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Abstract. We describe two important sets of tools for neural network modeling:
prediction risk estimation and network architecture selection. Prediction risk is de-
fined as the expected performance of an estimator in predicting new observations.
Estimated prediction risk can be used both for estimating the quality of model pre-
dictions and for model selection. Prediction risk estimation and model selection are
especially important for problems with limited data. Techniques for estimating pre-
diction risk include data resampling algorithms such as nonlinear cross–validation
(NCV) and algebraic formulae such as the predicted squared error (PSE) and gen-
eralized prediction error (GPE). We show that exhaustive search over the space
of network architectures is computationally infeasible even for networks of modest
size. This motivates the use of heuristic strategies that dramatically reduce the search
complexity. These strategies employ directed search algorithms, such as selecting
the number of nodes via sequential network construction (SNC) and pruning inputs
and weights via sensitivity based pruning (SBP) and optimal brain damage (OBD)
respectively.
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1 Introduction and Motivation

This paper describes two important sets of tools for neural network modeling:
prediction risk estimation and network architecture selection. Prediction risk is
defined as the expected performance of an estimator in predicting new observations.
While estimating prediction risk is important in its own right for providing a means
of estimating the expected error for predictions made by a network, it is also an
important tool for model selection.

In this section, we motivate the need for neural network architecture selection
techniques and survey various selection criteria. Section 2 introduces prediction risk,



while sections 3 and 4 present prediction risk estimation techniques, including test set
validation, nonlinear cross-validation (NCV), the predicted squared error (PSE), and
the generalized prediction error (GPE). Section 5 describes architecture selection for
perceptron architectures and the complexity and impossibility of exhaustive search
over the space of architectures. Section 6 describes some computationally feasible
heuristic search strategies, including determining the number of nodes via sequential
network construction (SNC), sensitivity based pruning (SBP) of inputs, and optimal
brain damage (OBD) pruning of weights.

1.1 Nonparametric Modeling with Limited Data

Many data modeling problems are characterized by two difficulties: (1) the absence
of a complete a priori model of the data generation process (such as the models fre-
quently available in physics) and (2) by a limited quantity of data. When constructing
statistical models for such applications, the issues of model selection and estimation
of generalization ability or prediction risk are crucial and must be addressed in order
to construct a near optimal model.

When a complete a priori model for the data generation process does not exist,
one often adopts a nonparametric modeling approach. In nonparametric modeling,
elements of a class of functions known to have good approximation properties, such
as smoothing splines (for one or two dimensional problems) or neural networks (for
higher dimensional problems), are used to fit the data. An element of this class (e.g.,
a particular neural network) is then chosen which “best fits” the data.

The notion of “best fits” can be precisely defined via an objective criterion, such as
maximum a posteriori probability (MAP), minimum Bayesian information criterion
(BIC) (Akaike, 1977; Schwartz, 1978), minimum description length (MDL) (Rissa-
nen, 1978), or minimum prediction risk (P). In this paper, we focus on the prediction
risk as our selection criterion for two reasons. First, it is straightforward to compute,
and second, it provides more information than selection criteria like MAP, BIC, or
MDL, since it tells us how much confidence to put in predictions produced by our
best model.

The restriction of limited data makes the model selection and prediction risk
estimation problems more difficult. A limited training set results in a more severe
bias / variance (or underfitting vs overfitting) tradeoff (see for example Geman,
Bienenstock and Doursat (1992)), so the model selection problem is both more
challenging and more crucial. In particular, it is easier to overfit a small training set,
so care must be taken not to select a model which is too large.

The expected training and test errors and the bias / variance tradeoff for finite
training samples as a function of model size are illustrated in Figure 1.

