
 

1999 May 21 11:13 

 

1

 

GuardHouse: Locking the 
Stable door ahead of the 
Trojan Horse

 

Steven M. Beattie, Andrew P. Black, 
Crispin Cowan, Calton Pu, Lateef P. Yang

 

Department of Computer Science & Engineering, 
Oregon Graduate Institute of Science & Technology

 

Abstract

 

Once attackers have penetrated a system, they will usually take advantage of their 
position by extending their reach to compromise other systems (e.g., by sniffing 
passwords from the network), and by installing “back doors” that will enable them to 
regain access even if the original insecurity is repaired. A common approach is to 
install a modified version of a standard system daemon such as 

 

telnetd

 

. It is also 
common for attackers to attempt to cover their tracks by installing doctored versions 
of standard programs like 

 

ls

 

, 

 

ps

 

 and 

 

sum

 

. Programs like this, which conceal some-
thing harmful inside a harmless looking exterior, are called Trojan Horses.

GuardHouse detects Trojan Horses as they are about to be activated. It is similar in 
its goals to Kim and Spafford’s Tripwire, but detects intrusions with lower latency. 
That is, rather than laying dormant until the system administrator next runs a 
Tripwire integrity check, GuardHouse would detect a Trojan Horse as soon as it is 
run. Another difference is that GuardHouse can be configured to prevent the Trojan 
Horse from running at all.

Deploying a Trojan Horse involves installing code crafted by the attacker or 
imported from another site. In principle, this can be detected by requiring that all 
code that runs on a system be 

 

certified

 

. Using Public Key Cryptography, it is 
possible to 

 

sign

 

 executable binaries to indicate that they are genuine, and to check 
the signature on a binary before it is executed. The Trojan Horse would then be 
exposed before the system is put at risk by loading it.

But what is possible in principle does not always work well in practice. Our goals in 
developing GuardHouse was to deploy code certification as an intrusion detection 
tool in a real system (L

 

INUX

 

 version 2.0.36) so that its practical impact can be 

 

This work was partially supported by DARPA Grant F30602-96-1-0331 and by NSF Grant 
Number CDA-9703218



 

Introduction and Motivation

 

2

 

GuardHouse: Locking the Stable door ahead of the Trojan Horse

 

evaluated. The paper makes three contributions. First, we show that the implemen-
tation of binary code certification in a modular system like L

 

INUX

 

 is simple. Second, 
we discuss configurations that trade different degrees of security for different 
degrees of inconvenience, but in all cases we are able to find reasonable points of 
compromise. Finally, we show that the impact of the additional checks on system 
performance is small enough to encourage the wide adoption of this technology.

 

Introduction and Motivation

 

The idea that Public Key Cryptography can be used to digitally sign a document, 
thus establishing its authenticity, is as old as public key cryptography itself [1]. 
Toolkits that implement the basic cryptographic algorithms are now widely availa-
ble, for example, PGP [2] and GPG [3]. GuardHouse, described in this paper, repre-
sents the practical application of these ideas in a way that prevents unauthorized 
programs from running on the protected system. Alternatively, GuardHouse can be 
configured to allow unauthorized programs to run, but to generate a log record 
detailing the attempt.

When intruders gain access to a system, they frequently try to down-load and run 
programs that will either seek to discover further weaknesses in the system, or install 
a back door, or will hide these very activities from legitimate users and system 
managers. Using GuardHouse, the running of these programs can be prevented or 
detected.

GuardHouse is similar in many respects to Tripwire [4, 5]. Tripwire and GuardHouse 
both collect vital statistics about files, which are later used to detect tampering with 
those files. Tripwire operates “off-line”, in the sense that comparison between the 
current version of the file and the previously recorded version is done when 
explicitly requested by the system administrator, for example, at 8am every morning. 
GuardHouse is “on-line”, in the sense that the comparison is done every time that the 
binary is executed. However, Tripwire is more general than GuardHouse, since it can 
be applied to any file (for example, configuration files), while GuardHouse protects 
only executable files.

