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ABSTRACT

The usefulness of a multimedia presentation depends on the accuracy of its output
values and the timing of those outputs. A Quality of Service (QOS) specification is a
vehicle for requesting accuracy guarantees from a multimedia system. This paper gives a
formal model for presentation-level QOS specification that constrains presentation out-
puts only. Such a QOS specification leaves a multimedia system free to optimize resource
management while providing end-to-end guarantees for multimedia services. An error
model is proposed with a complete set of QOS parameters for specifying presentation
quality. We show how this error model extends the opportunities for optimizing resources
within a multimedia system.
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1 Introduction

Multimedia systems today support presentations with continuous media [1, 18], such as video
and audio, as well as synthetic compositions such as slide shows and computer-generated music.
We call these presentations ¢ime-based because they communicate part of their information content
through presentation timing. While a query on a database of static data types results in a static
view of (hopefully) correct data values, a query for playback of time-based data should result in a
presentation with a dynamically changing view. The usefulness of such presentations depends on
the accuracy of both the data and the timing. Because digital presentations can only approximate
continuous values and timing, the success of playback is a question of quality rather than correctness.

Consider the reproduction of NTSC video in a digital multimedia system. The video stream
is commonly captured at 640x480 24-bit samples/frame and 30 frames/second, but it is rarely
stored or played back at this bandwidth. Instead, lossy compression algorithms such as the MPEG
encoding [17] are used to reduce the bandwidth requirements in exchange for some loss in quality.
In addition, if the display window does not have the same resolution as the source data then the
presentation can only approximate the original data by pixel interpolation.

This observation raises two questions: How accurate must a presentation be, and how can we
ensure that a presentation achieves that accuracy? This paper attempts to answer the first question
by giving a formal definition of presentation quality that measures both accuracy of timing and
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the accuracy of output values. This definition of presentation quality can then be used to specify
presentation-level quality requirements. The question of how to ensure that quality requirements are
met must be answered by a multimedia system. Whenever time-based presentations compete with
other applications for resources, some level of guarantees are needed to ensure that resources are not
wasted on presentations that provide little value to the user. But without a mechanism for specifying
user quality requirements, meaningful guarantees are impossible to request or provide. Section 2
suggests an architecture that derives guarantees for a Quality of Service (QOS) specification as part
of an admission test.

QOS specifications for presentation requirements are still a novel concept. Network protocols
have been proposed with transport-level QOS specifications that bound delay, minimum throughput
and error rates for continuous media communications [12, 16, 18, 31, 32]. More recently, operating
systems researchers have argued that bandwidth reservations are needed in a real-time operating
system to support end-to-end QOS guarantees [3, 10, 14, 20, 23, 25, 33, 35]. Both the network and
operating systems QOS goals for bandwidth are typically derived from the type of the data being
transmitted, with the assumption that multimedia presentations should deliver as much spatial and
temporal resolution as possible. But with current capture, compression, and storage technology,
multimedia data types can have resolution that exceeds both the output device capabilities and
presentation quality requirements. As the resolution of the data sources increases, users should be
able to choose how to sacrifice quality in order to reduce the resource costs of playback.

Many existing multimedia systems make do without QOS-based resource reservations. For ex-
ample, personal computer systems can successfully play compressed video and audio from CD-ROM,
but are able to do so only because the application program has control of all system resources and
because the data has been carefully crafted to suit the storage device’s throughput and latency [29].
Device independence is possible with adaptive algorithms that adjust the playback quality to the
resources available [4, 15, 27, 34]. However, adaptive playback algorithms frequently degrade quality
to an unacceptable level when resources overloads occur. A formal definition of quality is needed
to specify which presentations are acceptable and what minimal reservations are required to avoid
overloads.

This discussion leads to a number of goals for QOS specifications:

e Model user perception of quality. The value of a presentation depends on the user’s
perception of quality, while the cost of a presentation depends on resource usage. Just as
modern compression algorithms exploit knowledge of human perception [17, 36], a multimedia
system can better optimize playback resources if it knows which optimizations have the least
affect on perceived quality.

e Formal semantics. Specifications should be unambiguous. A multimedia system should be
able to prove that it can satisfy a QOS specification through resource reservations.

e Support for complex presentations. Complex presentations can specify synchronization
between media streams that originate at independent sources and at different times [19, 21, 29].
QOS specification should apply to any content, and not just a small number of continuous
media streams.

This paper defines a framework for specification of presentation QOS. The definitions are in-
tended to be general enough to apply to non-interactive presentations in any multimedia system.
The framework considers user interactions for presentation control as interruptions that may require
re-computation of the presentation requirements. The next section defines our terminology in terms
of an architectural model for multimedia presentations. Sections 3 and 4 elaborate on the specifi-
cation of content and view respectively for a presentation. We then define quality in Section b as a
function of a presentation’s fidelity to the content and view specification. Section 6 suggests how a
formal QOS specification can be used to optimize resource usage in a presentation. We close with a
discussion of related work in Section 7 and our conclusions in Section 8.
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Figure 1: An architecture for editing and viewing multimedia presentations.

2 Architectural Model

In our architectural model, shown in Figure 1, multimedia data comes from live sources or
from storage. Digital audio and video data have default content specifications associated with them
that specify the sample size and rate for normal playback. A time-based media editor may be used
to create complex presentations from simple content. A player is used to browse and play-back
content specified by the editor. A user may control a player’s view parameters, such as window
size and playback rate, as well as quality parameters such as spatial and temporal resolution. The
combination of content, view, and quality specifications constitute a QOS specification. When a
user chooses to begin a presentation, the player needs to verify that a presentation plan consisting
of real-time tasks will satisfy the QOS specification. A presentation plan is feasible if guarantees
can be obtained from a Resource Manager for the real-time presentation tasks that transport and
transform the multimedia data from storage or other data sources to the system outputs.