Also, limited data sets make prediction risk estimation more difficult if there is
not enough data available to hold out a sufficiently large independent test sample.
In these situations, one must use alternative approaches that enable the estima-
tion of prediction risk from the training data alone, such as data resampling and
algebraic estimation techniques. Data resampling methods include nonlinear refine-
ments of v–fold cross–validation (NCV) and bootstrap estimation (see section 3.3),
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Figure 1: Idealized depiction of the expected training error and expected test error (prediction
risk) versus model size for models trained on a fixed finite training sample. Note the regions
of underfitting (high model bias) and overfitting (high model variance). Model selection
techniques attempt to find the optimal tradeoff between bias and variance. The optimal model
corresponds to a global minimum of the expected test error or prediction risk curve. Since
the prediction risk can not be computed directly, it must be estimated. Examples of actual
(not expected) training error, test error, and estimated prediction risk curves can be found in
Utans and Moody (1991), Moody and Utans (1992), and Moody and Yarvin (1992).

while algebraic estimates in the regression context include various formulae de-
rived for linear models, for example generalized cross–validation (GCV) (Craven
and Wahba, 1979; Golub, Heath and Wahba, 1979), Akaike’s final prediction er-
ror (FPE) (Akaike, 1970), Akaike’s information criterion A (AIC) (Akaike, 1973),
and predicted squared error (PSE) (see discussion in Barron (1984)), and the re-
cently proposed generalized prediction error (GPE) for nonlinear models (Moody
(1991; 1992; 1995)).

2 Prediction Risk

2.1 Prediction Risk for Squared Error Loss

The notion of generalization ability can be defined precisely as the prediction risk,
the expected performance of an estimator is predicting new observations. We present
here a brief, simplified description for the most typical case: a signal plus noise data
generation model with a squared error loss function. (We present more general
formulations in Moody (1992) and Moody (1995).) For comprehensive discussions



of the standard approaches to prediction risk estimation, see Eubank (1988), Hastie
and Tibshirani (1990), and Wahba (1990).

Consider a set of observationsD � f��xj� tj�; j � 1 � � � Ng that are assumed to be
generated as

tj � ��xj� � �j (1)

where ��x� is an unknown function, the inputs xj are drawn independently with an
unknown stationary probability density functionp�x�, the �j are independent random
variables with zero mean (�̄ � 0) and variance �2

� , and the tj are the observed target
values.

The learning or regression problem is to find an estimate �̂��x;D� of ��x� given
the data set D from a class of predictors or models ���x� indexed by �. In general,
� � � � �S�A�W �, where S � X denotes a chosen subset of the set of available
input variables X, A is a selected architecture within a class of model architectures
A, and W are the adjustable parameters (weights) of architecture A. Here we make
explicit the dependence of �̂ on the available data D used for training. �̂ also
depends on the architecture class A which is chosen independently of the data set
D and its size N .

The prediction risk P ��� is defined as the expected performance on future data:

P ��� �

Z
dx p�x����x�� �̂�x��2 � �2

� � (2)

(Here, we have used the squared error, but P ��� can be defined for other loss
functions as well.) This can be approximated by the expected performance on a
finite test set:

P ��� � Ef
1
N

NX
j�1

�t�j � �̂��x
�
j ��

2g � (3)

where �x�j � t
�
j � are new observations that were not used in constructing �̂��x�. In

what follows, we shall use P ��� as a measure of the generalization ability of a
model.

Our strategy is to choose an architecture � in the model space � which minimizes
an estimate of the prediction riskP ���. The set of networks considered is determined
by the heuristic search strategies described in Section 6.

2.2 Prediction Risk for Nonlinear Models

The training error functions of nonlinear models, such as two layer perceptrons,
often contain many local minima (see Figure 2). Each minimum should be viewed as
defining a different predictor. In order to seek out good local minima, a good learning
procedure must therefore include both a gradient-based optimization algorithm and
a technique like random restart which enables sampling of the space of minima.

Since the models we use as predictors are trained to a particular “good” local
minimum in weight space, we are interested in estimating the generalization ability
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Figure 2: A nonlinear model can have many local minima in the error function. Each local
minimum wi, wj and wk (solid curve) corresponds to a different set of parameters and thus to
a different model. Training on a different finite sample of data or retraining on a subsample,
as in nonlinear cross-validation, gives rise to a slightly different error curve (dashed) and
perturbed minima w�

i, w�

j and w�

k . Variations due to data sampling in error curves and their
minima are termed model variance.

or prediction risk associated with that minimum and not others. This point is
important for the estimation procedures described in the next section.

Note that different finite training samples of fixed size will result in slightly
different error surfaces in weight space. This is illustrated in Figure 2 by the
difference between the solid and dashed curves. Note that the minima of the dashed
curve differ slightly from the minima of the solid curve. This effect gives rise to
model variance.

2.3 Estimates of the Prediction Risk

Since it is not possible to exactly calculate the prediction risk P� given only a finite
sample of data, we have to estimate it. The standard method based on test–set
validation is not advisable when the data set is small.

Cross-validation (CV) is a sample re–use method for estimating prediction risk; it
makes maximally efficient use of the available data. We have developed a nonlinear
refinement refinement of CV called NCV. Algebraic estimates, such as generalized
cross–validation (GCV), the final prediction error (FPE), the predicted squared error
(PSE), and the generalized prediction error (GPE), combine the average training
squared error (ASE) with a measure of the model complexity. These will be discussed
in the next sections.



3 Test-Set Validation and Cross-Validation

3.1 Test-Set Validation

If enough data is available, it is possible to use only part of the data for training
the network. The remaining exemplars form a test-set that can be used to estimate
the prediction risk. The obvious disadvantage of this method is that not all data is
used for training. Even in cases where the data set is large, one would like to use as
much data as possible for training, since the estimation error associated with model
variance becomes worse as the training set size is reduced. However, if the test-set
is too small, an accurate estimate of the prediction risk cannot be obtained. Test-set
validation becomes practical only if the data-sets are very large or new data can be
generated cheaply.

3.2 Cross-Validation: General Formulation

Cross–Validation is a method that makes minimal assumptions on the statistics of the
data. The idea of cross-validation can be traced back to Mosteller and Tukey (1968).
For reviews, see Stone (1974; 1978), Geisser (1975), Eubank (1988), Hastie and
Tibshirani (1990), and Wahba (1990). For our presentation of the general method
in this section, we follow Eubank. We then present a refinement of the method for
nonlinear models called NCV in Section 3.3.

Denoting a predictor trained on all N data samples by �̂��x�, let �̂��j��x� be a
predictor trained using all observations except �xj� tj� such that �̂��j��x� minimizes

ASEj �
1

�N � 1�

X
k ��j

�
tk � �̂��j��xk�

�2
� (4)

For �̂��j��x� we can treat the jth omitted datum as a test set, and repeat this for all
j. Then, an asymptotically unbiased estimator for the prediction risk P ��� of the
model trained on all N exemplars �̂��x� is the cross-validation average squared
error

CV ��� �
1
N

NX
j�1

�
tj � �̂��j��xj�

�2
� (5)

This form of CV ��� is known as leave–one–out cross–validation.
However, CV ��� in (5) is expensive to compute for neural network models; it

involves constructing an additional N networks, each trained with N � 1 patterns.
For the work described in this paper we therefore use a variation of the method, v-
fold cross–validation, that was introduced by Geisser (1975) and Wahba and Wold
(1975). Instead of leaving out only one observation for the computation of the sum
in (5), we delete larger subsets of D.

Let the data D be divided into v randomly selected disjoint subsetsDj of roughly
equal size: �vj�1Dj � D and �i �� j� Di 	Dj � 
. Let Nj denote the number of
observations in subset Dj . Let �̂��Dj ��x� be an estimator trained on all data except
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Figure 3: Illustration of the computation of 5–fold nonlinear cross-validation (NCV). First,
the network is trained on all data to obtain w0 which is used as starting point for the cross-
validation. Each subset Di� i � 1 � � � 5 is removed from the training data D in turn. The
network is trained, starting at w0, using the remaining data. This “perturbs” the weights to
obtain wi. The test error of the “perturbed model” wi is computed on the hold-out sample
Di. The average of these errors is the 5-fold CV estimate of the prediction risk for the model
with weights w0.

for �x� t� � Dj . Then, the cross-validation average squared error for subset j is
defined as

CVDj
��� �

1
Nj

X
�xk�tk��Dj

�
tk � �̂��Dj ��xk�

�2
� (6)

These are averaged over j to obtain the v-fold cross-validation estimate of prediction
risk:

CV ��� �
1
v

X
j

CVDj
��� � (7)

Typical choices for v are 5 and 10. Note that leave–one–out CV is obtained in the
limit v � N . Note that CV is a nonparametric estimate of the prediction risk that
relies only on the available data.

3.3 NCV: Cross-Validation for Nonlinear Models

The frequent occurrence of multiple minima in nonlinear models (see Figure 2), each
of which represents a different predictor, requires a refinement of the cross-validation
procedure. This refinement, nonlinear cross-validation (NCV), was implemented by



Utans and Moody (1991) and Moody and Utans (1992) and is illustrated in Figure 3
for v � 5.

A network is trained on the entire data setD to obtain a model �̂��x�with weights
w0. These weights are used as the starting point for the v-fold cross–validation
procedure. Each subset Dj is removed from the training data in turn. The network
is re-trained using the remaining data starting at w0 (rather than using random
initial weights). Under the assumption that deleting a subset from the training data
does not lead to a large difference in the locally-optimal weights, the retraining
from w0 “perturbs” the weights to obtain wi� i � 1 � � � v. The CV ��� computed
for the “perturbed models” �̂��Dj ��x� according to Equation (7) thus estimates the
prediction risk for the model with locally-optimal weights w0 as desired, and not
the performance of other predictors at other local minima.

If the network is trained from random initial weights for each subset, it could
converge to a different minimum corresponding to wi different from the one corre-
sponding to w0. This would correspond to a different model. Thus, starting from
w0 assures us that the cross-validation estimates the prediction risk for a particular
model in question corresponding to w � w0.

In Figure 2, the unperturbed model could be associated with one of the minima of
the solid error curve (say wk), and a perturbed model would be associated with the
corresponding minimum of the dashed curve with weights w�

k. Our NCV algorithm
attempts to avoid finding a “wrong” perturbed model (e.g., with weights w�

i). NCV
has the additional benefit of having much less computational load than would be
incurred by retraining from random initial weights.

Note that the same perturbation procedure described here yields nonlinear refine-
ments of the bootstrap and jackknife algorithms as well. (See for example Efron and
Gong (1983).)

4 Algebraic Estimates of Prediction Risk

4.1 Predicted Squared Error for Linear Models

For linear regression models with the squared error loss function, a number of useful
algebraic estimates for the prediction risk have been derived. These include the well
known generalized cross–validation (GCV) (Craven and Wahba, 1979; Golub et al.,
1979) and Akaike’s final prediction error (FPE) (Akaike, 1970) formulas:

GCV ��� � ASE���
1�

1� Q���
N

�2 FPE��� � ASE���

�
1 � Q���

N

1� Q���
N

�
� (8)

Q��� denotes the number of weights of model�. Note that althoughGCV andFPE
are slightly different for small sample sizes, they are asymptotically equivalent for
large N :

GCV ��� � FPE��� � ASE���

�
1 � 2

Q���

N

	
(9)



A more general expression of predicted squared error (PSE) is:

PSE��� � ASE��� � 2b�2Q���

N
� (10)

where b�2 is an estimate of the noise variance in the data. Estimation strategies for
(10) and its statistical properties have been analyzed by Barron (1984). FPE is
obtained as special case ofPSE by setting b�2 � ASE���	�N�Q����. See Eubank
(1988), Hastie and Tibshirani (1990) and Wahba (1990) for tutorial treatments.

It should be noted that that PSE, FPE and GCV are asymptotically unbiased
estimates of the prediction risk for the neural network models considered here
under certain conditions. These are: (1) the noise �j in the observed targets tj
is independent and identically distributed, (2) the resulting model is unbiased, (3)
weight decay is not used, and (4) the nonlinearity in the model can be neglected.
For PSE, we further require that an asymptotically unbiased estimate of b�2 is used.
In practice, however, essentially all neural network fits to data will be biased and/or
have significant nonlinearity.

Although PSE, FPE and GCV are asymptotically unbiased only under the above
assumptions, they are much cheaper to compute than NCV since no retraining is
required.

4.2 Generalized Prediction Error (GPE) for Nonlinear Models

The predicted squared error PSE, and therefore the final prediction error FPE, are
special cases of the generalized prediction error GPE (Moody (1991; 1992; 1995)).
We present an abbreviated description here.
GPE estimates prediction risk for biased nonlinear models which may use general

loss functions and include regularizers such as weight decay. The algebraic form is

GPE��� � Etrain��� �
2
N

tr bV bG��� � (11)

where Etrain��� is the training set error (average value of loss function on training
set), bV is a nonlinear generalization of the estimated noise covariance matrix of the
observed targets, and bG��� is the estimated generalized influence matrix, a nonlinear
analog of the standard influence or hat matrix.

GPE can be expressed in an equivalent form as:

GPE��� � Etrain��� � 2 b�2
eff

bQeff���

N
� (12)

where bQeff � tr bG is the estimated effective number of model parameters, andb�2
eff � �tr bV bG�	�tr bG� is the estimated effective noise variance in the data. For

nonlinear and/or regularized models, bQeff ��� is generally not equal to the number
of weights Q���.

When the noise in the target variables is assumed to be independent with uniform
variance and the squared error loss function is used, (12) simplifies to:

GPE��� � ASE��� � 2b�2
bQeff ���

N
� (13)



Note that replacing bQeff ��� with Q��� gives the expression for PSE. Various
other special cases of (11) and (13) have been derived by other authors and can be
found in Eubank (1988), Hastie and Tibshirani (1990) and Wahba (1990). Larsen
(1992) has extended (11) to autoregressive time series models, and Liu (1993) and
Moody (1995) have shown that N-fold cross validation is equivalent to O�1	N� to
the general form of GPE in equation (11).

5 Neural Network Architecture Selection

For the discussion of architecture selection in this paper, we focus on the most widely
used neural network architecture, the two-layer perceptron (or backpropagation)
network. The response function �̂��x� for such a network with I� input variables,
H� internal (hidden) neurons, and a single output neuron is:

�̂��x� � f� v0 �
H�X
��1

v� g�w�0 �
I�X
��1

w�� x��� � (14)

Here, x� are the input variables, f and g are typically sigmoidal nonlinearities, the
w�� and w�0 are input weights and thresholds, the v� and v0 are the second layer
weights and threshold, and the index � is an abstract label for the specific two layer
perceptron network architecture. While we consider for simplicity this restricted
class of perceptron networks in this paper, our approach can be easily generalized to
networks with multiple outputs and multiple layers.

For two layer perceptrons, the architecture selection problem is to find a good
(hopefully near-optimal) architecture � for modeling a given data set. The architec-
ture � is characterized by

� the number of hidden units H�,

� the number of input variables I�,

� and the subset of weights v� and w�� that are non-zero.

If all of the v� and w�� are non-zero, the network is referred to as fully connected.
If many of the input weights w�� are zero, the network is sparsely connected, while
setting to zero one of the v� (or all w�� for fixed 
) corresponds to removing a
hidden unit.

Note that for brevity of exposition in the sequel, we denote weights and biases in
either layer of the network generically by w.

5.1 Complexity of Exhaustive Search

If we consider a set of two layer perceptrons up to some maximal size determined
by Imax and Hmax, then the maximal fully connected network has

Mmax � 1 �Hmax�Imax � 2�



weights. All smaller two layer networks can be obtained from the maximal net-
work by setting weights and thresholds to zero. The total number of resulting
network topologies (treating the ordering of the hidden units as unique and thus not
considering permutations of them) is

Nmax � 2Mmax

For example, a set of networks with Imax � 10 andHmax � 12 yieldsNmax � 2145 �
4�46  1043. Even though the maximal network in this example is modest in size,
Nmax is a prohibitively large number of network topologies to search exhaustively.
If each of theNmax networks could be trained and tested in one microsecond of CPU
time, the total time required to train and test allNmax networks in this example would
be 1�41 1030 years or roughly 1020 times the age of the universe.

Even if exhaustive search for an optimum (as measured by a selection criterion)
were computationally feasible, it would likely prove to be pointless, since based
on our experience, many network architectures are likely to provide similar per-
formance. (See, for example, Figure 3 of Moody and Yarvin (1992).) Moreover,
the model variance for networks trained on small, noisy data sets will make the
near-optimal models indistinguishable from the asymptotically optimal model.1

Thus, we are compelled to consider restricted search strategies over the space of
network architectures. This is the subject of Section 6.

6 Heuristic Search over the Space of Perceptron Architectures

Given the futility of exhaustively sampling the space of possible networks in search of
an optimum, we present efficient heuristic search algorithms. These were developed
while building a model for corporate bond rating prediction. Brief descriptions of
the original work can be found in Utans and Moody (1991) and Moody and Utans
(1992). A more detailed description of the bond rating problem and our empirical
results is presented in Moody and Utans (1994).

First, a locally-optimal number of internal units is selected from a sequence of
fully connected networks with increasing number of hidden units. An efficient
algorithm, sequential network construction (SNC), is used for training the networks
in this sequence. Then, using the optimal fully connected network, input variables
are pruned via sensitivity based pruning (SBP) and weights are pruned via optimal
brain damage (OBD).

Figure 4 depicts two search strategies. After selecting the number of hidden
units H�, input removal and weight elimination can be carried out in parallel (A)
or sequentially (B). The first strategy (A), which was used for the bond rating
simulations described in Utans and Moody (1991) and Moody and Utans (1992),
allows a comparison of the results of the input and weight pruning steps but requires a
final step of combining the resulting networks to obtain the final network architecture.
On the other hand, the sequential approach (B) is less costly to implement since for

1The term asymptotic refers to the limit of infinite training set size.
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Figure 4: Heuristic Search Strategies: After selecting the number of hidden units H� , the
input removal and weight elimination can be carried out in parallel (A) or sequentially (B). In
(B), the selection of the number of hidden units and removal of inputs may be iterated (dashed
line).

the weight elimination stage, the network is already reduced in size by removing
inputs. This alternative corresponds to a coarse to fine strategy: pruning inputs
removes groups of weights while the final weight elimination is concerned with
individual weights. A refinement of the sequential approach is to re-determine the
optimal number of hidden units after a good set of input variables has been selected
or after the removal of each unnecessary input variable. This results in an iterative
procedure (dashed line in Figure 4 (B)).

6.1 Selecting the Number of Hidden Units

For determining the number of hidden units, we construct and train a nested set of
models, using an efficient algorithm which we call sequential network construction
(SNC).

Before proceeding, we would like to note that many authors have independently
proposed iterative network construction algorithms. Probably the best known of
these is the cascade correlation algorithm (Fahlman and Lebiere, 1990). Cascade
correlation was preceded by Ash (1989); see also Moody (1989). We have not
attempted to exhaustively review this area, nor do we claim that SNC is necessarily
unique or optimal.



6.1.1 The SNC Algorithm

The SNC algorithm constructs a sequence of networks, each of which is fully
connected and uses all input variables, differing only in the number of hidden units.
The sequence is built as follows: First a network with a small number of hidden units
is trained, using random initial weights. Larger networks are obtained iteratively, by
adding units in clumps of size C to the largest net in the sequence. This continues
until a network of some predetermined maximum size has been produced.

When a larger network, of size H� � C, is constructed, it is trained as follows:

1. The weights of the previous network are used as initial weights for the first
H� units of the new network. The weights of the newly added clump of C
units are initialized to small random values.

2. The weights of the new clump are trained to a local optimum while keeping
the weights of the first H� units fixed.

3. Finally, all weights are allowed to vary, and are trained until a local optimum
for the entire network is reached.

The SNC algorithm is designed to solve two problems. First, it substantially
reduces computation time compared to what would be required if larger networks
were trained from scratch. Secondly, the sequence of networks constructed comprise
a nested set.

6.1.2 Nested Models and Inverse Pruning

In general, a nonlinear network has many local minima, and each local minimum
corresponds to a different set of parameters and thus to a different model (see
Figure 2). The SNC algorithm, on the other hand, provides some continuity in
model space by constructing a nested sequence in which larger networks contain the
smaller networks.

The sequential construction accomplishes this nesting as follows. As larger net-
works are constructed, the features discovered by the smaller network’s hidden units
will continue to be used by the larger networks. In effect this means that as the
sequence grows, the networks are trained to learn corrections to the mappings dis-
covered so far. Moreover, we have found that the effect on existing hidden units of
adding a new hidden unit once the model is big enough is likely to be small.

Because of the resulting continuity in model space, SNC can be thought of as an
inverse pruning procedure. Since the most recently added clump of units serves only
to correct a mapping learned already, it is highly likely that a node pruning method
would prune these units first. Also, it is clearly less expensive computationally to
construct a sequence of networks from small to large than it is to first train large
networks and prune from large to small.

Three advantages are obtained by constructing a nested set of models. First,
the sequence will have monotonically decreasing (or non-increasing) training error.
Secondly, the sequence is likely to have an easily identifiable minimum of prediction



risk. Thirdly, architecture selection via prediction risk has a formal connection to
the hypothesis testing approach to pruning when the set of models is nested (see for
example the discussion in Akaike (1974)). The inverse pruning approach allows the
theory and techniques of hypothesis testing to be applied to models trained via SNC.

Note that in spite of these advantages of SNC, it is possible that pruning nodes
from a larger network may give rise to a better fit to the data and better generalization
for a given final number of nodes. This is not to say, however, that a larger network
obtained via SNC might not perform as well or better. Resolving the issue of whether
SNC or node pruning is more effective in general requires a systematic study.

Finally, for each network in the sequence produced by SNC, an estimate of the
prediction risk is computed. The network selected at this stage for further refinement
via input and weight pruning is the one with the smallest estimated prediction risk.

6.2 Pruning Inputs and Weights via Directed Search

After the number of hidden units of the fully connected network with all available
input variables is determined, the next step of our heuristic search is to select input
variables and remove individual weights from the network.

As before, we evaluate a candidate network architecture by computing an estimate
of the prediction risk. In order to avoid searching over the very large range of
architectures obtained by considering all possible combinations of inputs and all
possible connection structures, we propose a directed search strategy using the
sensitivity-based input pruning (SBP) and optimal brain damage (OBD) algorithms.

With these algorithms, candidate architectures are constructed by evaluating the
effect of removing an input variable or an individual weight from the fully connected
network. These are ranked in order of increasing training error. Inputs and weights
are then removed following a “Best First” strategy, i.e. selecting the input or weight
that, when removed, increases the training error least. The candidate architecture is
obtained by retraining the remaining weights, starting from their previous values, to
find a new minimum in weight space. Note that we assume that the weights obtained
after making a small modification to the network, such as removing a single input
variable or a single weight, brings us closer to a good solution.

Note that the weight elimination stage can reduce the number of hidden units if
all weights to or from a particular hidden unit are eliminated. For example, for
the model considered here with a single output unit, eliminating a weight from a
hidden unit to the output unit effectively removes that hidden unit from the network.
Pruning units this way is more costly computationally than choosing a good number
of hidden units in the first place (as is the purpose of our SNC and unit selection
algorithm). However, both methods can complement each other.

6.2.1 Pruning of Input Variables via Sensitivity Analysis

In Moody and Utans (1992) and Utans and Moody (1991), we proposed a simple
sensitivity-based pruning method for input variables (SBP). The SBP algorithm
computes a sensitivity measureSi to evaluate the change in training error that would



result if input xi were removed from the network. The sensitivity of the network
model to variable i is defined as:

Si �
1
N

X
j

Sij � (15)

where Sij is the sensitivity computed for exemplar xj . Since there are usually many
fewer inputs than weights, a direct evaluation of Si is feasible:

Sij � SE�xi� w��� SE�xij� w�� with xi �
1
N

NX
j�1

xij � (16)

Si measures the effect on the training squared error (SE) of replacing the ith input
xi by its average xi for all exemplars. Replacement of a variable by its average
value removes its influence on the network output.

Note that in computing Si, no retraining is done in evaluating SE�xi� w��. Also
note that it is not sufficient to just set xij � 0 � j, because the value of the bias of
each hidden unit was determined during training and would not be offset properly
by setting the input arbitrarily to zero. Of course, if the inputs are normalized to
have zero mean prior to training, then setting an input variable to zero is equivalent
to replacing it by its mean.

If the number of input variables I� is large, Si is expensive to compute and can be
approximated. For a small change of the ith input of the jth exemplar, dxij,

dSE �
X
i

�SE

�xij
dxij �

1
2

X
i1i2j

�2SE

�xi1j�xi2j

dxi1jdxi2j �O�jjxij jj
3� � (17)

The linear term in Equation (17) approximates Sij as

Ŝij �
�SE

�xij
dxij with dxij � xi � xij � (18)

and the derivative information can be efficiently computed as a minor extension to
the backpropagation algorithm used for training.

Note that the SBP algorithm neglects possible correlations between inputs. An
improvement of the method would be to first orthogonalize the inputs (for example
by a KL transform) and perform the sensitivity analysis using the transformed inputs.
The pruning would be performed on input eigennodes rather than the actual input
variables. This approach has been explored recently by Levin, Leen and Moody
(1994).

A related input pruning algorithm based on a different approximation of the
sensitivity measure has been proposed by Refenes, Francis and Zapranis (1994).

6.2.2 Weight Pruning via “Optimal Brain Damage”

Optimal Brain Damage (OBD) was introduced by LeCun, Denker and Solla (1990)
as a method to reduce the number of weights in a neural network to avoid overfitting.



OBD is designed to select those weights in the network whose removal will have a
small effect on the training average squared error (ASE). Assuming that the original
network is too large, removing these weights and retraining the now smaller network
should improve the generalization performance.

The method approximates ASE at a minimum w � w
� in weight space by a

diagonal quadratic expansion. The change in ASE caused by a small change dw
from w� is

dASE �
X
k

�ASE

�wk

dwk �
1
2

X
kl

�2ASE

�wk�wl

dwkdwl �O�jjwkjj
3� � (19)

where for simplicity of notationwk represents any weight in any layer of the network.
Since the approximation is taken at a minimum in weight space, the first term in

Equation (19) vanishes. In addition, terms higher order than quadratic are ignored.
Thus, Equation (19) reduces to

dASE �
1
2

X
k

�2ASE

�wk�wk

dwkdwl � (20)

The evaluation of the Hessian becomes prohibitively expensive for large networks.
By approximating the Hessian by considering only diagonal terms � 2ASE	�w2

k, we
assume that weights can be removed individually without influencing each other.
The saliency defined as

sk �
1
2
�2ASE

�wk�wk

w2
k (21)

is a measure (in the diagonal approximation) of the change of ASE when weight
wk is removed from the network by setting its value to zero. Note that the saliency
must be computed after training has stopped at a local minimum. The second
derivatives required for sk can be efficiently computed by a method similar to the
backpropagation of first derivatives for weight updates during training (LeCun et al.,
1990).

The procedure for eliminating weights as described by LeCun et al. (1990) consists
of ranking the weights in the network according to increasing sk, removing first one
weight or a few weights, then retraining the network, and repeating an arbitrary
number of times. In contrast, we accept a network modification only if the expected
performance on the test set is improved as measured by a decrease in the estimate
of the prediction risk bP ���.
6.3 Final Remarks on Pruning

6.3.1 Multiple Minima of Prediction Risk

Note that since the networks are trained to minimize the training error ASE and not
P ���, the prediction risk need not be a monotonically decreasing function of the
number of inputs or weights eliminated, and there can be multiple minima in the
sequence of networks considered. Since the SBP and OBD procedures start with a



fully connected network, it is not sufficient to stop removing weights when bP ���
first increases. This is particularly true given that both SBP and OBD are greedy
algorithms, and they neglect interactions between multiple inputs and weights. Thus,
removing additional inputs or weights even after bP ��� first increases can lead to a
further reduction of the prediction risk and thus yield a smaller final network.

6.3.2 Other Pruning Methods

A number of other pruning methods besides those we have described here are
potentially effective and should be considered when constructing neural network
models. These include the irrelevant hidden unit and irrelevant input hypothesis tests
(White, 1989), pruning of units via skeletonization (Mozer and Smolensky, 1990),
optimal brain surgeon OBS (Hassibi and Stork, 1993), and principal components
pruning PCP (Levin et al., 1994). It is important to note that all these methods,
along with OBD and our method of input pruning via SBP, are closely related to
the Wald hypothesis testing procedure (see for example Buse (1982)). In fact, the
saliencies used in OBD, OBS, and SBP are special cases of the Wald test statistic.
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