Submitted to NIPS94 (categorey: algorithms and architectures, preference: oral).

A Diagrammatic Approach to Gradient
Derivations for Neural Networks

Eric A. Wan
Department of Electrical Engineering and Applied Physics
Oregon Graduate Institute of Science & Technology
P.O. Box 91000, Portland, OR 97291

ericwan@eeap.ogi.edu

Francoise Beaufays
Department of Electrical Engineering
Stanford University
Stanford, CA 94305-4055

francois@simoon.stanford.edu

Abstract

Deriving gradient algorithms for time-dependent neural network
structures typically requires numerous chain rule expansions, dili-
gent bookkeeping, and careful manipulation of terms. We show,
however; that an efficient gradient descent algorithm may be for-
mulated for any network structure with virtually no effort using
a set of simple block diagram manipulation rules. Examples are
provided that illustrate the simplicity of the approach for a variety
of structures, including feedforward and feedback systems.

1 Introduction

In supervised learning, the goal is to find a set of network weights W that minimize
a cost function J = Zle Li(d(k),y(k)), where k is used to specify a discrete time
index (the actual order of presentation may be random or sequential), y(k) is the
output of the network, d(k) is a desired response, and Lj is a generic error metric
that may contain additional weight regularization terms. For illustrative purposes,

we will work with the squared error metric, Ly = e(k)?e(k), where e(k) is the error
vector.

Optimization techniques invariably require calculation of the gradient vector
0J/OW (k). At the architectural level, a variable weight w;; may be isolated be-
tween two points in a network with corresponding signals a;(k) and a;(k) (i.e.,
a;(k) = w;; a;(k)). Using the chain rule, we get
aJ oJ da;(k
dwi; (k) Oa; (k) 8w]((k)) = 6j(k) ai(k), (1)
ij j ij

where we define the error gradient &; (k) = 9.J/8a; (k). The error gradient &; (k) de-
pends on the entire topology of the network. Specifying the gradients necessitates
finding an explicit formula for calculating the delta terms. Backpropagation, for
example, is nothing more than an algorithm for generating these terms in a feed-
forward network. In the next section, we develop a simple diagrammatic method
for deriving the delta terms associated with any network architecture.

2 Networks and Reciprocal Construction Rules

An arbitrary neural network can be represented as a block diagram whose building
blocks are: summing junctions, branching points, univariate functions, multivariate
functions, and time-delay operators. Only discrete-time systems are considered.
A reciprocal network 1s constructed by reversing the flow direction in the original
network, labeling all resulting signals é;(k), and performing the following operations:

1. Summing junctions are replaced with branching points.

%\@—»% —> 6}8
S ;

2. Branching points are replaced with summing junctions.

8

S

a —>< —> § <—®/
a \)

3. Univariate functions are replaced with their derivatives.

ak —| () |— aK —> (K — f@a®) [~— &K

Explicitly, & (k) = f'(ai(k)) 8;(k), where f'(a;(k)) = da;(k)/da;(k). We
have included the time index k to emphasize the linear time-dependent
transmittance. Synaptic weights are a special case for which a; = w;; a;,
and the rule yields 6§ = w;; é;. For activation functions, a,(k) =

tanh(a;(k)), and f'(a;(k)) =1 — a2 (k).

4. Multivariate functions are replaced with their Jacobians.

a __, . 3, [— « J,
a _ |—» ao NG S -~ P 50

TCR e T el VI U8 R (SO A R
[I —» ap Bm -— -— Bp

8in(k) = F'(ain(k)) 8out(k), where F'(a;,(k)) £ dasy:(k)/0a, (k) corre-
sponds to a matrix of partial derivatives. For shorthand, F(a;,(k)) will
be written simply as F'(k). Clearly both summing junctions and univari-
ate functions are special cases of multivariate functions. A multivariate
function may also represent a product junction (for sigma-pi units) or even
another multi-layer network.

5. Delay operators are replaced with advance operators.

a(k HH a(= a(k1) —> 3,(0= 3 (k1) H 3.0

The unit delay, a;j(k) = ¢ 'a;(k) = a;(k — 1), is transformed into a unit
time advance: &;(k) = ¢*16;(k) = 6;(k + 1). The resulting system is thus
noncausal. Actual implementation of the reciprocal network in a causal
manner is addressed in specific examples.

6. QOutputs become inputs.

reciprocal
network

& «—— original

By reversing the signal flow, output nodes a,(k) = y,(k) in the original
network become input nodes in the reciprocal network. These inputs are
then set at each time step to —2e, (k). (For cost functions other than
squared error, the input should be set to 9Ly /0y, (k).)

These 6 rules allow direct construction of the reciprocal network from the original
network. Note that there is a topological equivalence between the two networks.
The order of computations in the reciprocal network is thus identical to the order of
computations in the forward network. Whereas the original network corresponds to
a nonlinear time-independent system (assuming the weights are fixed), the reciprocal
networkis a linear time-dependent system. The signals §; (k) that propagate through
the reciprocal network correspond to the terms 0J/0a;(k) necessary for gradient
adaptation. Exact equations may then be “read-out” directly from the reciprocal
network, completing the derivation. A formal proof of the validity and generality
of this method is presented in Wan and Beaufays 1994.!