2.1 Content, View and Quality

This architecture is similar to other research systems that provide QOS guarantees based on
an admission test [27]. However, our definition of QOS is novel in that we make strong distinctions
between content, view, and quality specifications. A content specification defines a set of logical
image and audio output values as a function of logical time. A wiew specification maps content
onto a set of physical display regions and audio output devices over a real-time interval. Quality is
a measure of how well an actual presentation matches the ideal presentation of content on a view
and a quality specification defines a minimum acceptable quality measure. We will refer to quality
when we mean the measure, and QOS when we mean the combination of content, view, and quality
specifications.

By allowing independent control of content, view and quality, a multimedia system can offer
a wider range of services that take advantage of the flexibility of computer platforms. To illustrate
these services, consider the presentation of video and audio as described in Figure 2. The first
video clip refers to 5 seconds of a digital video file. The video file is named cam! because it was
captured with the first of two cameras recording the same bicycle racing event. The digital video
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Figure 2: Timeline view of content specification for a presentation of bicycling video with audio.

for cam1 has a resolution of 320x240 pixels. A second video file named cam?2 shows another view
of the bicycling event and has a higher resolution of 640x480 pixels. The video presentation cuts
from cami to cam2 for 3 seconds, and then back to cami for the last 7 seconds. The audio clip
file micl contains a digital audio sound-track recorded at the same time as the video clips. After
selecting this content for presentation, a user should be able to choose view parameters and quality
levels independently. For example, if the user chooses a view with a 640x480 pixel display window,
but a quality specification that requires only 320x240 pixels of resolution, then the player may be
able to avoid generating the full resolution images from cam2. The quality specification allows the
user to indirectly control resource usage independent of the content and view selections. The player
can optimize resource usage so long as the presentation exceeds the minimum quality specification.
Users might also like to specify an upper bound on cost for resource usage, but measuring costs is
beyond the scope of this paper.

3 Content Specification

To make the definitions of content, view, and quality as clear as possible, this paper invents a
simple framework for specifying multimedia presentations. The Z specification language [28] is used
to describe the framework in order to focus attention on the framework’s mathematical properties
rather than on details of syntax and implementation. The framework supports composition of audio
and video data to create complex non-interactive presentations. Other media such as text and still
images are supported by converting to a video representation with finite duration.

Our content specifications define a set of logical output channels and the acceptable real-
number values for those outputs that may vary continously with time. It is an important feature
of this model that the audio and video specifications may have infinite resolution. For example, the
visualization of a continuous function whose values can be computed rather than read from storage is
limited by the computational resources and the display device, but not by the content specification.

We assume only two basic types: Real numbers and Integers. Digital inputs and outputs will
be declared as Integers, but nearly all other quantities will be modeled as Real numbers. Real
numbers are used for the specification of logical values to avoid placing an artificial limit on the
content resolution. We begin our specification in Z with a declaration of these basic types:

(R, 2]

A Space schema specifies intervals for each coordinate dimension and the output value. To
make 1t easier to treat all outputs uniformly, this single schema must contain the maximal set of
dimensions for all output types. When used for audio output specifications; we simply ignore the z
and y intervals.

Interval

start : R
extent . R




Space
t : Interval

z : Interval
y : Interval
z : Interval

A Content specification is a recursive construct built from basic audio and video sources. Each
audio, video, sampledAudio, and sampledVideo construct defines a single logical output channel.
More complex content may be specified using clip, transform, cat, synch, and select constructs. The
Logical OQutput type 1s used in the select construct to reference a particular logical output. The exact
meaning of each of these constructs is described below.

Logical OQutput ::= alLog {2)) | vLog {Z)

Content = audio{(Space x (R — R))
| wvideo{(Space x (R— R— R — R))
| sampledAudio{{Space x (Z — R))
| sampledVideo{Space x (Z— 2 — 2 — R))
| clip{Space x Content))
| transform{{Space x Content))
| cat{{seq Content)
| synch{(seq Content))
| select{ Logical Output x Content))

Figure 3 illustrates a content specification for the example presentation from Figure 2. We’ll
describe this specification from the bottom up, beginning with the two sampledVideo specifications
and the one sampledAudio specification that form the leaves of the tree. The first video specification
declares that the file cam! contains 8-bit samples in 3450 frames and each frame has 320x240 pixels.
The second video file named cam2 has only 1590 frames, but each frame has 640x480 pixels. The
audio file mici has 100 seconds worth of samples at 8000 8-bit samples/second. Both videos are
scaled in time to play at 30 frames/second and their z ranges are normalized by the transform
specifications. The first video is also scaled by a factor of 2 to match the dimensions of the second
video and is offset by -100 seconds so that the clip can begin at logical time zero. The audio is
normalized and scaled in time to play at 8000 samples/second. The video presentation is assembled
by concatenating a clip of seconds 0-5 from the first transformed video with seconds 50-53 from the
second, followed by the clip of seconds 8-15 from the first again. The result is then synchronized
with a clip of seconds 0-15 from the transformed audio.

The transform, clip, cat, synch, and select specifications support stretching and shrinking,
cut, paste, and synchronization of logical outputs. Although other features are desirable, such as
the ability to mix several logical outputs together, the constructs described are sufficient for editing
useful time-based multimedia presentations and for illustrating the meaning of view and quality
specifications in the next sections.

3.1 Meaning of Content Specifications

The meaning of a content specification is defined by a set of allowed logical output values for
every point of the logical output space. A few more declarations make it easier to define this logical
meaning. We first introduce the notation r €; 1 to express the constraint that a real number r is
within the interval ;. The Z notation for declaring the relation € is:

_ €7 _: R+ Interval
r€ri=(i.start < r) A (r < i.start + i.extent)

We also declare two functions ¢r and utr that respectively transform and untransform a real
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Figure 3: Content specification in normal-form for example presentation.

number r by a scale factor ¢.extent and an offset i.start. For example, if ¢ is an Interval with
t.start = 3.0 and i.extent = 1.5 then tr 6.5 ¢ = 12.75.

tr,utr : R — Interval — R

tr r 1 = rx.extent + ¢.start

utr r i = (r — i.start)/i.extent

Content specifications constrain logical output values only during explicit time intervals. For
example, the content specification in Figure 3 allows any output values before logical time 0 and
after logical time 15. The functions start, end, and duration are used to reference the logical time
interval over which output values are constrained by a content specification. The logical start of
a content specification is the minimum time ¢ at which some output value is not acceptable! The
logical end is the minimum time ¢ such that no output value is constrained for times greater than
or equal to ¢{. The function alogs returns the integral number of logical audio outputs that are
constrained by a content specification and vLogs returns the number of logical video outputs.

start, end, duration : Content — R
alogs, vLogs : Content — 2

start ¢ = min {t: R | = (VI : LogicalOutput; z,y,z: Re (l,z,y,t,z) € logical ¢) }

end c=min {t: R |
Vit':Re(t<t)= (VI: Logical Output, z,y,z : Re (l,x,y,t', z) € logical ¢) }

duration ¢ = end ¢ — start ¢

alogs(c) =mar {n:2| = (Vx,y,t,z: Re(alog(n),z,y,t, z) € logical ¢)}

vLogs(¢) = max {n:2| = (Yz,y,t,z: Re (vLlog(n),z,y,t, z) € logical ¢)}

The meaning of each of the content constructs is captured by the following definition of a
function for logical content. For a given content specification, the logical function returns a relation
between a point in the logical output space and the acceptable output values for that point. We read
the expression (I, z,y,t,z) € logical ¢ as: the content specification ¢ specifies that logical output /,
at point (z,y) and time ¢ may have value z. Note that specifications reduce the set of acceptable
values and where nothing is specified, all values are acceptable.

Logical Value == LogicalQutput x R x R x R X R



logical : Content — P Logical Value
logical (audio(s, f)) = {! : Logical OQutput; x, y, t,z : R |
(l=alog 1) A (t€rst)y=>z=fte(l,z,y,t,z2)}
logical (video(s, f)) = { ! : Logical Output; z,y, ¢,z : R |
(l=vlog WA (z€rsa)yAN(yersy)yAN(te€rst)y=z=ftyzeo(liz,yt2)}
logical (sampledAudio(s, f)) = {1 : Logical Output; z,y, ¢,z : R |
(l=alog 1) A (terst)yNz=Ff|t]e(l,z,y, t,2)}
logical (sampledVideo(s, f)) = {1 : Logical Output; z,y, ¢,z : R |
(l=vlog WA (z€rsa)yN(yErsy)N({te€rst)y=z=Ff[t] |z] |ly]e(L,z,y,t,2)}

logical (clip(s, ¢)) = {1 : LogicalQutput; z,y,t,z : R |
(zersz)AN(yErsy)AN({tErst)A(z €rs.2)=>
(Lx,y,t,z) € logical c o (I, z,y,t,2)}
logical (transform(s, ¢)) = {! : Logical Qutput; z,y,t,z : R |
(Lz,y,t,2) € logical c o (I, tr z sz, tr y sy trt st trzs.z)}

logical(cat(())) = { ! : LogicalOutput; x,y,t,z: Re (l,z,y,t,2) }

logical (cat(q)) =
logical (head(q))
N {!: LogicalOQutput; z,y, ¢,z : R |
(L,z,y,t,2) € logical(cat(tail(q))) o (I, z,y,t + end(head(q)) — start(cat(tail(q))),z) }

synch((})) = {1 : LogicalOutput; v, y,t,z: Re (l,z,y,t,2) }
synch(q)) =

logical
logical
{n:2;2,y,t,2: R|(alog n,z,y,t,
(aLog(n + (aLogs(synch(tazl( ))
N{n:2;z,y,t,z: R| (vLog n,z,y,
(vLog(n + (vLogs(synch(tail(q))
N logical (synch tail(q))

logical (select(aLog(n), ¢)) = {x,y,t,z: R | (aLog(n), z,y,t,z) € logical ¢ o (aLog(1),z,y,t,z)}

z) € logical head(q) o
) &,y b, 2) }
t,z) € logzcal head(q) o

)%y, t,2) }

logical (select(vLog(n), ¢)) = {z,y,t,z: R| (vLog(n),z,y,t,z) € logical c o (vLog(l),z,y,t,2)}

Some explanation is needed regarding audio and video source functions. An audio source is
modelled as a function from a real time coordinate to a signal value. For example, a sine function
could be given as an audio source without specifying a limit on the resolution of the signal. As
described in the following sections, the resolution of a presentation is limited only by an actual
implementation on digital outputs. A video source is also modelled as a continuous function of time,
but it requires additional arguments for the x and y screen coordinates. The domain and range for
the functions are specified with the Space argument. Sampled audio and video sources are modelled
as functions of integer coordinates. For simplicity, this definition supports only monochrome video,
but the same approach can be generalized to specify a tuple of values at each point for color.

The first predicate for logical(audio(s, f)) says that if { is the logical output alog 1 and ¢ is
within the interval s.t then the only acceptable value for z is the function f(¢). Otherwise, any
values are acceptable for z. Note that the interval s.z may indicate the intended range of source
values, but there is no need to enforce this range when defining the logical content. The predicate
for logical(video(s, f)) expresses a similar constraint for the logical output vLog1.

For sampled audio and video, the logical coordinates are rounded down to the nearest integer.
Consequently, the number of samples (frames) is given by |s.t.extent| and the pixel dimensions for
video frames is | s.z.extent| * | s.y.extent|. This information about sample resolution is needed only
for accessing the source functions and is not carried explicitly in the definition of logical content.



A clip(s, ¢) construct specifies that for all logical outputs, points within the Space s are con-
strained to have the same values as specified by ¢. All points not in s are effectively “clipped”
out and may have any value. A transform(s, ¢) construct specifies a linear transformation of points
in the content specified by ¢. For example, if start ¢ = 0, duration ¢ = 60, s.t.start = 10, and
s.t.extent = 2, then start(transform(s, c)) = 10 and duration(transform(s,c)) = 120. The trans-
formation construct transform(s, ¢) with all start fields in s equal to zero and all extent fields in s
equal to one is the identity transformation and has no effect.

A temporal sequence of content can be specified with a cat(q) construct. The content for a
member of the sequence ¢ is logically shifted in time to start just as the previous content in the
sequence ends. The synch(q) construct specifies that a set of logical outputs all reference the same
time scale. If the content specifications ¢, and c,, specify n and m logical outputs respectively, then
synch({cy, cm)) specifies m + n logical outputs.

The select(l, ¢) construct offers a way to reference only the content of a single logical output
within a complex specification. Where the synch construct aggregates multiple logical outputs into
a single content specification, select(l, ¢) specifies only a single logical output with the same content
as ¢ specifies for logical output {. For any n, the logical output defined by select(l, ¢) is (aLog 1) if
! = (aLog n) and (vLog 1) if l = (vLog n). If a content construct does not specify the logical output
[ then select(l, ¢) is the null specification; that is, all values are permissible on all outputs.

It is worth noting that no matter how a content specification is composed, its logical content
may be equivalently specified by a content specification with the normal-form shown in Figure 3. In
normal-form, every specification is a tree with a synch construct at the root. The synch construct
specifies a sequence of cat constructs. Each cat construct specifies a single logical output with a
sequence of clip constructs. Each clip specifies a portion of a transform construct and each transform
construct defines the logical dimensions of a basic media source. A basic media source must be either
an audio, video, sampledAudio, or sampledVideo construct.

4 View Specification

The logical outputs of a content specification have both temporal and spatial proportions, but
they have no physical size or real duration. A View specification allocates physical devices for logical
outputs and maps logical time to a real-time clock. While the physical devices may present an upper
bound on spatial and temporal resolution, the view does not specify presentation quality. Figure 4
shows a view specification that allocates an unusually small 8x6 pixel window on a monochrome
(black and white) display for the bicycling video presentation. Although the output device clearly
limits the quality of the presentation, the view does not specify how the content is to be represented
on the display. It is the presentation plan that must choose how to resample the source and how
to represent gray scale information. The combination of content and view specifications serve as a
device-independent specification of a perfect quality presentation. The idea of an ideal presentation
is formally defined below. In the next section, we define less-than-perfect quality based on the
difference between this ideal presentation and actual presentation outputs.

Since we are not interested in the details of the physical device I/O, we simply assume that
there is a set of audio output devices AudioDev and video output devices VideoDev. A Device is
either one of the audio devices or one of the video devices.

[AudioDev, VideoDev]
Device == AudioDev U VideoDev

The logical dimensions in a content specification are generally not the same as the physical
dimensions of the view. The Quiput schema declares a field ¢r that defines the transformation from
logical to view output dimensions and a field clip that defines clipping bounds for view outputs.
In Figure 4, the Qutput specification for vLog 1 transforms the 640x480 logical image size to 8x6
and then offsets the image 2 pixels in # and 1 in y. The z values are transformed from the logical
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Figure 4: Example of a view that allocates an 8x6 pixel window on a display device for presentation
of the bicycling video.

range of [0, 1) to the view range of [0,256). The clipping bounds for both audio and video match the
full range of the transformed content. Note that the time fields are ignored, because the temporal
transformation and clipping for all outputs i1s given in the View specification. This assymetry is
necessary to preserve the content synchronization while allowing flexibility in the display of multiple
logical outputs.

Output
dev : Device
tr, clip : Space

A View specifies a partial function map that assigns a subset of the logical outputs to physical
output specifications. Logical content that i1s to be presented must be mapped to physical outputs
of the appropriate type. Logical outputs that are not in the domain of the map function are ignored.
The ¢r field is used to transform logical time in a content specification to a real-time clock. The clip
field specifies the real-time start and duration of the presentation.

_ View
map : Logical Qutput - Output
tr . Interval
clip : Interval

(aLog n € dom map) = (3 d : AudioDev o (map(alLog n)).dev = d)

(vLog n € dommap) = (3d : VideoDev o (map(vLog n)).dev = d)

A view specification together with a content specification defines an ideal presentation, where
the output devices are assumed to have infinite resolution. This assumption is necessary for the
device-independent definition of quality described in the next section.

