Design Automation: Making Formal Methods Relevant

Lisa Walton and James Hook*

walton@cse.ogi.edu and hook@cse.ogi.eduf

Formal methods are easily dismissed as heavy weight and irrelevant. People
legitimately ask to see what impact formal methods have had on software devel-
opment practices outside of those areas where governments or regulatory agencies
have mandated their use. We argue that design automation is an opportunity for
the insertion of formal methods into software development practice. In particular,
we advocate the development of small, domain-specific design languages, and the
use of these languages as front-ends to program generation systems.

Software Design for Reliability and Reuse (SDRR) is a method developed at
the Pacific Software Research Center to support the development of generators for
domain-specific languages [1]. Our method, which utilizes a robust suite of reusable
transformation tools, has been used to implement a software component genera-
tor for a message translation and validation problem domain identified by the Air
Force. Independent contractors have used our system as part of an experiment com-
paring our generation-based technology to an existing solution that uses a program
templates based reuse technology[16, 18]. Preliminary results show a productivity
improvement factor of 2.9 over templates, which already represents a significant
productivity improvement over ad hoc methods[12].

1 Formal Methods Successes

The formal methods community is currently in a phase of critical self-evaluation. At
the recent 1994 Monterey workshop on formal methods, the emerging consensus was
that there needed to be a new, more realistic vision for future research. Participants
universally concurred that formal methods are critical to the emergence of software
engineering as a well-organized discipline based, as are other engineering disciplines,
on sound and well-tested mathematical models. To this end, future research must
be focused on approaches that would have a direct positive impact on large-scale
software development. Crucial to this effort are the following goals

o Incorporate formal models and algorithms in computer tools designed to solve
problems of practical significance

e Recognize that practical software development is largely driven by user re-
quirements changes

* Authors supported in part by Air Force Materiel Command.
TPacific Software Research Center, Oregon Graduate Institute of Science & Technology, P.O.
Box 91000, Portland, OR, 97291-1000 USA, http://www.cse.ogi.edu/PacSoft.



e Recognize that human understanding and creativity play an important role in
software development

As well as a call for change, there also emerged some important success stories
that were greeted enthusiastically by the participants. At the conclusion of the
workshop, an examination of the factors contributing to these successes suggested
an emerging paradigm for applying formal methods. The following list, substantially
due to Goguen, describes these factors.

Focused, well-defined, and well-understood problem domain Successful
systems generally solve problems in tightly-constrained domains which had
significant leverage from context and from prior work. A particular advan-
tage is gained when a solution can build on or incorporate previously defined
libraries of program modules in the domain.

Coherent User Community A significant amount of early and continuing user
interest and participation contributes to the design and evolution of successful
tools. Participation includes but is not limited to providing financial resources,
contributing significant domain knowledge, and debating design issues within
the user community.

Intuitive Interface Most systems described as successful have an intuitive user
interface that is meaningful to experts in a domain. These interfaces often
incorporate the domain experts’ own conventions and notations.

Large-Grain Approach Successful systems deal with large grain system issues,
not small grain coding issues. Domain experts use formal methods to gen-
erate or define significant components or whole programs rather than having
software engineers verify code at the statement or expression level.

Reasonable Integration into User Community Formal methods concepts and
algorithms encapsulated into powerful tools must still be integrated into user
development process. Success in this area is generally achieved when users are
not required to significantly change the way they work by learning radically
new notations and techniques.

It should also be noted that successful, well-crafted systems are generally built on
top of previously developed, flexible tools. Cited in the proceedings of the workshop
are the following systems that incorporated the above factors: CAPS [17], ControlH
and MetaH [22], AMPHION [25], Panel [20], and Software Design for Reliability and
Reuse (SDRR) [13]. We will look at two of these systems, AMPHION and ControlH
and MetaH, as well as our own SDRR method.

1.1 Amphion System

Waldinger and Lowry’s Amphion system, developed at NASA Ames, is a creative
system that generates Fortran programs to solve planetary geometry problems. By
annotating a picture, a user specifies a problem statement such as “Where do 1



point my camera on the Galileo spacecraft to take a picture of the comet im-
pact on Jupiter?”. Provided the problem is adequately specified, the system uses a
deduction-synthesis technique to calculate a program that solves the problem. The
generated program is essentially a series of calls to an extensive library of Fortran
subroutines that NASA had previously developed to support planetary geometry.
Prior to Amphion, this well-engineered library was not being used by the NASA
scientists it was intended to support.

1.2 ControlH and MetaH

Vestal presented Honeywell’s experience with tools formally capturing related de-
signs in the domain of Guidance Navigation and Control. In this domain there is a
well-established notation familiar to all of the control engineers which is not well-
understood by software engineers instantiating the designs. They overcame this
problem by developing tools that allowed a design to be represented in multiple, re-
lated specification languages. In particular, they ensure that the specification used
by the software engineers is formally related to the diagrams drawn by the control
engineers.

1.3 Software Design for Reliability and Reuse

PacSoft’s SDRR method is based on design capture in domain-specific design lan-
guages (DSDLs) and automatic program generation using a reusable suite of pro-
gram transformation tools. By capturing design requirements at the appropriate
levels, the encapsulated designs (rather than the software components) become the
reusable artifacts. When a subsequent application or version of a design is needed,
design modifications are made to the specification given as input to the generator,
and a new software component is generated automatically.

2 Formal Methods in SDRR

The design of an SDRR component generator begins with a multi-level domain
analysis to determine the requirements of the users, characteristics of a component
solution, and characteristics of the execution environment. It is here that SDRR
makes a major contribution in the application of formal methods to real problems.

2.1 Design Requirements

The front-end to a software component generator is an effective DSDL tailored to the
needs of the users. The back-end of a software component generator is parameterized
with an implementation template (see below) tailored to the requirements of the
existing system. A three-level domain analysis allows us to formally incorporate
design requirements into these two interfaces as follows.



1. Design requirements for domain objects that need to be described by domain
experts are captured by a direct semantics which structures and formalizes
the collection of typically ad-hoc user notations. It is important that the
semantics be expressive over domain entities without incorporating artificial
encodings or over-specifying problem solutions. These operational details are
more appropriately captured elsewhere. For the MTV generator, domain ob-
jects are message formats and constraints, and the ad-hoc notations are found
in informal textual specification documents.

2. Design requirements of a software solution are captured in a formal compu-
tational semantics given to the DSDL in ADL, the algebraic design language
used in SDRR [11, 13]. It is here that formal algorithms to solve domain
problems should be captured. Note that these computational details will be
largely invisible to the users of the DSDL. For the MTV generator, software
solutions are modules that translate and validate incoming messages.

3. Design requirements of the environment in which the component will be used
are captured in an implementation template [23, 24] characterizing the execu-
tion environment. These are a set of implementation primitives that specify
how the computational semantics of the DSDL are to be realized in terms of
a target programming language (Ada, for the MTV modules).

2.2 Automated Transformation Tools

Our suite of reusable tools optimize generated components through the use of auto-
mated program transformations that are applied during the course of program gener-
ation [14]. The transformations are mathematically based and are guaranteed to pre-
serve the computational meaning of the programs specified in the design language.
The transformation tools include: HOT, which applies higher-order transforma-
tions [21]; PEP, which performs lambda-lifting and higher-order removal [10, 8]; Firs-
tify, an implementation of Reynold’s algorithm for defunctionalization [19, 3, 2]; and
Astre, a first-order transformation tool based on term-rewriting techniques [6, 4, 5].

When an SDRR program generator is applied to a DSDL specification, it au-
tomatically applies the necessary transformations. The pipeline of transformation
tools constitutes a very advanced optimizing compiler that takes ADL as input and
generates conventional, imperative target language code as output. In the prototype,
the target language is Ada.

2.3 Formal Methods made Effective

In the experiment with the Message Translation and Validation (MTV) system, our
status with respect to the success indicators is as follows:

Focused, well-defined and well-understood problem domain The require-
ments for Message Translation and Validation (MTV) modules common in



command and control systems (C°I) are well understood and reasonably well
documented.

Coherent User Community Input was solicited early on from current system
users as to what would be useful in a tool for writing formal specifications,
including both a description of their “blackboard notations” and elements of
commonly occurring specifications that could be captured efficiently.

Intuitive Interface We developed a DSDL encapsulating some of the notations
and structure of the informal specification documents used by engineers to
describe message formats and data constraints.

Large Grain Approach The problem requires software components to be gener-
ated from formal specifications and integrated into an existing system. Formal
methods are used by the design experts to define and generate components,
not to verify code.

Reasonable integration into community The intent is for formal specifications
written in the DSDL to replace users’ informal textual documents. Statements
in the formal language correspond closely to statements in the informal doc-
ument, minimizing the amount of new notation to be learned and facilitating
the transition from one design style to the other.

2.4 Formal Methods Made Relevant

A recent survey of industrial applications of formal methods [9] indicated that the
following issues represent some of the biggest barriers to getting formal methods
into the large-scale software development process.

e Most programming and specification languages lack the semantic base required
to support the full application of formal methods.

e Aspects of run-time environments and performance aspects receive inadequate
treatment in formal method applications

o Inadequate cost models exist for measuring the current or projected gains
experienced in the development process when formal methods are used over
other standard development methodologies

SDRR is a method that provides solutions to the first two issues, and our proof-
of-concept experiment has provided us with metrics and cost data that will lead to
the development of preliminary cost models.[12]

e Our mathematically-based transformation tools and the algebraic design lan-
guage (ADL) give us the full support required to incorporate formal methods
into software systems.

e One level of our domain analysis provides us with the requirements information
that makes it possible to capture important run-time environment informa-
tion about the system which is incorporated into the parameterized templates
mechanism.



o Although we do not as yet have a cost model, we do have preliminary data char-
acterizing the scope of our effort[15]. We have measured cost, schedule, size
and effort of both the domain specific and the reusable parts of our technology
and have conducted an experiment to demonstrate the impact of the technol-
ogy on productivity, reliability, flexibility, predictability and usability[12].

We claim that SDRR provides a way to introduce formal methods into an existing
system without incurring a high cost from retrofitting the new technology. This is
due to the flexibility of our system, which can be linked into systems that are not
formally defined or modeled. Specifically, formalizing the specification of the design
requirements in our method does not require that a formal definition exist for the
“blackboard notations”, the target language, the target environment, or the existing
system into which the components are to be incorporated.

Developers of software components generators can be provided with a reusable
set of tools and a method for their use. These developers need not be experts in either
mathematics or the formal theory behind the transformation methods, because the
tools and library code are highly modular and can operate as a “black box”. After
the initial development effort, users will be left with a system that allows them to
go from a specification to a software component without having to understand the
details of how the generator is constructed.

To test out claims of the benefits of the SDRR method we conducted an experi-
ment in which a set of four subjects working for an independent organization did a
series of tasks specified by the Air Force in our specification-based generator tech-
nology and an existing “good” reuse technology based on program templates [18].
The experiment demonstrated a statistically significant productivity improvement
over templates. The observed ratio of average effort hours to complete a task was
2.92. The confidence that the difference in the means was significant, based on a
single-factor analysis of variance, was 99.5%. The experiment also demonstrated
that the subjects were more likely to correctly specify the problem with the formal
method than with the templates-based method [12].

3 Conclusion

SDRR makes a major contribution in the application of formal methods to real
problems. We believe that we can have a direct impact on the large scale software
development process by making transformation-based generation technology auto-
matic and effective, and by facilitating technology transfer and design reuse. In
terms of the aims espoused at the 1994 Monterey Workshop, our status is as follows

e We have incorporated formal models and algorithms in our transformation
tools, and our method describes a plan to solve a class of significant problems.

o Our three-level domain analysis captures design requirements at the appro-
priate levels, so that software development can occur rapidly in response to
changes in user requirements.



e By involving the user community in the design process, and by preserving their
notations in a specification language that is intuitive to them, we preserve their
role in the development process, and do not stifle their creativity by making
them substantially change the way they do business.

What we have accomplished in the SDRR proof-of-concept demonstration project:

e Incorporated formal methods into the development of appropriate domain spe-
cific design languages and implementing flexible and maintainable generators
supporting them.

e Built and rigorously tested a reusable tool suite incorporating formal mathe-
matical algorithms to support this method.

e Built a generator for a real-world problem constructed by applying the SDRR
method.

o Performed an experiment comparing the resulting generator to the current
state-of-the-art illustrating that we can make formal methods effective [12].

e Compiled a record of the process and metrics data characterizing our experi-
ence with the method and its development, thus planning to show that using
formal methods can be relevant [15].

Together, this combination of research, demonstration, and experimentation exem-
plify a new paradigm for the rapid transfer of technology from an academic research
institution into industrial and government software development practice.

References

(1]

Jeffrey Bell et al. Software design for reliability and reuse: A proof-of-concept demonstration.
In TRI-Ada '94 Proceedings, pages 396-404. ACM, November 1994.

Jeffrey M. Bell. An implementation of Reynold’s defunctionalization method for a modern
functional language. Master’s thesis, Oregon Graduate Institute CSE, January 1994.

Jeffrey M. Bell and James Hook. Defunctionalization of typed programs. Technical Report
94-025, Oregon Graduate Institute CSE, February 1994.

Frangoise Bellegarde and James Hook. Monads, indexes, and transformations. In TAPSOFT
’93: Theory and Practice of Software Development, volume 668 of LNCS, pages 314-327.
Springer-Verlag, 1993.

Frangoise Bellegarde and James Hook. Substitution: A formal methods case study using
monads and transformations. Science of Computer Programming, 23(2-3):287-311, 1994.
Francoise Bellegarde. Program transformation and rewriting. Technical Report CSE-90-021,
Oregon Graduate Institute CSE, September 1990.

Pacific Software Research Center. SDRR project Phase I final scientific and technical report,
February 1995.

Wei-Ngan Chin and John Darlington. Higher-order removal: A modular approach. Unpub-
lished work, 1993.

Dan Craigen, Susan Gerhart, and Ted Ralston. An International Survey of Industrial Ap-
plications of Formal Methods. Volume 1: Purpose, Approach, Analysis, and Conclusions.
Technical report, US Department of Commerce, NIST, 1993. Technical Report NISTGCR
93/626.



[10]

Thomas Johnsson. Lambda lifting: transforming programs to recursive equations. In J-P.
Jouannaud, editor, Functional Programming Languages and Computer Architecture, volume

201 of LNCS, pages 190-203. Springer-Verlag, 1985.

Richard Kieburtz and Jeffrey R. Lewis. Algebraic design language. Technical Report 94-002,
Oregon Graduate Institute CSE, 1994.

Richard B. Kieburtz. Results of the sdrr validation experiment, February 1995. In [7].
Richard B. Kieburtz. Software design for reliability and reuse—Method definition, February
1995. In [7].

Richard B. Kieburtz, Francoise Bellegarde, Jef Bell James Hook, Jeffrey Lewis, Dina Oliva,
Tim Sheard Lisa Walton, and Tong Zhou. Calculating software generators from solution
specifications. Technical Report OGI-CSE-94-032B, Oregon Graduate Institute CSE, October
1994.

Alexei Kotov. Measurement final report, February 1995. In [7].
Jeffrey R. Lewis. A specification for an MTV generator. Technical Report 94-003, Oregon
Graduate Institute CSE, 1994.

Luqi, Joseph Goguen, and Valdis Berzins. Formal support for software evolution. In Proceed-
wngs of the 1994 Monterey Workshop. U.S. Naval Postgraduate School, September 1994.

Charles Plinta, Kenneth Lee, and Michael Rissman. A model solution for C*I message trans-
lation and validation. Technical report, Software Engineering Institute, Carnegie Mellon
University, December 1989. CMU/SEI-89-TR-12 ESD-89-TR-20.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In ACM
National Conference, pages 717-740. ACM, 1972.

Jacob Schwartz and Kirk Snyder. New York University Design of Applications for Multime-
dia Applications Development. In Proceedings of the 199/ Monterey Workshop. U.S. Naval
Postgraduate School, September 1994.
Tim Sheard and Leonidas Fegaras. Optimizing algebraic programs. Technical Report 94-004,
Oregon Graduate Institute CSE, 1994.

Steve Vestal. Honeywell technology center formal methods for complex evolving systems.
In Proceedings of the 1994 Monterey Workshop. U.S. Naval Postgraduate School, September
1994.

Dennis Volpano and Richard B. Kieburtz. Software templates. In Proceedings of the Eighth
International Conference on Software Engineering, pages b55—60. IEEE Computer Society, Aug
1985.

Dennis Volpano and Richard B. Kieburtz. The templates approach to software reuse. In
Ted J. Biggersstaff and Alan J. Perlis, editors, Software Reusability, pages 247-255. ACM
Press, 1989.

Richard Waldinger and Michael Lowry. NASA ames research center AMPHION: Towards
kinder, gentler formal methods. In Proceedings of the 199} Monterey Workshop. U.S. Naval
Postgraduate School, September 1994.



