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Abstract

In this paper� we derive classi�ers which are winner�take�all �WTA�
approximations to a Bayes classi�er with Gaussian mixtures for
class conditional densities� The derived classi�ers include clustering
based algorithms like LVQ and k
Means� We propose a constrained
rank Gaussian mixtures model and derive a WTA algorithm for it�
Our experiments with two speech classi�cation tasks indicate that
the constrained rank model and the WTA approximations improve
the performance over the unconstrained models�

� Introduction

A classi�er assigns vectors from Rn �n dimensional feature space
 to one of K
classes� partitioning the feature space into a set of K disjoint regions� A Bayesian
classi�er builds the partition based on a model of the class conditional probability
densities of the inputs �the partition is optimal for the given model
�

In this paper� we assume that the class conditional densities are modeled by mixtures
of Gaussians� Based on Nowlan�s work relating Gaussian mixtures and clustering
�Nowlan ����
� we derive winner�take�all �WTA� algorithms which approximate a
Gaussian mixtures Bayes classi�er� We also show the relationship of these algo

rithms to non
Bayesian cluster
based techniques like LVQ and k
Means�

The main problemwith using Gaussian mixtures �or WTA algorithms thereof
 is the
explosion in the number of parameters with the input dimensionality� We propose



a constrained rank Gaussian mixtures model for classi�cation� Constraining the
rank of the Gaussians reduces the e�ective number of model parameters thereby
regularizing the model� We present the model and derive a WTA algorithm for it�
Finally� we compare the performance of the di�erent mixture models discussed in
this paper for two speech classi�cation tasks�

� Gaussian Mixture Bayes �GMB� classi�ers

Let x denote the feature vector �x � Rn
� and f�I � I � �� � � � �Kg denote the
classes� Class priors are denoted p��I
 and the class
conditional densities are de

noted p�x j�I
� The discriminant function for the Bayes classi�er is

�I�x
 � p��I
 p�x j�I
 � ��


An input feature vector x is assigned to class I if �I�x
 � �J �x
 �J �� I � Given the
class conditional densities� this choice minimizes the classi�cation error rate �Duda
and Hart ����
�

We model each class conditional density by a mixture composed of QI component
Gaussians� The Bayes discriminant function �see Figure �
 becomes
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where �Ij and �
I
j are the mean and the covariance matrix of the j

th mixture com


ponent for �I �
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Fig� �� Figure showing the decision rule of a GMB classi�er for a two class problem
with one input feature� The horizontal axis represents the feature and the vertical axis
represents the Bayes discriminant functions� In this example� the class conditional densities
are modelled as a mixture of two Gaussians and equal priors are assumed�

To implement the Gaussian mixture Bayes classi�er �GMB
 we �rst separate the
training data into the di�erent classes� We then use the EM algorithm �Dempster



et al ����� Nowlan ����
 to determine the parameters for the Gaussian mixture
density for each class�

� Winner�take�all approximations to GMB classi�ers

In this section� we derive winner
take
all �WTA
 approximations to GMB classi�ers�
We also show the relationship of these algorithms to non
Bayesian cluster
based
techniques like LVQ and k
Means�

��� The WTA model for GMB

The WTA assumptions �relating hard clustering to Gaussian mixtures� see �Nowlan
����

 are�

� p�x j�I
 are mixtures of Gaussians as in �	
�

� The summation in �	
 is dominated by the largest term� This is �equivalent
to assigning all of the responsibility for an observation to the Gaussian with
the highest probability of generating that observation� �Nowlan ����
�

To draw the relation between GMB and cluster
based classi�ers� we further assume
that�

� The mixing proportions ��Ij 
 are equal for a given class�

� The number of mixture components QI is proportional to p��I
�

Applying all the above assumptions to �	
� taking logs and discarding the terms
that are identical for each class� we get the discriminant function
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The discriminant function ��
 suggests an algorithm that approximates the Bayes
classi�er� We segregate the feature vectors by class and then train a separate vector
quantizer �VQ
 for each class� We then compute the means �Ij and the covariance

matrices �Ij for each Voronoi cell of each quantizer� and use ��
 for classifying new
patterns� We call this algorithm VQ�Covariance� Note that this algorithm does
not do a maximum likelihood estimation of its parameters based on the probability
model used to derive ��
� The probability model is only used to classify patterns�

��� The relation to LVQ and k�Means

Further assume that for each class� the mixture components are spherically sym

metric with covariance matrix �Ij � 
�I� with 
� identical for all classes� We obtain
the discriminant function�
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�
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This is exactly the discriminant function used by the learning vector quantizer
�LVQ� Kohonen ����
 algorithm� Though LVQ employs a discriminatory training
procedure �i�e it directly learns the class boundaries and does not explicitly build a
separate model for each class
� the implicit model of the class conditional densities
used by LVQ corresponds to a GMB model under all the assumptions listed above�
This is also the implicitmodel underlying any classi�er which makes its classi�cation
decision based on the Euclidean distance measure between a feature vector and a
set of prototype vectors �e�g� a k
Means clustering followed by classi�cation based
on ��

�

	 Constrained rank GMB classi�ers

In the preceding sections� we have presented a GMB classi�er and some WTA
approximations to GMB� Mixture models such as GMB generally have too many
parameters for small data sets� In this section� we propose a way of regularizing the
mixture densities and derive a WTA classi�er for the regularized model�

��� The constrained rank model

In section 	� we assumed that the class conditional densities of the feature vectors
x are mixtures of Gaussians
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where �Ij and �
I
j are the means and covariance matrices for the j

th component

Gaussian� eIji and �Iji are the orthonormal eigenvectors and eigenvalues of �
I
ji

�ordered such that �Ij� � � � � � �Ijn
� In ��
� we have written the Mahalanobis
distance in terms of the eigenvectors�

For a particular data point x� the Mahalanobis distance is very sensitive to changes
in the squared projections onto the trailing eigen
directions� since the variances
are very small in these directions� This is a potential problem with small data sets�
When there are insu�cient data points to estimate all the parameters of the mixture
density accurately� the trailing eigen
directions and their associated eigenvalues are
likely to be poorly estimated� Using the Mahalanobis distance in ��
 can lead to
erroneous results in such cases�

We propose a method for regularizing Gaussian mixture classi�ers based on the
above ideas� We assume that the trailing n �m eigen
directions of each Gaussian
component are inaccurate due to over�tting to the training set� We rewrite the class
conditional densities ��
 retaining only the leading m �� � m � n
 eigen
directions



in the determinants and the Mahalanobis distances
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We choose the value of m �the reduced rank
 by cross
validation over a separate
validation set� Thus� our model can be considered to be regularizing or constraining
the class conditional mixture densities�

If we apply the above model and derive the Bayes discriminant functions ��
� we
get�
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We can implement a constrained rank Gaussian mixture Bayes �GMB
Reduced

classi�er based on ��
 using the EM algorithm to determine the parameters of the
mixture density for each class� We segregate the data into di�erent classes and use
the EM algorithm to determine the parameters of the full mixture density ��
� We
then use ��
 to classify patterns�

��� A constrained rank WTA algorithm

We now derive a winner
take
all �WTA
 approximation for the constrained rank
mixture model described above� We assume �similar to section ���
 that

� p�x j�I
 are constrained mixtures of Gaussians as in ��
�

� The summation in ��
 is dominated by the largest term �the WTA assump

tion
�

� The mixing proportions ��Ij
 are equal for a given class and the number of

components QI is proportional to p��I
�

Applying these assumptions to ��
� taking logs and discarding the terms that are
identical for each class� we get the discriminant function

�	I �x
 � �
QI

min
j��

�
�

	

mX
i��

log��Iji
 �
�

	
�x � �Ij 


T

�
mX
i��

eIjie
I
ji
T

�Iji

�
�x� �Ij 


�
� ��


It is interesting to compare ��
 with ��
� Our model postulates that the trailing
n�m eigen
directions of each Gaussian represent over�tting to noise in the training
set� The discriminant functions re�ect this� ��
 retains only those terms of ��
 which
are in the leading m eigen
directions of each Gaussian�

We can generate an algorithm based on ��
 that approximates the reduced rank
Bayes classi�er� We separate the data based on classes and train a separate vector
quantizer �VQ
 for each class� We then compute the means �Ij � the covariance

matrices �Ij for each Voronoi cell of each quantizer and the orthonormal eigenvectors



Table �� The test set classi�cation accuracies for the TIMIT vowels data for di�erent
algorithms�

ALGORITHM ACCURACY
MLP ��� nodes in hidden layer
 ���� 
GMB �� component� full
 ���� 
GMB �� component� diagonal
 ���� 
GMB
Reduced �� component� ��
D
 ���	 
VQ
Covariance �� component
 ���� 
VQ
Covariance
Reduced �� component� ��
D
 ���	 
LVQ ��� cells
 ���� 

eIj i and eigenvalues �
I
j for each covariance matrix �

I
j � We use ��
 for classifying new

patterns� Notice that the algorithm described above is a reduced rank version of
VQ
Covariance �described in section ���
� We call this algorithmVQ�Covariance�
Reduced�


 Experimental Results

In this section we compare the di�erent mixture models and a multi layer percep

tron �MLP
 for two speech phoneme classi�cation tasks� The measure used is the
classi�cation accuracy�

��� TIMIT data

The �rst task is the classi�cation of �	 monothongal vowels from the TIMIT
database �Fisher and Doddington ����
� Each feature vector consists of the lowest
�	 DFT coe�cients� time
averaged over the central third of the vowel� We par

titioned the data into a training set ��	�� vectors
� a validation set ���� vectors

for model selection� and a test set ���� vectors
� The training set contained ���
examples of each class� The values of the free parameters for the algorithms �the
number of component densities� number of hidden nodes for the MLP etc�
 were
selected by maximizing the performance on the validation set�

Table � shows the results obtained with di�erent algorithms� The constrained rank
models �GMB
Reduced and VQ
Covariance
Reduced�
 perform much better than
all the unconstrained ones and even beat a MLP for this task� This data set consists
of very few data points per class� and hence is particularly susceptible to over�tting
by algorithms with a large number of parameters �like GMB
� It is not surprising
that constraining the number of model parameters is a big win for this task�

�Note that since the best validation set performance is obtained with only one compo�
nent for each mixture density� the WTA algorithms are identical to the GMB algorithms
	for these results
�



Table 	� The test set classi�cation accuracies for the CENSUS data for di�erent algo�
rithms�

ALGORITHM ACCURACY
MLP ��� nodes in hidden layer
 ���	 
GMB �� component� full
 ���	 
GMB �� components� diagonal
 ���� 
GMB
Reduced �	 components� ��
D
 �	�� 
VQ
Covariance �� components
 ���� 
VQ
Covariance
Reduced �� components� ��
D
 ���	 
LVQ ��� cells
 ���� 

��� CENSUS data

The next task we experimented with was the classi�cation of � vowels �found in the
utterances of the days of the week
� The data was drawn from the CENSUS speech
corpus �Cole et al ����
� Each feature vector was �� dimensional �perceptual linear
prediction �PLP
 coe�cients �Hermansky ����
 over the vowel and surrounding
context
� We partitioned the data into a training set ����� vectors
� a validation
set ����	 vectors
 for model selection� and a test set ����� vectors
� The training
set had close to a ���� vectors per class� The values of the free parameters for the
di�erent algorithms were selected by maximizing the validation set performance�

Table 	 gives a summary of the classi�cation accuracies obtained using the di�erent
algorithms� This data set has a lot more data points per class than the TIMIT data
set� The best accuracy is obtained by a MLP� though the constrained rank mixture
models still greatly outperform the unconstrained ones�

� Discussion

We have derived WTA approximations to GMB classi�ers and shown their relation
to LVQ and k
Means algorithms� The main problem with Gaussian mixture models
is the explosion in the number of model parameters with input dimensionality� re

sulting in poor generalization performance� We propose constrained rank Gaussian
mixture models for classi�cation� This approach ignores some directions ��noise	

locally in the input space� and thus reduces the e�ective number of model param

eters� This can be considered as a way of regularizing the mixture models� Our
results with speech vowel classi�cation indicate that this approach works better
than using full mixture models� especially when the data set size is small�

The WTA algorithms proposed in this paper do not perform a maximum likelihood
estimation of their parameters� The probability model is only used to classify data�
We can potentially improve the performance of these algorithms by doing maximum
likelihood training with respect to the models presented here�
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