal of Statistical Physics 1, 319–350.

Hastie, T. J. & Tibshirani, R. J. (1990), Generalized Additive Models, Vol. 43 of Monographs on Statistics
and Applied Probability, Chapman and Hall.

Hirsch, M. (1989), ‘Convergent activation dynamics in continuous time networks’,Neural Networks 2(5), 331–
349.

Hoerl, A. & Kennard, R. (1970a), ‘Ridge regression: applications to nonorthogonal problems’, Technometrics
12, 69–82.

Hoerl, A. & Kennard, R. (1970b), ‘Ridge regression: biased estimation for nonorthogonal problems’, Tech-
nometrics 12, 55–67.

Hopfield, J. (1984), ‘Neurons with graded response have collective computational properties like those of
two-state neurons’, Proceedings of the National Academy of Science, USA 81, 3088–3092.

Korn, G. & Korn, T., eds (1968), Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book
Company.

Kuan, C., Hornik, K. & White, H. (1994), ‘A convergence result for learning in recurrent neural networks’,
Neural Computation 6(3), 420–440.

Leen, T. (1995), From data distributions to regularization in invariant learning, To appear in Neural Compu-
tation, 1995.

Levin, A. U., Leen, T. K. & Moody, J. E. (1994), Fast pruning using principal components, in J. Cowan,
G. Tesauro & J. Alspector, eds, ‘Advances in Neural Information Processing Systems 6’, Morgan
Kaufmann Publishers, San Francisco, CA.

Marcus, C. & Westervelt, R. (1989), Dynamics of analog neural networks with time delay, in D. Touretzky, ed.,
‘Advances in Neural Information Processing Systems 1’, Morgan Kaufmann Publishers, San Francisco,
CA.

Moody, J. E. & Utans, J. (1992), Principled architecture selection for neural networks: Application to
corporate bond rating prediction, in J. E. Moody, S. J. Hanson & R. P. Lippmann, eds, ‘Advances in
Neural Information Processing Systems 4’, Morgan Kaufmann Publishers, San Mateo, CA, pp. 683–690.

Moody, J. E. & Yarvin, N. (1992), Networks with learned unit response functions, in J. E. Moody, S. J. Hanson
& R. P. Lippmann, eds, ‘Advances in Neural Information Processing Systems 4’, Morgan Kaufmann
Publishers, San Mateo, CA, pp. 1048–55.

Moody, J. & Rögnvaldsson, T. (1995), Smoothing regularizers for feed-forward neural networks, Oregon
Graduate Institute Computer Science Dept. Technical Report, submitted for publication, 1995.

Moody, J., Levin, U. & Rehfuss, S. (1993), ‘Predicting the U.S. index of industrial production’, In proceedings
of the 1993 Parallel Applications in Statistics and Economics Conference,Zeist, The Netherlands. Special
issue of Neural Network World 3(6), 791–794.

Nowlan, S. & Hinton, G. (1992), ‘Simplifying neural networks by soft weight-sharing’, Neural Computation
4(4), 473–493.

Pearlmutter, B. (1989), ‘Learning state space trajectories in recurrent neural networks’, Neural Computation
1(2), 261–269.

Pineda, F. (1988), ‘Dynamics and architecture for neural computation’, Journal of Complexity 4, 216–245.

Pineda, F. (1989), ‘Recurrent backpropagation and the dynamical approach to adaptive neural computation’,
Neural Computation 1(2), 161–172.

Plaut, D., Nowlan, S. & Hinton, G. (1986), Experiments on learning by back propagation, Technical Report
CMU-CS-86-126, Carnegie-Mellon University.

Poggio, T. & Girosi, F. (1990), ‘Networks for approximation and learning’, IEEE Proceedings 78(9).

Powell, M. (1987), Radial basis functions for multivariable interpolation: a review., in J. Mason & M. Cox,
eds, ‘Algorithms for Approximation’, Clarendon Press, Oxford.

Rumelhart, D., Hinton, G. & Williams, R. (1986), Learning internal representations by error propagation, in
D. Rumelhart & J. McClelland, eds, ‘Parallel Distributed Processing: Exploration in the microstructure
of cognition’, MIT Press, Cambridge, MA, chapter 8, pp. 319–362.

Scalettar, R. & Zee, A. (1988), Emergence of grandmother memory in feed forward networks: learning with
noise and forgetfulness, in D. Waltz & J. Feldman, eds, ‘Connectionist Models and Their Implications:
Readings from Cognitive Science’, Ablex Pub. Corp.

Sejnowski, T. (1977), ‘Storing covariance with nonlinearly interacting neurons’, Journal of Mathematical
Biology 4, 303–321.

Shao, M. & Nikias, C. (1993), ‘Signal processing with fractional lower order moments: Stable processes and
their applications’, IEEE Proceedings 81(7), 986–1010.

Sjöberg, J. & Ljung, L. (1992), Overtraining, regularization and searching for minimum in neural nets, in
‘Preprint 4th IFAC symposium on Adaptive Systems in Control and Signal Processing’, pp. 669–674.

Sjöberg, J. & Ljung, L. (1995), Overtraining, regularization and searching for minimum with application to
neural nets, To appear in International Journal of Control.

Tikhonov, A. N. & Arsenin, V. I. (1977), Solutions of Ill-posed Problems, Winston ; New York : distributed
solely by Halsted Press. Scripta series in mathematics. Translation editor, Fritz John.

Tresp, V., Hollatz, J. & Ahmad, S. (1993), Network structuring and training using rule-based knowledge, in
S. J. Hanson, J. D. Cowan & C. L. Giles, eds, ‘Advances in Neural Information Processing Systems 4’,
Morgan Kaufmann Publishers, San Mateo, CA, pp. 871 – 878.

Wahba, G. (1990), Spline models for observational data, CBMS-NSF Regional Conference Series in Applied
Mathematics.

Weigend, A., Rumelhart, D. & Huberman, B. (1990), Back-propagation, weight-elimination and time series
prediction, in T. Sejnowski, G. Hinton & D. Touretzky, eds, ‘Proceedings of the connectionist models
summer school’, Morgan Kaufmann Publishers, San Mateo, CA, pp. 105–116.

Werbos, P. (1992), Neurocontrol and supervised learning: An overview and evaluation, in D. White &
D. Sofge, eds, ‘Handbook of Intelligent Control’, Van Nostrand Reinhold, New York.

Werbos, P. & Titus, J. (1978), ‘An empirical test of new forecasting methods derived from a theory of intel-
ligence: the prediction of conflict in Latin America’, IEEE Transactions Systems, Man & Cybernetics
SMC-8(9), 657–666.