!The method presented here is similar in spirit to Automatic Differentiation (Griewank
and Corliss, 1991). Automatic Differentiation is a simple method for finding derivative
of functions and algorithms that can be represented by acyclic graphs. Our approach,
however, applies to discrete-time systems with the possibility of feedback. In addition,
we are concerned with diagrammatic derivations rather than computational rule-based
implementations.

3 Examples

3.1 Backpropagation

We start by rederiving standard backpropagation (Rumelhart et al. 1986). Figure 1
shows a hidden neuron feeding other neurons and an output neuron in a multilayer
network. (Superscripts are added to denote the layer. Also the time index k is
omitted since multilayer networks are static structures.) The reciprocal network
also shown in Figure 1 is found by applying the construction rules of the previous
section.

i .
s el

Figure 1: Feedforward network (top) and reciprocal counterpart (bottom).

From this figure, we may immediately write down the equations for calculating the
delta terms:

—2¢; f'(sF) =1L

l_
S F6h ST it 0<i<-. (2)
J

These are precisely the equations describing standard backpropagation. In this case,
there are no delay operators and &; = &;(k)£8J/ds;(k) = (9eT(k)e(k))/ds; (k)
corresponds to an instantaneous gradient. Readers familiar with neural networks
have undoubtedly seen these diagrams before. What is new is the concept that
the diagrams themselves may be used directly to specify the delta’s, completely
circumventing all intermediate steps involving tedious algebra. It should further be
emphasized that this approach still constitutes a formal derivation.

3.2 Backpropagation-Through-Time

3K
—_— k -~
x(K) % y(K) % MM e
y(ke1) —> %K

NK) 3, (k+1)

Figure 2: Recurrent network and backpropagation-through-time.

For the next example, consider a network with output feedback (see Figure 2)

described by
y(k) = N(x(k),y(k — 1)), (3)

where x(k) are external inputs, and y(k) represents the vector of outputs that form
feedback connections. A is a multilayer neural network. If A" has only one layer of
neurons, every neuron output has a feedback connection to the input of every other
neuron and the structure is referred to as a fully recurrent network. Typically, only
a select set of the outputs have an actual desired response. The remaining outputs
have no desired response (error equals zero) and are used for internal computation.

Direct calculation of gradient terms using chain rule expansions is extremely com-
plicated. A weight perturbation at a specified time step affects not only the output
at future time steps, but future inputs as well. However, applying the reciprocal
contruction rules (see Figure 2) we find immediately:

§(k) = 8,(k + 1) — 2e(k) = N (k + 1)8(k + 1) — 2e(k). (4)

These are precisely the equations describing backpropagation-through-time, which
have been derived in the past using either ordered derivatives or Euler-Lagrange
techniques (Werbos, 1990). The diagrammatic approach is by far the simplest
and most direct method. Note that in this case, the product A’ (k)8(k) may be
calculated directly by a standard backpropagation of §(k) through the network at
time k.

A variety of other recurrent architectures may be considered including radial basis
networks with feedback. The system may be configured for neural control, using
either full-state feedback or more complicated ARMA (AutoRegressive Moving Av-
erage) models. In all cases, the diagrammatic approach provides a direct derivation
of the adaptation algorithm.

3.3 Cascaded Neural Networks

Consider two cascaded neural networks as illustrated in Figure 3. The inputs to the

first network are samples from a time sequence z(k). Delayed outputs of the first

network are fed to the second network. The cascaded networks are defined as
ulk) = MWy z(k),z(k—1),z(k—2)), (5)
y(k) = Noa(Wa,u(k),u(k —1),u(k — 2)), (6)

x(k) u(k) ET
N, %% N, y(k)
30 ——afgian 3M a fg+f a

80| 50| 8

N, (x(K) N (x(K) -2e(k)

Figure 3: Cascaded networks (top) and reciprocal counterpart (bottom).

where Wy and W represent the weights parameterizing the networks, y(k) is the
output, and u(k) the intermediate signal. Given a desired response for the output
y of the second network, it is straightforward to use backpropagation for adapting
the second network. It is not obvious, however, what the effective error should be
for the first network.

From the reciprocal network also shown in Figure 3, we simply label the desired
signals and write down the gradient relations:

bu(k) = 61(k) + 82k + 1) + b3(k +2), (7)
with

[61(k) 62(k) 6s(k)] = —2¢e(k) N3(u(k)), (8)
i.e., each é;(k) is found by backpropagation through the output network, and the

8;’s (after appropriate advance operations) are summed together. The gradient for
the weights in the first network is thus given by

01 _ o dulk)

= by (k) ——==, 9

W, (k) (k) W, (k) 9)
in which the product term is found by a single backpropagation with é, (k) acting as
the error to the first network. Equations can be made causal by simply delaying the
weight update for a few time steps. Clearly, extrapolating to an arbitrary number
of taps is also straightforward.