 

THE BASIC IDEA

 

The basic idea behind digital signatures is simple. Suppose that Alice wants a digital 
signature. Alice first obtains a pair of keys 

 

k

 

pub

 

 

 

and 

 

k

 

priv

 

,

 

 

 

known as her public and 
private keys. These keys have the property that if a file (or other sequence of bytes) is 
first encrypted with 

 

k

 

priv

 

, 

 

and the result is then encrypted a second time, with 

 

k

 

pub

 

, 
the original file is obtained. 

Knowledge of 

 

k

 

priv

 

 

 

is like possession of a rubber stamp bearing Alice’s signature. 
Knowledge of 

 

k

 

pub 

 

is like the ability to compare the imprint of a stamped signature 
on a document with the real thing. 

 

k

 

pub

 

, as its name implied, is intended to be public, 
for example, Alice might publish it in an Internet directory, so that anyone who is 
presented with a document 

 

d 

 

that claims to be signed by Alice can test that fact by 
obtaining Alice’s public key 

 

k

 

pub

 

, and encrypting 

 

d

 

 with 

 

k

 

pub

 

. If the result makes 
sense, 

 

d

 

 was genuine. If the result is gibberish, then 

 

d

 

 was a forgery. (Note that this is 
just the opposite of what one would do to maintain secrecy; in that case the sender 
would encrypt with the public key of the recipient, and the appropriate private key 
would be needed to read the contents.)



 

Introduction and Motivation

 

GuardHouse: Locking the Stable door ahead of the Trojan Horse

 

3

 

In practice, a transmitted document normally contains both the unencrypted and the 
encrypted version of the original file, so that it is easy to test whether the second 
encryption actually generates the original text. Because this would make the trans-
mitted document much larger, it is usual to perform the encryption not on the entire 
file, but instead on a “digest”, a hash of the file contents produced by a digest 
function.

A digest is a function that takes a (usually large) file and produces a (usually much 
smaller) result called a hash value. A simple example is a CRC or checksum 

function, which adds the bytes in the original file together, modulo 2

 

32

 

or 2

 

64

 

. In 
general, digests are designed to resists inversion—finding another input that 
produces a known output— and collision—finding two inputs that generate the same 
hash value. A good digest will depend on every bit of the input, because if it does 
not, it would be possible to tamper with some of the bits without being detected. 
MD5 [6] is a digest function that generates a 128-bit hash from a file of arbitrary 
length. MD5 is widely regarded as being secure, and software implementations are 
now widely available.

 

APPLYING THE IDEA

 

Given this background, it is easy to see how to use digital signatures to check the 
authenticity of a binary program. 

 

1.

 

On a secure (possibly non-networked) computer 

 

S

 

, Alice generates the binary in 
the usual way, using her favourite compiler and linker. On L

 

INUX

 

, the result is a 
loadable file in Executable Linkable Format (ELF). 

 

2.

 

Alice computes the MD5 digest of the executable portions of the ELF, and then 
encrypts the digest with 

 

k

 

priv

 

. The result is called a 

 

certificate

 

 for that file

 

3.

 

She then appends the encrypted digest to the original file, creating a signed ver-
sion of the binary file. 

 

4.

 

The signed file can now be copied from 

 

S 

 

to the system 

 

P 

 

that requires guarding. 
If S is not on the network, the file can be transmitted by “sneaker net” using a 
removable medium disk.

 

5.

 

On 

 

P

 

, before the binary is executed, the operating system kernel first checks that 
the MD5 digest computed from the executable portions of the file and the MD5 
digest obtained by decrypting the certificate with 

 

k

 

pub

 

 are identical. 

 

6.

 

If they are identical, then we can assume with high confidence that the file was 
indeed signed by Alice, or at least by someone who has Alice’s private key. If 
they are not, then the file is a forgery, or has been corrupted in some way. In 
either case, an alert should be sounded.