Device Value == Device x R x R x R x R



We define a function ideal ¢ v that returns the relation between devices and the values specified
by a Content specification ¢ and a View specification v. The relation ideal ¢ v contains all points
(d,z,y,t,z), where the view maps a logical output ! to a device d and z, y, and ¢ are within the
clipping bounds for d, only if the corresponding logical value 1s allowed by the content specification
c. The corresponding logical point is computed by substituting ! for p and “un-transforming” z, y,
t, and z back to logical space.

tdeal : Content — View — P Device Value

ideal ¢ v ={d : Device;z,y,t,z: R e
(31 : Logical Output; p : Output e
((l € domwv.map) A (v.map(l) = p) A (p.dev = d)
A (d € AudioDev) A (t €1 v.clip)) =
(Fa', ¢ Re (L2, ¢, utr t v.tr,utr z p.tr.z) € logical c))
A (31 : Logical Output; p : Output e
((l € domwv.map) A (v.map(l) = p) A (p.dev = d)
A (d € VideoDev) A (t €1 v.elip) A (z €1 p.clip.z) A (y €1 p.clip.y)) =
((Lutr « ptr.e,utr y ptr.y, utr t v.tr utr z p.tr.z) € logical ¢))
o(d,z,y t,z)}

The implementation of a presentation plan uniquely determines the value for every device at
every point and time. The schema Presentation models the implementation with separate functions
for audio and video device types. A presentation on a digital audio device is a function from a
discrete clock value for time to an integer output value. For a video output, it is a function from a
discrete clock value and integer x and y coordinates to an integer output value.

Presentation
aVal : AudioDev — 2 — 2
vVal . VideoDev — 2 —2 —2 — 2

We define a function actual that takes a particular presentation and returns a relation rep-
resenting these output values. The relation actual P contains a point (d,z, y,t,z) only if z is the
value of the device d and pixel (z, y) while the clock value is ¢ as defined by P. We are assuming
that we can observe only one output value per clock tick and that the output value 1s constant over
the duration of a clock cycle. Because the relation actual P and the relation ideal ¢ v have the same
type, it is easy to define a mapping between them for any presentation P, content specification ¢,
and view v.

actual : Presentation — P Device Value

actual P =
{d : Device; z,y,t: R|
d € AudioDev o (d,z,y,t,P.aVal d [t])}
U {d : Device; z,y,t : R |
d € VideoDev o (d,z,y,t, P.vVal d || |y]| [t])}

5 Quality Specification

We define the quality of a presentation to be the ratio of the worth of the actual presentation
to the worth of the ideal presentation. Although worth may be subjective, we believe the ratio can
be usefully modelled with a few assumptions:

1. User perception of presentation quality can be modelled by a continuous function of real-time
and device coordinates.

2. The quality of a presentation that meets the specification equals one.

10



3. The quality of a presentation that differs from the specification depends only on user perception
of the difference.

4. User perception of the difference between a presentation and the specification is based on a
mapping of points in the actual presentation to points in the ideal presentation.

With these assumptions, quality is independent of data representations and transport mech-
anisms. In particular, our definition of quality is not based on the data throughput required for a
presentation, but instead can be used to determine throughput requirements as shown in the next
section. In this section, we provide a model for computing quality and define quality specifications
in terms of this model.

The declaration for an Errorinterpretation below is the most important part of our QOS
specification because it defines an error model for measuring presentation quality. An error model is
a set of functions that describe the number of ways in which an actual presentation may be different
from an ideal presentation. We refer to these functions as error components.

Figure b gives a simple example of the need for an adequate error model. In the first graph,
the difference between the actual and ideal curves at time ¢ gives a fair measure of the perceived
error. In the second graph the same measurement at time ¢ gives a very large error measurement,
even though most users will recognize that the signal was simply shifted to start at time ¢2. The
same error can be explained in several ways, but the addition of more error components to an error
model allows greater opportunities to distinguish acceptable errors from unacceptable ones. We can
more accurately model the way users perceive the error in Figure 5 if we include both value error
and time-shift error components in our model. But an error model with only these two components
is still inadequate for the common errors that occur in multimedia presentations.

Our error model below proposes a set of error components that correspond to well known
quality parameters. This set of error components both extends the quality parameters proposed by
others and gives them a formal definition. Qur calculation of presentation quality can be improved
by extending or customizing the error model.

Several type declarations and functions simplify the definition of our error model and quality
constraints. An xytFun is just an abbreviation for a function that takes three real numbers for =, y
and t coordinates and returns a real number.

rytbun == R— R— R— R

The Error data type provides names for the error components that our error model associates
with each output. The motivation for this set of error components is described in Section 5.1.

Comp ::= err | shift | rate | jitter | res

Error == X{Comp) | Y{Comp)) | T{Comp)) | Z{Comp)

Our error model also includes a function for the synchronization error between each pair of
outputs. The reasons for choosing this particular set of error components is discussed at the end of
this section. In particular though, it is useful to consider spatial and temporal resolution in order to
correctly model user perception of output values. The function localAvg (zres, yres, tres) f computes
an zytFun that is the average value of the function f over a small local area defined by zres, yres, and
tres. Because audio outputs do not vary in = or y, localAvg (X res, Y res, T res) f is independent
of the values of X res and Y res in that case and is therefore well defined even when X res and
Y res are not specified.
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localAvg : (zytFun x zytFun X zytPun) — sytFPun — zytFun

localAvg (zres, yres, tres) f z y t =
(let o =ares z y t; o = — (2, /2); 20 = = + (2, /2);
yr=yres z y Lyn =y — (4/2); y2 = vy + (y/2);
tr=tresx yt;ty =t — (4 /2);ta=t+ (1/2) @
1 t2 y2f502(f 2! y/ t/) dr’ dy’ dt/)

Trkyprty St Jyr Jom

__ ErrorInterpretation
c : Content
v View

P : Presentation
error : Qutput — Error — zytFun
synch : Qutput — Output — zytFun

Y p: Oulput elet i == error p e
3 Zideals Zactual - Ithun 4
(Va,y,t: Re(p,z,y,t, zideat © y t) € ideal ¢ v)
ANz, y,t:Re(p,z,y,t, Zactuar © y ) € actual P)
ANi(Z err)= (A z,y,t:Re
Zactual T Y t—
Zideat (T + (X err) z y )y + (Y err) z y t)(t+ (T err) z y t))
A (X err) = i(X shift) + (X jitter)
AN(Y err) = i(Y shift) +i(Y jitter)
AT err) = i(T shift)+ (T jitter)
A (X rate) = 9i(X shift)/dx
AN (Y rate) = 0i(Y shift) /0y
AN (T rate) = 0i(T shift)/ot
AlocalAvg (i(X res), i(Y res), i(T res)) (i(7 err)) =
(let perceivedErr = i(Z shift) + (1 + (7 rate)) * zigea) + i(7 jitter) o
localAvg (i(X res),i(Y res),i(T res)) perceivedErr)

Vp,q: Oulput e
synch p q = (error p (T shift)) — (error q (T shift))

The error model in this declaration defines a set of error components for each output through
the error function as well as an error component for each pair of outputs defined by the function
synch. The predicate for an Errorinterpretation is like a differential equation in that it does not have
a unique solution for the error component functions. Instead, we observe that error measurement
is inherently subjective because the outputs do not carry meta-information about the intended
relationship with the specification. An Errorinterpretation merely defines one subjective mapping
and a set of error components that are consistent with each other and the mapping. Figure 5
illustrates the point with two different interpretations for an audio presentation.

We declare a quality specification to be a schema that gives the minimum acceptable level of
quality and also provides values for calibrating the affect of each error component on presentation
quality.

_ Quality
min : R
calib : OQutput — Error — R

calibSynch : Output — Output — R

(0 < min) A (min < 1)
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value value
ideal ¢ ideal
| | |
1 1 1
t1 t time t1 t2 ¢ time

Figure 5: Presentation error may be attributed to value error alone as illustrated or to some com-
bination of timing and value errors.

The meaning of the quality schema in conjunction with a content and view specification is
given by the following schema for a QOS specification:

_ QOS5
¢ : Content
v View
q : Quality

P . Presentation

d14 : Errorinterpretation @ i.c = c Ai.v = v A i.P = P A
Vp Eranv.map; z,y,t: R e

qmm S HmeErmr 61‘])(— | s.error pmx y t i.synch p p' =z y t |)

g.caltb p m |) * Hp’Eran v.map 61‘])(— g.calibSynch p p’

This schema consists of Content, View, and Quality specifications that constrain a presentation
P. The QOS specification is satisfied only if an Errorinterpretation exists for ¢ v and P such that,
at all times and all points on every output, the quality of the presentation must be greater than
or equal to g.min. We compute quality with an exponential decay function that depends on the
absolute value of error components. This model has the following properties:

e quality is one when all error components are zero.
e quality is monotonically decreasing with increasing absolute value of any error component.

e quality approaches zero as all error components approach infinity.

To calibrate this quality function to approximate user preferences, we can adjust the values
returned by the calib and synchCalib functions in the quality specification. We call these values
critical error values. For every error component in our error model, there is a corresponding critical
error value in the quality specification. When an error component equals the corresponding critical
error value the quality is at most e~! or approximately 0.37. Consequently, we must choose these
critical error values to correspond to decidedly poor quality. Figure 6 shows critical error values
for the example in the next section. A quality specification ¢ can use these values for its caltb and
synchCalib functions. For example, for all video outputs p, ¢.calib p (T jitter)is 0.1 seconds. These
numbers are intended to correspond to noticeably poor quality. The units for temporal shift, jitter,
res, and synch are in seconds. Measurements for z and y shift, jitter, and res components are
relative to v.clip.z.extent and v.clip.y.extent. respectively for a View v. Measurements for z shift
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shift | rate | jitter | res synch
VideoDev X | 0.1 0.1 |0.02 |0.02 0.2

VideoDev Y | 0.1 0.1 |0.02 |0.02
VideoDev T | 15 0.5 | 0.1 0.03
VideoDev 7Z | 0.05 | 0.1 | 0.05
AudioDev T | 15 0.5 | 0.001 | 0.0002
AudioDev Z | 0.01 | 0.1 | 0.05

Figure 6: Example critical error values. The “err” component does not appear in this table because
it 1s equivalent to the sum of the “shift” and “jitter” components.

| east-conservative-specification (simple error model)
| east-conservative-specification (augmented error model)
user perception

Figure 7: Relationship between presentations accepted by least-conservative-specifications and those
accepted by user perception.

and jitter are also made relative to v.clip.z.extent. All rate error components are measured in units
of shift per second.

This definition for QOS specification is very strict in that quality must exceed the minimum
everywhere during a presentation. It would be nice to extend the specification semantics to allow a
presentation to occasionally drop below this minimum quality, but this extension is left for future
work.

5.1 Justifying the error model

The choice of error components in our error model is intended to provide a useful model of
human perception. Ideally, a presentation QOS specification should accept all presentations that
humans accept and reject only those that humans reject. A conservative specification is one that
never accepts a presentation that humans would reject and a least conservative specification is a
conservative specification that accepts the largest set of presentations. We can show that a least
conservative QOS specification for a minimal error model needlessly rejects presentations that we
find acceptable. Error components are added to the error model to increase the space of presentations
accepted by a least conservative specification as suggested in Figure 7.

Consider the minimal error model that includes a function for error in the 7 dimension for
every output, but that assumes error in X, Y, and T dimensions are zero. This simple model 1s
illustrated in Figure 5 where the error function returns the minimum difference between the actual
output value z and an ideal value for each output, p, at the same point and time.

This minimal error model is the smallest error model that can map from actual P to ideal ¢ v
for any P, ¢, and v. We say that an error model is complete if we can specify arbitrarily high quality
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(as judged by humans) by requiring that all error components in the error model are sufficiently
close to zero. A complete error model is essential for conservative QOS specifications. The minimal
error model is complete because the presentation becomes indistinguishable from the ideal as the Z
error component goes to zero everywhere.

Unfortunately, the minimal error model does not yield error values that correspond well to
human perception. The second case in Figure 5 shows that a simple startup delay produces large
error measurements. A person judging the quality of a presentation recognizes a delay in starting
the presentation, but then sees a good match after compensating for the delay. If human ears are
annoyed by noise with an amplitude e, then a conservative QOS specification must constrain error
in Z to be less than e,. This constraint limits the set of acceptable presentations to a narrow
band around the ideal presentation. But the human listener will accept the much larger set of
presentations that are merely delayed in starting by up to £1/10 second. By adding a constant
time shift error to the error model, we can accept this much larger set of presentations with a QOS
specification that is still conservative.

Our error model adds many error components to achieve a better match between the least
conservative QOS specification and human perception. The shift component for time is intended
to express the amount by which a presentation is seen to be behind schedule. The shift error need
not be constant in our model, but may increase or decrease with time. We add the synch error
component because shift errors are not likely to be noticed except as part of a synchronization error
between outputs. Humans are sensitive to the presentation rate, so the error model includes rate
error which we define as the rate of change in the shift error with respect to time. The rate error is
zero while the shift error is constant, but increases in magnitude when the presentation speeds up
or slows down. The addition of jitter to the error model allows us to isolate high frequency noise
in the timing from the shift and rate components. For example, logical time for a video might be
accurately perceived as being stopped between frames and then advancing rapidly as the next frame
is presented. Rather than reflecting this rate fluctuation in the rate error component, the jitter
error component accounts for these small timing errors. As discussed below, the error model does
not need to specify how much of the timing error is due to jitter and how much to shaft.

The shift, rate, and jitter error components are defined similarly for X and Y dimensions since
video presentations can suffer from displacement, scaling and small distortions that are analogous
to the temporal error components.

Even after accounting for temporal and spatial errors, the difference between an actual presen-
tation value and the corresponding ideal value at an infinitesimal point is not particularly meaningful.
The problem is that humans don’t perceive independent values at infinitesimal points, but instead
integrate over small display areas and time intervals. This fact is routinely exploited by graphics
algorithms that use dithering. For example, a black and white display can represent a 50% gray
tone by a pattern with every other pixel turned on. Dithering trades off spatial resolution for more
accurate average values. Let X res be the width of the smallest resolvable vertical stripe in a pre-
sentation. We define Y res and T res similarly. Then the interesting measure of value error is the
difference in average value over a region with dimensions X res* Y res* T res. This separates value
errors into what we perceive as resolution loss and actual ”wrong” values. Our error model includes
7 shift, Z rate, and Z jitter error components to model offset, scale, and noise errors respectively.
All three are related to the value of 7 err averaged over a region defined by the resolution error
components.

The determination of error component functions is inherently ambiguous because there is no
information in an output signal about the intended correspondence with a specification. FEach user
perceives error in a presentation subjectively, and may assess the error differently. For a given
presentation and its specification there are an infinite number of interpretations that will satisfy
our error model, each with a different affect on presentation quality. What matters is that an
interpretation exists that has acceptable errors. We assume that users are good at recognizing the
intended presentation content and that they therefore perceive the interpretation with errors that
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Figure 8: View specification for playback of bicycling video at four times normal rate.

are the most acceptable.

We say that an error model 1s sound if, for any trio of Content, View, and Presentation, a set
of error component functions exist that satisfy the definition of the error model. The error model
proposed in this section is both sound and complete and also gives formal definitions for shift, rate,
Jitter, resolution and synchronization errors that are a superset of the QOS parameters proposed
by other researchers [7, 14, 20, 32]. The utility of a particular error model depends in part on how
well 1t models human perception of errors that affect quality. Further work is needed to evaluate
the utility of this particular error model.

6 Using Quality Specifications for Resource Reservation

A multimedia player can generally meet a QOS specification with fewer resources than are
needed for a maximal quality presentation. Consider the bicycling video of Figure 3 and a new view
specification shown in Figure 8. Let the quality specification ¢ have the critical error values from
Figure 6 and the value 0.75 for g.min. The view represents a user request to play the presentation
at 4 times the normal rate. The resulting ideal specification then calls for 120 frames/second of
video. However, the quality specification only requires that quality exceed 0.75. If all aspects of the
presentation were perfect except for video jitter, the quality specification would admit a presentation
with jitter less than or equal to 0.029 seconds, which allows the playback algorithm to drop more
than five out of six frames. This result follows from the predicate in the QOS5 schema.

Let p, be the video output and ¢ be an interpretation that finds all error components to be
zero except for i.error p, (T jitter). Since the exponential functions are equal to one when error is

zero, we get:
i.error p, (T jitter) z y t

Vao,y,t: Re0.75 < exp(— |

) (1)

Assuming that jitter is always positive, we can substitute the critical value gq.calib p, (T jitter) from
Figure 6 and solve for the jitter:

q.calib p, (T jitter)

| i.error p, (T gitter) z y t | < —1In(0.75) % 0.1 = 0.029 (2)

Thus, the absolute value of the jitter can be as large as 0.029 seconds. Since all other errors are
assumed to be zero, jitter is defined by the error model to be the difference t;404; — ¢ where content
displayed by the presentation at time ¢ should have been displayed at time #;4cq. As Figure 9
illustrates, if the duration d of the ith frame in a presentation is centered on the ideal time for
presentation of that frame ¢; then the absolute value of the jitter is always less than d/2 seconds.
Setting d/2 < 0.029 and solving for d gives us a maximum frame duration of 0.058 seconds and a
minimum frame rate of approximately 18 frames/second.

Analysis of a QOS specification can identify a range of presentation plans that might satisfy
the specification as illustrated above. A multimedia player can perform this analysis automatically
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Figure 9: Example mapping from actual presentation times to ideal presentation times. When shift
error in an interpretation is zero, all timing error must be attributed to jitter.

in response to playback requests. To guarantee that a particular presentation plan will satisfy a
QOS specification a player must reserve resources for storage access, decompression, mixing, and
presentation processes [21]. The attempt to reserve resources is called an admission test. The
admission test may invoke resource reservation protocols for network and file system resources with
resource-level QOS parameters derived from the process timing requirements. If the player can not
find a presentation plan that both satisfies the QOS requirements and meets the admission test,
then the QOS requirements must be renegotiated.

7 Related Work

It is now well understood that time-based multimedia systems require some form of resource
guarantees for predictable performance. We consider related research in the categories of content
specification, QOS specification, scheduling mechanisms and reservation protocols.

The Muse system [13] is one of the earliest full-featured editing tools that allows multi-track
timeline synchronization of media objects. The Muse authoring tools support content and view spec-
ification, but do not explicitly constrain presentation quality. MAEstro [9] is a distributed editing
and playback environment that achieves effective coarse-grained synchronization for timeline-based
content specifications. The MAEstro player relies on UNIX timer interrupts, Sun remote procedure
calls, and the Unix scheduler for best-effort synchronization. The CMIFed [26] environment sup-
ports content editing with specification of allowed deviations in synchronization. Our work can be
applied to extend these tools with a formal model for specifying quality along with content. The
QOS specifications can be used both to guarantee acceptable presentations and to optimize resources
when the quality requirements admit multiple presentation plans.

Researchers have suggested a variety of parameters for multimedia QOS specifications. Con-
tinuous media stream access is generally described by throughput and delay or jitter bounds [2, 20,
25, 32]. Hutchinson, et al. [14], suggest a framework of categories for QOS specification including
reliability, timeliness, volume, criticality, quality of perception and even cost. They provide only a
partial list of QOS parameters to show that current QOS support in OSI and CCITT standards is
severely limited. While these lists suggest many important ways to describe service categories, they
go beyond presentation requirements and into specification of implementation. Our definition of
QOS specification excludes volume, throughput and cost values because these values are secondary
and can be derived from the combination of presentation requirements and system configuration.
The Capacity-Based-Session-Reservation-Protocol (CBSRP) [32] supports reservation of processor
bandwidth from the specification of a range of acceptable spatial and temporal resolutions for video
playback requests. The resolution parameters are intended only for providing a few classes of service
based on resource requirements and not for completely capturing presentation quality requirements.
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Our error model provides a complete set of error components including 7 shift, Z rate, and Z jitter
components for image value errors as well as error components for inter-stream synchronization.

Many researchers have demonstrated that quality can be traded for lower bandwidth require-
ments during a presentation. A variety of scaling methods may be applied to reduce the bandwidth
requirements of video streams [6, 8]. Software feedback techniques have been used to dynamically
adjust stream processing workloads to available system bandwidth [5, 24, 27, 32]. These techniques
can be used aggressively by a presentation planner to reserve minimal resources for a formal QOS
specification.

Resource requirements may be derived from a presentation plan that satisfies a QOS speci-
fication. When the resource requirements are known, resource reservation protocols are needed to
guarantee predictable access. Several groups have reported reservation protocols for network re-
sources [1, 37, 38]. Processor capacity reservation has been implemented in the Real-Time Mach
operating system [22] and file systems have been developed to support reservations for continu-
ous media streams [3, 20, 25, 35]. These protocols can be used effectively within the architecture
suggested in Section 2.

8 Conclusions

This paper has described a new framework for QOS specification in multimedia systems. The
primary contributions of this framework are the clear distinction between content, view and quality
specifications, and the formal definition of presentation quality. Because every component of our
QOS specifications has an unambiguous meaning it is possible to prove the correctness of a pre-
sentation plan. These formal QOS specifications enable system designers to request and provide
meaningful end-to-end guarantees for multimedia services. Section 6 gave an informal illustration of
how the QOS specification can be used to derive a minimal frame rate for an acceptable presentation.

Our formal definition of presentation quality is based on a mapping from an actual presentation
to an ideal specification. This mapping ensures that our error model is complete because, as all error
components in the model approach zero, the presentation necessarily becomes indistinguishable from
the ideal specification. Previous definitions of QOS parameters do not satisfy this completeness
criteria. We have proposed an extensible set of error components that are a superset of the QOS
parameters suggested by other researchers.

Another important achievement of this definition is the recognition that presentation quality
should be specified in terms of a subjective interpretation of output errors and not in terms of the
presentation mechanism. Our QOS specifications allow a player to choose an optimal presentation
plan according to current resource costs and availability. Knowledge of the presentation mechanism
can then be used to prove that an acceptable quality interpretation of the presentation exists.

We are implementing a playback system that uses these QOS specifications. Further work is
needed to investigate algorithms for translating QOS specifications into feasible presentation plans.
Studies of human perception are also needed to improve the error model.
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