For comparison, let us consider the brute force derivative approach to finding the
gradient. Using the chain rule, the instantaneous error gradient is evaluated as:

0e? (k) Jy(k) (10)
6W1 6W1
dy(k) du(k) n Jy(k) Oulk—1) Jy(k) Oulk —2)

—2e(k)

= WG aw Yak-n omn T auk-2 o
= 51(k)6“(k)+62(/c)w+63(k)%’ (1)

ows ows

where we define
Oy(k)

Ju(k — i)
The §; terms are found simultaneously by a single backpropagation of the error
through the second network. Each product é;(k)(du(k — ¢ —1)/8W7) is then found
by backpropagation applied to the first network with 41 (k) acting as an error.
However, since the derivatives used in backpropagation are time-dependent, separate
backpropagations are necessary for each é;41(k). These equations, in fact, imply
backpropagation through an unfolded structure and is equivalent to weight sharing.
In situations where there may be hundreds of taps in the second network, this
algorithm is far less efficient than the one derived directly using reciprocal networks.
Similar arguments can be used to derive an efficient on-line algorithm for adapting
time-delay neural networks.

2

8:(k)= — 2e(k) i=1,2,3.

3.4 Temporal Backpropagation

For the last example, we return to Figure 1 for the feedforward network, but we now
imagine replacing all scalar weights w;; with discrete time linear filters to provide
dynamic interconnectivity between neurons. Possible forms for the synaptic filters
wij(g™1) are:

w Case 1

w(m)qg™™ Case I1
wig™) = P (12)

S g a(m)g™"
1= Sy b(m)g=m

In Case I, the filter reduces to a scalar weight and we have the standard definition
of a neuron for feedforward networks. Case II corresponds to a Finite Impulse
Response (FIR) filter in which the synapse forms a weighted sum of past values
of its input. Case III represents the more general Infinite Impulse Response (IIR)
filter, in which feedback i1s permitted.

Case 111

Deriving the gradient terms for adapting filter coefficients is quite formidable if we
use a direct chain rule approach. However, using the reciprocal construction rules
it is straightforward to verify that the delta associated with each neuron is given by

6; (k) = f'(s;(k)) ZWZ’l(qH)é}“(/ﬂ) (13)

These equations define the algorithm known as temporal backpropagation (Wan
1993). The algorithm may be viewed as a temporal generalization of backprop-
agation in which error gradients are propagated not by simply taking weighted
sums, but by backward filtering. Note that in the reciprocal network, backpropa-
gation is achieved through the reciprocal filters w(qt!). Different realizations for
the filters dictate how signals flow through the reciprocal structure as illustrated in
Figure 4. For FIR filters, simple buffering allows for a causal implementation. For
IR filters, a forward and backward sweep is necessary similar to the implementation
of backpropagation-through-time. In all cases, computations remain order N.

XK o[t 8 (k) «@{qeglae
w,(0) w(2) ”(2) V\{](M) w (0) w(1) w(2) w(M)

O—> Y(k)

8/

o a o (K)

Figure 4: Sample synaptic filter realizations: a) FIR transversal, b) reciprocal FIR
¢) TIR lattice, d) reciprocal TIR.

4 Summary

The previous examples served to illustrate the ease in which algorithms may be
derived using reciprocal construction rules. One starts with a diagrammatic rep-
resentation of the network of interest. A reciprocal network is then constructed
by simply swapping summing junctions for branching points, continuous functions
with derivative transmittances, and time delays with time advances. The final al-
gorithm is read directly off the reciprocal network. No chain rules are needed. The
diagrammatic approach provides a unified framework for formally deriving gradient
algorithms for arbitrary network architectures, network configurations, and systems.

Acknowledgements

Funding in part by EPRI contract RP801013 and NSF grant TRI 91-12531.

References

Griewank, A., and Coliss, G., Editors. (1991) Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application. Proceedings of the first SIAM
workshop on automatic differentiation, Brekenridge, Colorado.

Rumelhart, D.E., McClelland, J.L., and the PDP Research Group. (1986) Parallel
Distributed Processing: Fzxplorations in the Microstructure of Cognition, vol. 1.

MIT Press, Cambridge, MA.

Wan, E. (1993) Time series prediction using a connectionist network with internal
delay lines. In A. Weigend and N. Gershenfeld, editors, Time Series Prediction:
Forecasting the Future and Understanding the Past, Addison-Wesley.

Wan, E., and Beaufays, F. (1994) Diagrammatic Derivation of Gradient Algorithms
for Neural Networks. Submitted to Neural Computation, 1994.

Werbos, P. (1990) Backpropagation through time: what it does and how to do it.
Proc. IEEE, Special Issue on Neural Networks, vol. 2, pages 1550-1560.