GuardHouse may thus be thought as having two components: a set of utility 
programs that run on 

 

S

 

, and a kernel modification that is inserted into 

 

P. 

 

Of course, it 
is possible for 

 

S

 

 and 

 

P

 

 to be the same machine; this is convenient, but opens the 
possibility that an attacker may manage to capture the secret key, and thus gain the 
ability to forge Alice’s signature. We do not recommend running GuardHouse in this 
configuration.



 

The Implementation

 

4

 

GuardHouse: Locking the Stable door ahead of the Trojan Horse

 

The Implementation

 

Our first finding is that implementing GuardHouse on L

 

INUX

 

 was relatively simple. 
The bulk of the work was done in three months by an undergraduate student intern, 
Lateef Yang. The encryption and verification functions were taken from Gnu Privacy 
Guard (GPG) [3], a GPL implementation of the OpenPGP standard [7]. We use the 
El Gamal encryption algorithm; the key length is chosen at key generation time. The 
MD5 code was extracted from the Redhat Package Manager [8].

The L

 

INUX

 

 ELF format already provided meta-data to distinguish executable code 
from other information (such as symbol table data); loadable data is contained in 

 

PT

 

_

 

LOAD

 

 segments. Thus it was easy to compute the digest function on these 
segments only. The ELF data schema has a note segment type (

 

SHT

 

_

 

NOTE

 

); this is 
used for storing the signed digest, so inserting it was not difficult.

An alternative implementation would be to store the signatures in an auxiliary file, 
either a system-wide auxiliary table or one additional file per executable. This has 
the advantage of generality; for example, it could be used for shell scripts and other 
executables that are not ELF files. It has two disadvantages: it is harder to maintain, 
because an additional file or table entry must be installed along with every 
executable, and it is less efficient, because two files must be accessed at 

 

exec

 

 time 
rather than one. A possible compromise (which has not yet been implemented) 
would be to use embedded certificates for ELF files, and an auxiliary table for other 
executables.

The software developer is provided with three commands:

 

•

 

gh_insert

 

 <

 

filename

 

>

 

•

 

gh_check

 

 <

 

filename

 

>

 

•

 

gh_keygen --gen-key

gh_keygen

 

 is derived from the GPG command, except that by default it writes the 
public and private keys to files in the directory 

 

/etc/.guardhouse

 

. 

 

gh_insert

 

 computes a digest for the file that is provided as its argument, signs the 
digest with the key from 

 

/etc/.guardhouse

 

, and inserts the resulting certificate 
back into the file. 

 

gh_check

 

 is a utility function that enables the developer to ascertain whether a file 
has never been certified, has been certified with a valid certificate, or contains a 
certificate that does not match its contents.

 

KERNELGUARD

 

On the protected system, the function of checking the validity of the certificate is 
performed by a loadable L

 

INUX

 

 kernel module called KernelGuard. KernelGuard 
can be configured to check every ELF binary that is passed to it before it is run, or to 
check only some binaries. In addition to the KernelGuard module, some changes to 
the L

 

INUX

 

 kernel itself were necessary to provide an interface into which Kernel-
Guard can be plugged. In addition calls to KernelGuard were added to 

 

exec

 

. In total, 
the additions to the L

 

INUX

 

 kernel amounted to about 100 lines of highly commented 
code.

The KernelGuard module itself is 123 kB of binary code. The huge size is due to the 
inclusion of substantial cryptographic support, including arbitrary-precision arith-



 

Configuration

 

GuardHouse: Locking the Stable door ahead of the Trojan Horse

 

5

 

metic libraries to support exponentiation for the El Gamal algorithms. KernelGuard 
needs two inputs to do its work: the public key (corresponding to the private key 
used by the developer to sign the file originally), and configuration data.

The location of the public key can be specified at the time that the KernelGuard 
module is loaded. The key is read into kernel memory the first time that KernelGuard 
runs, and then remains in memory. It is not read again until the operating system is 
rebooted. This provides some protection against the public key being spoofed. Even 
if an attacker did succeed in inserting a Trojan Horse binary in to the file system, 
signing it with a new private key and planing the corresponding new public key into 
the file system, the operating system would have to be rebooted before the new 
public key would have any effect. Because there is only a single system-wide public 
key, attempts to execute any of the legitimate system programs (such as 

 

init

 

, 

 

login

 

, etc.) would then fail. For the reboot to succeed, every GuardHouse-
protected binary in the file system would have to be replaced by a new version that 
had been signed by the new, fraudulent, key.

 

Configuration

 

KernelGuard can be configured to require valid certificates in all or some binary 
files. The decision of whether or not to require a certificate is currently based on the 
user id under which the binary will be run.

The simplest and most secure configuration is to require a certificate in every binary. 
This might be appropriate for a server machine, such as a web server or a mail 
server, on which users are not expected to run their own code; any attempt to do so 
would indicate an attack. This configuration might also be appropriate for a desktop 
machine in a corporate environment, where users do not write their own code and 
where only code approved by the system administration staff is permitted. This 
setting would prevent naive users from, for example, down-loading and running 
dangerous binary code form the internet. 

A common, more permissive, configuration is to set KernelGuard to require signa-
tures on all binaries that will run as root, whether they are 

 

suid root

 

 or simply inherit 

 

root

 

 context from their parent. This would enable students, or software developers, 
to continue to compile and test programs under their own user names, but would 
prevent one of them, for example, from writing and running a network sniffer, even 
if they were able to obtain root privilege. In general, in a system where different user 
identifiers have different levels of privilege, the more privileged users are those that 
should be protected by GuardHouse.

The action that the protected system takes when an un-certified (or incorrectly 
certified) binary is found might also be varied. One possibility is to abort the attempt 
to 

 

exec

 

 the program. This protects the system, but alerts the attacker. Another possi-
bility is to run the unsafe program anyway, and to generate a silent alarm that is 
transmitted to system administrators or other intrusion detection systems. Guard-
House can thus be used as a source of intrusion events that then trigger other systems 
in the network to take protective action.

Note that if the secret key is stored on the same machine that is being protected, it is 
very likely that attackers who are able to become root on that machine would also be 



 

Performance

 

6

 

GuardHouse: Locking the Stable door ahead of the Trojan Horse

 

able to steal the secret key, and thus would be able to certify their own binaries. For 
this reason we consider such a configuration unsafe, and do not recommend it.

 

Performance

 

Our measurements of the performance impact of GuardHouse are so far preliminary. 
All of the numbers reported here are measured on a 120 MHz Pentium processor 
with no level 2 cache and 32MB of RAM—a very modest configuration. 1024-bit 
keys were used for the EL Gamal encryption.

The time taken to sign a binary is low, compared to the overall time taken by the 
compilation process. We have not worked to speed-up the operation of 

 

gh_insert

 

; it takes (very approximately) one half-second per Megabyte to sign a 
typical binary, in addition to set up time for 

 

gh_insert

 

. Signing 

 

emacs

 

 (version 
20.3.1, from the Redhat 5.2 distribution) takes 3.9 s with a cold file system cache. It 
took 7 minutes 5 seconds to generate signed versions of all 914 ELF binaries from 
the Redhat 5.2 

 

/usr/bin

 

 directory; sizes of these binaries ranged from 3.4 kB for 

 

dumpreg

 

 to 12 MB for 

 

netscape

 

.

GIven these modest costs, it seems entirely reasonable to sign all binaries at the time 
that they are created. But what of the cost of the certificate check that takes place in 
KernelGuard whenever a certified binary is run?

Decrypting the digest with the public key is fast, because the digest is only 128 bits 
long. However, re-computing the digest over all of the loadable code segments in the 
ELF file is potentially time-consuming, because, at the very least, all of the loadable 
code in the executable file must be read.

Note that normally (without KernelGuard) code can be loaded on demand: it is not 
necessary to read all of the code before commencing execution. However, Kernel-
Guard must read all of the code before it can compute the MD5 hash. It turns out that 
because of a feature of the L

 

INUX

 

 dynamic code loading process, the normal L

 

INUX

 

 
kernel also reads the all of the loadable code eagerly. Thus, KernelGuard does not 
introduce as much of a performance penalty as one might expect. After all, the kernel 
is already “handling” every byte of the executable.

Measurements show that the cost of KernelGuard is about 300 ms–400ms for a 3MB 
binary like 

 

emacs. This is of course independent of source of the data. When the file 
to be exec’d is already in the file cache, the time for emacs to start up and exit 
immediately is only 80 ms, so this overhead represents a factor of 4 or 5. However, 
when the file is not in the buffer cache, starting emacs takes about 3 s, so the 
overhead is closer to 10 or 12 per cent. That is, fork +exec is 10 or 12 per cent 
slower. Overall, if a system spends 1 per cent of its time executing fork and exec, the 
slowdown due to KernelGuard would be of the order of 0.1 per cent.

It is conceivable that systems executing some applications do repeatedly exec the 
same ELF file from the buffer cache, and will thus experience the more significant 
(factor of 4 or 5) slowdown. If this turns out to be a problem, it may be possible to 
remedy it by caching the previously computed MD5 digest in the kernel along with 
the file. Changing the file on disk would still cause the buffer cache to be refreshed 
and the digest to be re-computed. However, caching the MD5 digest would open up 



Conclusion

GuardHouse: Locking the Stable door ahead of the Trojan Horse 7

another possible attack: changing the file image in the kernel’s buffer cache. It would 
also complicate the inter-module dependencies in the kernel. If the slowdown 
suffered by repeated executions of the same binary turns out to be a problem, this 
issue will need to be examined more carefully.

With this exception, our preliminary tests showed that GuardHouse has no 
observable performance impact at execution time. We plan to carry out more careful 
measurements of the performance impact of GuardHouse and would like to present 
the results at the RAID workshop and in the final version of this paper.

Conclusion

We believe that digital signatures can be used for intrusion detection by protecting 
production operating systems from Trojan Horse attacks. The underlying technology 
is now widely available, and on modern hardware the performance impact is negli-
gible. The reports generated by GuardHouse are valuable as indications of intrusion 
in their own right, but can also be used as a source of intrusion events for other 
components in the IDS arsenal

There is always a trade-off between security and convenience. However, we believe 
that the security offered by GuardHouse is worth the cost in terms of the extra steps 
that become necessary to install new software. This is particularly true in a server 
environment, where all software should in any case be installed by trained system 
management personnel.

The present implementation of GuardHouse is experimental. We plan to combine 
GuardHouse with CoDomain, another research project that we are conducting at the 
Oregon Graduate Institute to enhance the survivability of servers. It is our intention 
to release the combined code to the community for evaluation and testing.

References

[1] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on 
Information Theory, vol. IT-22, pp. 644–654, 1976.

[2] P. R. Zimmerman, The Official PGP User's Guide. Boston: MIT Press, 1995.

[3] W. Koch, “The GNU Privacy Guard,” . Düsseldorf, Germany: http://www.d.shut-
tle.de/isil/gnupg/, 1999.

[4] G. H. Kim and E. H. Spafford, “Experiences with Tripwire: Using integrity checkers for 
intrusion detection,” presented at Systems Administration, Networking and Security Con-
ference III, 1994.

[5] G. H. Kim and E. H. Spafford, “The Design and Implementation of Tripwire: A File Sys-
tem Integrity Checker,” presented at 2nd ACM Conference on Computer and Communica-
tions Security, Fairfax, Virginia, 1994.

[6] R. Rivest, “RFC 1321: The MD5 Message-Digest Algorithm.,” RSA Data Security, Inc. 
April 1992.

[7] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “RFC 2440: OpenPGP Message For-
mat,” , Proposed Standard November 1998.

[8] RPM, “The RPM Home Page,” http://www.rpm.org/ April 1998.


