
Submitted to NIPS�� �categorey� algorithms and architectures� preference� oral��

A Diagrammatic Approach to Gradient

Derivations for Neural Networks

Eric A� Wan
Department of Electrical Engineering and Applied Physics

Oregon Graduate Institute of Science 	 Technology
P�O� Box �
���� Portland� OR ��
�

ericwan�eeap�ogi�edu

Fran�coise Beaufays
Department of Electrical Engineering

Stanford University
Stanford� CA ����������

francois�simoon�stanford�edu

Abstract

Deriving gradient algorithms for time�dependent neural network
structures typically requires numerous chain rule expansions� dili�
gent bookkeeping� and careful manipulation of terms� We show�
however� that an e�cient gradient descent algorithm may be for�
mulated for any network structure with virtually no e�ort using
a set of simple block diagram manipulation rules� Examples are
provided that illustrate the simplicity of the approach for a variety
of structures� including feedforward and feedback systems�

� Introduction

In supervised learning� the goal is to �nd a set of network weights W that minimize

a cost function J �
PK

k��Lk�d�k��y�k��� where k is used to specify a discrete time
index �the actual order of presentation may be random or sequential�� y�k� is the
output of the network� d�k� is a desired response� and Lk is a generic error metric
that may contain additional weight regularization terms� For illustrative purposes�

we will work with the squared error metric� Lk � e�k�Te�k�� where e�k� is the error
vector�

Optimization techniques invariably require calculation of the gradient vector
�J��W �k�� At the architectural level� a variable weight wij may be isolated be�
tween two points in a network with corresponding signals ai�k� and aj�k� �i�e��
aj�k� � wij ai�k��� Using the chain rule� we get

�J

�wij�k�
�

�J

�aj�k�

�aj�k�

�wij�k�
� �j�k� ai�k�� �
�

where we de�ne the error gradient �j�k�
�

� �J��aj�k�� The error gradient �j�k� de�
pends on the entire topology of the network� Specifying the gradients necessitates
�nding an explicit formula for calculating the delta terms� Backpropagation� for
example� is nothing more than an algorithm for generating these terms in a feed�
forward network� In the next section� we develop a simple diagrammatic method
for deriving the delta terms associated with any network architecture�

� Networks and Reciprocal Construction Rules

An arbitrary neural network can be represented as a block diagram whose building
blocks are� summing junctions� branching points� univariate functions� multivariate
functions� and time�delay operators� Only discrete�time systems are considered�
A reciprocal network is constructed by reversing the �ow direction in the original
network� labeling all resulting signals �i�k�� and performing the following operations�

� Summing junctions are replaced with branching points�

δ

δ

δ

aj

ai

al

� Branching points are replaced with summing junctions�

a

a

a

δj

δi

δl

�� Univariate functions are replaced with their derivatives�

f() a (k)ja (k)i f (a (k)) δ (k)jδ (k)i
’

i

Explicitly� �i�k� � f ��ai�k�� �j�k�� where f ��ai�k��
�

� �aj�k���ai�k�� We
have included the time index k to emphasize the linear time�dependent
transmittance� Synaptic weights are a special case for which aj � wij ai�
and the rule yields �i � wij �j � For activation functions� an�k� �
tanh�aj�k��� and f ��aj�k�� �
� a�n�k��

�� Multivariate functions are replaced with their Jacobians�

a (k)
in

a (k)
out

δ (k)
in

δ (k)
out

δi

δj

δm

δn

δo

δp

F (a (k))
in

’

ai

aj

am

an

ao

ap

F() {{{ {
�in�k� � F ��ain�k�� �out�k�� where F ��ain�k��

�

� �aout�k���ain�k� corre�
sponds to a matrix of partial derivatives� For shorthand� F ��ain�k�� will
be written simply as F ��k�� Clearly both summing junctions and univari�
ate functions are special cases of multivariate functions� A multivariate
function may also represent a product junction �for sigma�pi units� or even
another multi�layer network�

�� Delay operators are replaced with advance operators�

q+1 δ (k)
j

δ (k) =
i

δ (k+1)
j

q-1a (k)
i

a (k) =
j

a (k-1)i

The unit delay� aj�k� � q��ai�k� � ai�k �
�� is transformed into a unit
time advance� �i�k� � q���j�k� � �j�k �
�� The resulting system is thus
noncausal� Actual implementation of the reciprocal network in a causal
manner is addressed in speci�c examples�

�� Outputs become inputs�

ai

aj

original
network

a = yn

a = yo

n

o

δi

δj

 reciprocal
 network

δ = − 2 e
δ = − 2 e

n

o

n

o

By reversing the signal �ow� output nodes an�k� � yn�k� in the original
network become input nodes in the reciprocal network� These inputs are
then set at each time step to �
en�k�� �For cost functions other than
squared error� the input should be set to �Lk��yn�k���

These � rules allow direct construction of the reciprocal network from the original
network� Note that there is a topological equivalence between the two networks�
The order of computations in the reciprocal network is thus identical to the order of
computations in the forward network� Whereas the original network corresponds to
a nonlinear time�independent system �assuming the weights are �xed�� the reciprocal
network is a linear time�dependent system� The signals �j�k� that propagate through
the reciprocal network correspond to the terms �J��aj�k� necessary for gradient
adaptation� Exact equations may then be �read�out� directly from the reciprocal
network� completing the derivation� A formal proof of the validity and generality
of this method is presented in Wan and Beaufays
�����

�The method presented here is similar in spirit to Automatic Di�erentiation �Griewank
and Corliss� ������ Automatic Di�erentiation is a simple method for 	nding derivative
of functions and algorithms that can be represented by acyclic graphs� Our approach�
however� applies to discrete
time systems with the possibility of feedback� In addition�
we are concerned with diagrammatic derivations rather than computational rule
based
implementations�

� Examples

��� Backpropagation

We start by rederiving standard backpropagation �Rumelhart et al�
����� Figure

shows a hidden neuron feeding other neurons and an output neuron in a multilayer
network� �Superscripts are added to denote the layer� Also the time index k is
omitted since multilayer networks are static structures�� The reciprocal network
also shown in Figure
 is found by applying the construction rules of the previous
section�

wij

+

-2en
δl

i
+

+

δj
l+1

+

δn
L

f (s) ’
n
Lf (s) ’

i
l

wij

+

+

+ f()
s i

l

+ s j
l+1

+ f()

sn
L

yn

ap
l-1

Figure
� Feedforward network �top� and reciprocal counterpart �bottom��

From this �gure� we may immediately write down the equations for calculating the
delta terms�

�li �

���
��

�
ei f
��sLi � l � L

f ��sli� �
X
j

�l��j �wl��
ij � � l � L �
�

�
�

These are precisely the equations describing standard backpropagation� In this case�
there are no delay operators and �j � �j�k�

�

� �J��sj�k� � ��eT �k�e�k����sj�k�
corresponds to an instantaneous gradient� Readers familiar with neural networks
have undoubtedly seen these diagrams before� What is new is the concept that
the diagrams themselves may be used directly to specify the delta�s� completely
circumventing all intermediate steps involving tedious algebra� It should further be
emphasized that this approach still constitutes a formal derivation�

��� Backpropagation�Through�Time

q

-2e(k)

δ (k)x

N (k)’
δ (k)y δ (k+1)y

δ(k)x(k)

q-1

y(k)

y(k-1)
N (k)

Figure
� Recurrent network and backpropagation�through�time�

For the next example� consider a network with output feedback �see Figure
�
described by

y�k� � N �x�k��y�k �
��� ���

where x�k� are external inputs� and y�k� represents the vector of outputs that form
feedback connections� N is a multilayer neural network� If N has only one layer of
neurons� every neuron output has a feedback connection to the input of every other
neuron and the structure is referred to as a fully recurrent network� Typically� only
a select set of the outputs have an actual desired response� The remaining outputs
have no desired response �error equals zero� and are used for internal computation�

Direct calculation of gradient terms using chain rule expansions is extremely com�
plicated� A weight perturbation at a speci�ed time step a�ects not only the output
at future time steps� but future inputs as well� However� applying the reciprocal
contruction rules �see Figure
� we �nd immediately�

��k� � �y�k �
��
e�k� � N ��k �
���k �
��
e�k�� ���

These are precisely the equations describing backpropagation�through�time� which
have been derived in the past using either ordered derivatives or Euler�Lagrange
techniques �Werbos�
����� The diagrammatic approach is by far the simplest
and most direct method� Note that in this case� the product N ��k���k� may be
calculated directly by a standard backpropagation of ��k� through the network at
time k�

A variety of other recurrent architectures may be considered including radial basis
networks with feedback� The system may be con�gured for neural control� using
either full�state feedback or more complicated ARMA �AutoRegressive Moving Av�
erage� models� In all cases� the diagrammatic approach provides a direct derivation
of the adaptation algorithm�

��� Cascaded Neural Networks

Consider two cascaded neural networks as illustrated in Figure �� The inputs to the
�rst network are samples from a time sequence x�k�� Delayed outputs of the �rst
network are fed to the second network� The cascaded networks are de�ned as

u�k� � N��W�� x�k�� x�k�
�� x�k�
��� ���

y�k� � N��W�� u�k�� u�k�
�� u�k�
��� ���

q-1 q-1x(k)

N 1

q-1 q-1u(k)

N 2
y(k)

-2e(k)

δ (k)
u

δ (k)
x

δ (k)
1

δ (k)
2

q q q q

δ (k)
3

N (x(k))1
’ N (x(k))2

’

Figure �� Cascaded networks �top� and reciprocal counterpart �bottom��

where W� and W� represent the weights parameterizing the networks� y�k� is the
output� and u�k� the intermediate signal� Given a desired response for the output
y of the second network� it is straightforward to use backpropagation for adapting
the second network� It is not obvious� however� what the e�ective error should be
for the �rst network�

From the reciprocal network also shown in Figure �� we simply label the desired
signals and write down the gradient relations�

�u�k� � ���k� � ���k �
� � ���k �
�� ���

with
����k� ���k� ���k�� � �
e�k�N �

��u�k��� ���

i�e�� each �i�k� is found by backpropagation through the output network� and the
�i�s �after appropriate advance operations� are summed together� The gradient for
the weights in the �rst network is thus given by

�J

�W��k�
� �u�k�

�u�k�

�W��k�
� ���

in which the product term is found by a single backpropagation with �u�k� acting as
the error to the �rst network� Equations can be made causal by simply delaying the
weight update for a few time steps� Clearly� extrapolating to an arbitrary number
of taps is also straightforward�

For comparison� let us consider the brute force derivative approach to �nding the
gradient� Using the chain rule� the instantaneous error gradient is evaluated as�

�e��k�

�W�

� �
e�k�
�y�k�

�W�

�
��

� �
e�k�

�
�y�k�

�u�k�

�u�k�

�W�

�
�y�k�

�u�k �
�

�u�k �
�

�W�

�
�y�k�

�u�k �
�

�u�k �
�

�W�

�

� ���k�
�u�k�

�W�

� ���k�
�u�k �
�

�W�

� ���k�
�u�k �
�

�W�

� �

�

where we de�ne

�i�k�
�

� �
e�k�
�y�k�

�u�k � i�
i �
�
� ��

The �i terms are found simultaneously by a single backpropagation of the error
through the second network� Each product �i�k���u�k � i �
���W�� is then found
by backpropagation applied to the �rst network with �i���k� acting as an error�
However� since the derivatives used in backpropagation are time�dependent� separate
backpropagations are necessary for each �i���k�� These equations� in fact� imply
backpropagation through an unfolded structure and is equivalent to weight sharing�
In situations where there may be hundreds of taps in the second network� this
algorithm is far less e�cient than the one derived directly using reciprocal networks�
Similar arguments can be used to derive an e�cient on�line algorithm for adapting
time�delay neural networks�

��� Temporal Backpropagation

For the last example� we return to Figure
 for the feedforward network� but we now
imagine replacing all scalar weights wij with discrete time linear �lters to provide
dynamic interconnectivity between neurons� Possible forms for the synaptic �lters
wij�q

��� are�

w�q��� �

����������
���������

w Case I

MX
m��

w�m�q�m Case II

PM

m�� a�m�q�m

�
PM

m�� b�m�q�m
Case III

�

�

In Case I� the �lter reduces to a scalar weight and we have the standard de�nition
of a neuron for feedforward networks� Case II corresponds to a Finite Impulse
Response �FIR� �lter in which the synapse forms a weighted sum of past values
of its input� Case III represents the more general In�nite Impulse Response �IIR�
�lter� in which feedback is permitted�

Deriving the gradient terms for adapting �lter coe�cients is quite formidable if we
use a direct chain rule approach� However� using the reciprocal construction rules
it is straightforward to verify that the delta associated with each neuron is given by

�li�k� � f ��sli�k��
X
j

wl��
ij �q����l��j �k�� �
��

These equations de�ne the algorithm known as temporal backpropagation �Wan

����� The algorithm may be viewed as a temporal generalization of backprop�
agation in which error gradients are propagated not by simply taking weighted
sums� but by backward �ltering� Note that in the reciprocal network� backpropa�
gation is achieved through the reciprocal �lters w�q���� Di�erent realizations for
the �lters dictate how signals �ow through the reciprocal structure as illustrated in
Figure �� For FIR �lters� simple bu�ering allows for a causal implementation� For
IIR �lters� a forward and backward sweep is necessary similar to the implementation
of backpropagation�through�time� In all cases� computations remain order N �

y(k)q-1q-1 q-1

κ3

κ3

κ2

κ2

κ1

κ1

x(k)

(c)

(b)

qq

κ3

κ3

κ2

κ2

κ1

κ1

q

δ (k)x

δ (k)y

(d)

q q q

w (0)
ij

w (1)
ij

w (2)
ij

w (M)
ij

(a)

q-1 q-1 q-1

w (0)
ij

w (1)
ij

w (2)
ij

w (M)
ij

δ (k)

δ (k)y

x(k)

y(k)

Figure �� Sample synaptic �lter realizations� a� FIR transversal� b� reciprocal FIR
c� IIR lattice� d� reciprocal IIR�

� Summary

The previous examples served to illustrate the ease in which algorithms may be
derived using reciprocal construction rules� One starts with a diagrammatic rep�
resentation of the network of interest� A reciprocal network is then constructed
by simply swapping summing junctions for branching points� continuous functions
with derivative transmittances� and time delays with time advances� The �nal al�
gorithm is read directly o� the reciprocal network� No chain rules are needed� The
diagrammatic approach provides a uni�ed framework for formally deriving gradient
algorithms for arbitrary network architectures� network con�gurations� and systems�

Acknowledgements

Funding in part by EPRI contract RP��
�
� and NSF grant IRI �
�

��
�

References

Griewank� A�� and Coliss� G�� Editors� �
��
� Automatic Di�erentiation of Algo�
rithms� Theory� Implementation� and Application� Proceedings of the �rst SIAM
workshop on automatic di�erentiation� Brekenridge� Colorado�

Rumelhart� D�E�� McClelland� J�L�� and the PDP Research Group� �
���� Parallel
Distributed Processing� Explorations in the Microstructure of Cognition� vol�
�
MIT Press� Cambridge� MA�

Wan� E� �
���� Time series prediction using a connectionist network with internal
delay lines� In A� Weigend and N� Gershenfeld� editors� Time Series Prediction�
Forecasting the Future and Understanding the Past� Addison�Wesley�

Wan� E�� and Beaufays� F� �
���� Diagrammatic Derivation of Gradient Algorithms
for Neural Networks� Submitted to Neural Computation�
����

Werbos� P� �
���� Backpropagation through time� what it does and how to do it�
Proc� IEEE� Special Issue on Neural Networks� vol�
� pages
����
����

