
Design Automation� Making Formal Methods Relevant

Lisa Walton and James Hook�

walton�cse�ogi�edu and hook�cse�ogi�eduy

Formal methods are easily dismissed as heavy weight and irrelevant� People
legitimately ask to see what impact formal methods have had on software devel�
opment practices outside of those areas where governments or regulatory agencies
have mandated their use� We argue that design automation is an opportunity for
the insertion of formal methods into software development practice� In particular�
we advocate the development of small� domain�speci�c design languages� and the
use of these languages as front�ends to program generation systems�

Software Design for Reliability and Reuse �SDRR� is a method developed at
the Paci�c Software Research Center to support the development of generators for
domain�speci�c languages 	
�� Our method� which utilizes a robust suite of reusable
transformation tools� has been used to implement a software component genera�
tor for a message translation and validation problem domain identi�ed by the Air
Force� Independent contractors have used our system as part of an experiment com�
paring our generation�based technology to an existing solution that uses a program
templates based reuse technology	
�� 
�� Preliminary results show a productivity
improvement factor of ��� over templates� which already represents a signi�cant
productivity improvement over ad hoc methods	
���

� Formal Methods Successes

The formal methods community is currently in a phase of critical self�evaluation� At
the recent 
��� Monterey workshop on formal methods� the emerging consensus was
that there needed to be a new� more realistic vision for future research� Participants
universally concurred that formal methods are critical to the emergence of software
engineering as a well�organized discipline based� as are other engineering disciplines�
on sound and well�tested mathematical models� To this end� future research must
be focused on approaches that would have a direct positive impact on large�scale
software development� Crucial to this e�ort are the following goals

� Incorporate formal models and algorithms in computer tools designed to solve
problems of practical signi�cance

� Recognize that practical software development is largely driven by user re�
quirements changes

�Authors supported in part by Air Force Materiel Command�
yPaci�c Software Research Center� Oregon Graduate Institute of Science � Technology� P�O�

Box ������ Portland� OR �	
������� USA� http�www�cse�ogi�eduPacSoft�



� Recognize that human understanding and creativity play an important role in
software development

As well as a call for change� there also emerged some important success stories
that were greeted enthusiastically by the participants� At the conclusion of the
workshop� an examination of the factors contributing to these successes suggested
an emerging paradigm for applying formal methods� The following list� substantially
due to Goguen� describes these factors�

Focused� well�de�ned� and well�understood problem domain Successful
systems generally solve problems in tightly�constrained domains which had
signi�cant leverage from context and from prior work� A particular advan�
tage is gained when a solution can build on or incorporate previously de�ned
libraries of program modules in the domain�

Coherent User Community A signi�cant amount of early and continuing user
interest and participation contributes to the design and evolution of successful
tools� Participation includes but is not limited to providing �nancial resources�
contributing signi�cant domain knowledge� and debating design issues within
the user community�

Intuitive Interface Most systems described as successful have an intuitive user
interface that is meaningful to experts in a domain� These interfaces often
incorporate the domain experts� own conventions and notations�

Large�Grain Approach Successful systems deal with large grain system issues�
not small grain coding issues� Domain experts use formal methods to gen�
erate or de�ne signi�cant components or whole programs rather than having
software engineers verify code at the statement or expression level�

Reasonable Integration into User Community Formal methods concepts and
algorithms encapsulated into powerful tools must still be integrated into user
development process� Success in this area is generally achieved when users are
not required to signi�cantly change the way they work by learning radically
new notations and techniques�

It should also be noted that successful� well�crafted systems are generally built on
top of previously developed� �exible tools� Cited in the proceedings of the workshop
are the following systems that incorporated the above factors� CAPS 	
��� ControlH
and MetaH 	���� AMPHION 	���� Panel 	���� and Software Design for Reliability and
Reuse �SDRR� 	
��� We will look at two of these systems� AMPHION and ControlH
and MetaH� as well as our own SDRR method�

��� Amphion System

Waldinger and Lowry�s Amphion system� developed at NASA Ames� is a creative
system that generates Fortran programs to solve planetary geometry problems� By
annotating a picture� a user speci�es a problem statement such as �Where do I



point my camera on the Galileo spacecraft to take a picture of the comet im�
pact on Jupiter��� Provided the problem is adequately speci�ed� the system uses a
deduction�synthesis technique to calculate a program that solves the problem� The
generated program is essentially a series of calls to an extensive library of Fortran
subroutines that NASA had previously developed to support planetary geometry�
Prior to Amphion� this well�engineered library was not being used by the NASA
scientists it was intended to support�

��� ControlH and MetaH

Vestal presented Honeywell�s experience with tools formally capturing related de�
signs in the domain of Guidance Navigation and Control� In this domain there is a
well�established notation familiar to all of the control engineers which is not well�
understood by software engineers instantiating the designs� They overcame this
problem by developing tools that allowed a design to be represented in multiple� re�
lated speci�cation languages� In particular� they ensure that the speci�cation used
by the software engineers is formally related to the diagrams drawn by the control
engineers�

��� Software Design for Reliability and Reuse

PacSoft�s SDRR method is based on design capture in domain�speci�c design lan�
guages �DSDLs� and automatic program generation using a reusable suite of pro�
gram transformation tools� By capturing design requirements at the appropriate
levels� the encapsulated designs �rather than the software components� become the
reusable artifacts� When a subsequent application or version of a design is needed�
design modi�cations are made to the speci�cation given as input to the generator�
and a new software component is generated automatically�

� Formal Methods in SDRR

The design of an SDRR component generator begins with a multi�level domain
analysis to determine the requirements of the users� characteristics of a component
solution� and characteristics of the execution environment� It is here that SDRR
makes a major contribution in the application of formal methods to real problems�

��� Design Requirements

The front�end to a software component generator is an e�ective DSDL tailored to the
needs of the users� The back�end of a software component generator is parameterized
with an implementation template �see below� tailored to the requirements of the
existing system� A three�level domain analysis allows us to formally incorporate
design requirements into these two interfaces as follows�




� Design requirements for domain objects that need to be described by domain
experts are captured by a direct semantics which structures and formalizes
the collection of typically ad�hoc user notations� It is important that the
semantics be expressive over domain entities without incorporating arti�cial
encodings or over�specifying problem solutions� These operational details are
more appropriately captured elsewhere� For the MTV generator� domain ob�
jects are message formats and constraints� and the ad�hoc notations are found
in informal textual speci�cation documents�

�� Design requirements of a software solution are captured in a formal compu�
tational semantics given to the DSDL in ADL� the algebraic design language
used in SDRR 	

� 
��� It is here that formal algorithms to solve domain
problems should be captured� Note that these computational details will be
largely invisible to the users of the DSDL� For the MTV generator� software
solutions are modules that translate and validate incoming messages�

�� Design requirements of the environment in which the component will be used
are captured in an implementation template 	��� ��� characterizing the execu�
tion environment� These are a set of implementation primitives that specify
how the computational semantics of the DSDL are to be realized in terms of
a target programming language �Ada� for the MTV modules��

��� Automated Transformation Tools

Our suite of reusable tools optimize generated components through the use of auto�
mated program transformations that are applied during the course of program gener�
ation 	
��� The transformations are mathematically based and are guaranteed to pre�
serve the computational meaning of the programs speci�ed in the design language�
The transformation tools include� HOT� which applies higher�order transforma�
tions 	�
�� PEP� which performs lambda�lifting and higher�order removal 	
�� �� Firs�
tify� an implementation of Reynold�s algorithm for defunctionalization 	
�� �� ��� and
Astre� a �rst�order transformation tool based on term�rewriting techniques 	�� �� ���

When an SDRR program generator is applied to a DSDL speci�cation� it au�
tomatically applies the necessary transformations� The pipeline of transformation
tools constitutes a very advanced optimizing compiler that takes ADL as input and
generates conventional� imperative target language code as output� In the prototype�
the target language is Ada�

��� Formal Methods made E	ective

In the experiment with the Message Translation and Validation �MTV� system� our
status with respect to the success indicators is as follows�

Focused� well�de�ned and well�understood problem domain The require�
ments for Message Translation and Validation �MTV� modules common in



command and control systems �C�I� are well understood and reasonably well
documented�

Coherent User Community Input was solicited early on from current system
users as to what would be useful in a tool for writing formal speci�cations�
including both a description of their �blackboard notations� and elements of
commonly occurring speci�cations that could be captured e�ciently�

Intuitive Interface We developed a DSDL encapsulating some of the notations
and structure of the informal speci�cation documents used by engineers to
describe message formats and data constraints�

Large Grain Approach The problem requires software components to be gener�
ated from formal speci�cations and integrated into an existing system� Formal
methods are used by the design experts to de�ne and generate components�
not to verify code�

Reasonable integration into community The intent is for formal speci�cations
written in the DSDL to replace users� informal textual documents� Statements
in the formal language correspond closely to statements in the informal doc�
ument� minimizing the amount of new notation to be learned and facilitating
the transition from one design style to the other�

��
 Formal Methods Made Relevant

A recent survey of industrial applications of formal methods 	�� indicated that the
following issues represent some of the biggest barriers to getting formal methods
into the large�scale software development process�

� Most programming and speci�cation languages lack the semantic base required
to support the full application of formal methods�

� Aspects of run�time environments and performance aspects receive inadequate
treatment in formal method applications

� Inadequate cost models exist for measuring the current or projected gains
experienced in the development process when formal methods are used over
other standard development methodologies

SDRR is a method that provides solutions to the �rst two issues� and our proof�
of�concept experiment has provided us with metrics and cost data that will lead to
the development of preliminary cost models�	
��

� Our mathematically�based transformation tools and the algebraic design lan�
guage �ADL� give us the full support required to incorporate formal methods
into software systems�

� One level of our domain analysis provides us with the requirements information
that makes it possible to capture important run�time environment informa�
tion about the system which is incorporated into the parameterized templates
mechanism�



� Although we do not as yet have a cost model� we do have preliminary data char�
acterizing the scope of our e�ort	
��� We have measured cost� schedule� size
and e�ort of both the domain speci�c and the reusable parts of our technology
and have conducted an experiment to demonstrate the impact of the technol�
ogy on productivity� reliability� �exibility� predictability and usability	
���

We claim that SDRR provides a way to introduce formal methods into an existing
system without incurring a high cost from retro�tting the new technology� This is
due to the �exibility of our system� which can be linked into systems that are not
formally de�ned or modeled� Speci�cally� formalizing the speci�cation of the design
requirements in our method does not require that a formal de�nition exist for the
�blackboard notations�� the target language� the target environment� or the existing
system into which the components are to be incorporated�

Developers of software components generators can be provided with a reusable
set of tools and a method for their use� These developers need not be experts in either
mathematics or the formal theory behind the transformation methods� because the
tools and library code are highly modular and can operate as a �black box�� After
the initial development e�ort� users will be left with a system that allows them to
go from a speci�cation to a software component without having to understand the
details of how the generator is constructed�

To test out claims of the bene�ts of the SDRR method we conducted an experi�
ment in which a set of four subjects working for an independent organization did a
series of tasks speci�ed by the Air Force in our speci�cation�based generator tech�
nology and an existing �good� reuse technology based on program templates 	
��
The experiment demonstrated a statistically signi�cant productivity improvement
over templates� The observed ratio of average e�ort hours to complete a task was
����� The con�dence that the di�erence in the means was signi�cant� based on a
single�factor analysis of variance� was ������ The experiment also demonstrated
that the subjects were more likely to correctly specify the problem with the formal
method than with the templates�based method 	
���

� Conclusion

SDRR makes a major contribution in the application of formal methods to real
problems� We believe that we can have a direct impact on the large scale software
development process by making transformation�based generation technology auto�
matic and e�ective� and by facilitating technology transfer and design reuse� In
terms of the aims espoused at the 
��� Monterey Workshop� our status is as follows

� We have incorporated formal models and algorithms in our transformation
tools� and our method describes a plan to solve a class of signi�cant problems�

� Our three�level domain analysis captures design requirements at the appro�
priate levels� so that software development can occur rapidly in response to
changes in user requirements�



� By involving the user community in the design process� and by preserving their
notations in a speci�cation language that is intuitive to them� we preserve their
role in the development process� and do not sti�e their creativity by making
them substantially change the way they do business�

What we have accomplished in the SDRR proof�of�concept demonstration project�

� Incorporated formal methods into the development of appropriate domain spe�
ci�c design languages and implementing �exible and maintainable generators
supporting them�

� Built and rigorously tested a reusable tool suite incorporating formal mathe�
matical algorithms to support this method�

� Built a generator for a real�world problem constructed by applying the SDRR
method�

� Performed an experiment comparing the resulting generator to the current
state�of�the�art illustrating that we can make formal methods e�ective 	
���

� Compiled a record of the process and metrics data characterizing our experi�
ence with the method and its development� thus planning to show that using
formal methods can be relevant 	
���

Together� this combination of research� demonstration� and experimentation exem�
plify a new paradigm for the rapid transfer of technology from an academic research
institution into industrial and government software development practice�

References

��� Je�rey Bell et al� Software design for reliability and reuse� A proof�of�concept demonstration�
In TRI�Ada ��� Proceedings� pages �������� ACM� November �����

�
� Je�rey M� Bell� An implementation of Reynold�s defunctionalization method for a modern
functional language� Master�s thesis� Oregon Graduate Institute CSE� January �����

��� Je�rey M� Bell and James Hook� Defunctionalization of typed programs� Technical Report
����
�� Oregon Graduate Institute CSE� February �����

��� Fran�coise Bellegarde and James Hook� Monads� indexes� and transformations� In TAPSOFT

���� Theory and Practice of Software Development� volume ��� of LNCS� pages �����
	�
Springer�Verlag� �����

��� Fran�coise Bellegarde and James Hook� Substitution� A formal methods case study using
monads and transformations� Science of Computer Programming� 
��
����
�	����� �����

��� Francoise Bellegarde� Program transformation and rewriting� Technical Report CSE�����
��
Oregon Graduate Institute CSE� September �����

�	� Paci�c Software Research Center� SDRR project Phase I �nal scienti�c and technical report�
February �����

��� Wei�Ngan Chin and John Darlington� Higher�order removal� A modular approach� Unpub�
lished work� �����

��� Dan Craigen� Susan Gerhart� and Ted Ralston� An International Survey of Industrial Ap�
plications of Formal Methods� Volume �� Purpose� Approach� Analysis� and Conclusions�
Technical report� US Department of Commerce� NIST� ����� Technical Report NISTGCR
���
��



���� Thomas Johnsson� Lambda lifting� transforming programs to recursive equations� In J�P�
Jouannaud� editor� Functional Programming Languages and Computer Architecture� volume

�� of LNCS� pages ����
��� Springer�Verlag� �����

���� Richard Kieburtz and Je�rey R� Lewis� Algebraic design language� Technical Report �����
�
Oregon Graduate Institute CSE� �����

��
� Richard B� Kieburtz� Results of the sdrr validation experiment� February ����� In �	��

���� Richard B� Kieburtz� Software design for reliability and reuse�Method de�nition� February
����� In �	��

���� Richard B� Kieburtz� Fran�coise Bellegarde� Jef Bell James Hook� Je�rey Lewis� Dina Oliva�
Tim Sheard Lisa Walton� and Tong Zhou� Calculating software generators from solution
speci�cations� Technical Report OGI�CSE������
B� Oregon Graduate Institute CSE� October
�����

���� Alexei Kotov� Measurement �nal report� February ����� In �	��

���� Je�rey R� Lewis� A speci�cation for an MTV generator� Technical Report ������� Oregon
Graduate Institute CSE� �����

��	� Luqi� Joseph Goguen� and Valdis Berzins� Formal support for software evolution� In Proceed�

ings of the ���� Monterey Workshop� U�S� Naval Postgraduate School� September �����

���� Charles Plinta� Kenneth Lee� and Michael Rissman� A model solution for C�I message trans�
lation and validation� Technical report� Software Engineering Institute� Carnegie Mellon
University� December ����� CMUSEI����TR��
 ESD����TR�
��

���� John C� Reynolds� De�nitional interpreters for higher�order programming languages� In ACM

National Conference� pages 	�	�	��� ACM� ��	
�

�
�� Jacob Schwartz and Kirk Snyder� New York University Design of Applications for Multime�
dia Applications Development� In Proceedings of the ���� Monterey Workshop� U�S� Naval
Postgraduate School� September �����

�
�� Tim Sheard and Leonidas Fegaras� Optimizing algebraic programs� Technical Report �������
Oregon Graduate Institute CSE� �����

�

� Steve Vestal� Honeywell technology center formal methods for complex evolving systems�
In Proceedings of the ���� Monterey Workshop� U�S� Naval Postgraduate School� September
�����

�
�� Dennis Volpano and Richard B� Kieburtz� Software templates� In Proceedings of the Eighth

International Conference on Software Engineering� pages ������ IEEE Computer Society� Aug
�����

�
�� Dennis Volpano and Richard B� Kieburtz� The templates approach to software reuse� In
Ted J� Biggerssta� and Alan J� Perlis� editors� Software Reusability� pages 
�	�
��� ACM
Press� �����

�
�� Richard Waldinger and Michael Lowry� NASA ames research center AMPHION� Towards
kinder� gentler formal methods� In Proceedings of the ���� Monterey Workshop� U�S� Naval
Postgraduate School� September �����


