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Abstract

Superimposed information is used to supplement existing sources of information, while
maintaining connections back to the original data.  It can be used for organizing, highlighting,
annotating, connecting, and reusing selected elements within information sources.  With the growing
amount of digital information available today, especially on the web, more and more applications are
being developed that use superimposed information.  However, generic support to store, create, update,
and transform superimposed information does not exist.  Superimposed applications must implement
their own representation and storage capabilities, which also makes superimposed information difficult
to share across applications.

We seek to represent superimposed information for a wide variety of model-based applications
(e.g., XML and CASE tools, Topic Map navigators, SQL, and even spreadsheet editors) that use
superimposed information.  Our solution leverages a metamodel that is used to define multiple
superimposed-information models.  We employ a flat representation scheme, using the Resource
Description Framework, to represent models (defined by our metamodel), schemas, and instances of
superimposed information.  As a result, we are able to provide model-based applications with a uniform,
generic representation of superimposed information.  While the generic representation is stored
explicitly, it need not be visible to an application, which we support through a variety of application
programming interfaces.  The APIs provide ease of use and rapid superimposed-application
development.  The representation also enables mappings between superimposed layers, which allows
applications to dynamically share superimposed information.

1. Introduction

Imagine trying to use the Web to plan a vacation to British Columbia.  As you come across relevant

information, you will use some strategy to keep track of what you’ve found.  For example, you might

write down URLs and other information (such as reviews and fares) on a piece of paper or even

bookmark sites of interest.  And although your vacation will eventually get planned, you will inevitably

waste time by forgetting or loosing information, visiting the same site multiple times (thinking you

haven’t already seen it), and by having to make expense calculations by hand.
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But what if you could use tools you already have to help you with your task?  For example, instead of

manually keeping track of what you’ve found, you drag and drop selected information from Web sites

into a scratchpad tool that allows you to group information and attach annotations such as “Hotels in

Vancouver,” “Restaurants in Victoria,” “Day trips from Nanaimo,” etc.  The scratchpad keeps links to the

original information, allowing you to navigate back to it whenever you need to (e.g., you may have

selected a regular rate, but wonder if the hotel has a weekend special).  To help you manage the cost of

the trip, including exchange rates, lodging, and transportation expenses, you use a spreadsheet

application, which will automatically lift the appropriate data from the scratchpad.  In developing an

itinerary, you select information from the scratchpad and place it into a calendar application, which also

allows you to browse back over the original documents.  After using the calendar to select the best

itinerary, you choose to integrate the plan into your bookmark list so that you can later access the

information directly from your Web browser.  You also decide to lift all of the address and phone

numbers relevant to the trip into your address book (e.g., to load into your Palm Pilot) and integrate the

payment information you’ve collected into your checkbook software to develop a budget for your

vacation.

Each tool in this example leverages superimposed information [12, 15] to help manage and organize

data.  Superimposed information is a layer (the superimposed layer) of data placed over existing

information sources (the base layer) to select, combine, highlight, supplement, and provide additional

links to selected information elements within the underlying sources.  Superimposed information has the

following characteristics.

• It can contain additional information about elements in the base layer (e.g., by organizing,
annotating, or highlighting elements).

• It can have varying degrees of structure.
• It does not modify the base layer.
• It can contain marks that connect the superimposed layer to elements within the existing

information sources (see Figure 1).

Additionally, each tool in our example is model-based.  That is, each tool exploits a particular model

that prescribes a certain organization to superimposed information.  For example, scratchpads manage

groups of links and annotations, spreadsheets model rows and columns of cells, and bookmark browsers

organize information into folders that contain bookmark entries.  Some superimposed models are

application-specific, while others are generic across multiple tools.  For example, the Resource
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Description Framework (RDF) [14], Topic Maps [8], and the Extensible Markup Language (XML) [9],

when combined with an addressing mechanism such as XLink [13], are all generic superimposed models.

A common feature of these models is their use of schema to type information, although the schema is

optional.  For example, RDF uses RDF Schema [10], Topic Maps can contain Topic Map definitions, and

XML provides Document Type Descriptions (DTDs).

Our goal is to develop a generic representation scheme for model-based superimposed information.

Representing superimposed information generically for a wide range of applications enables:

• Generic Support: We can employ technology to store, create, manipulate, and retrieve
superimposed information represented generically, without forcing each model-based application
to represent information using the same model.  With generic support, superimposed applications
need not implement their own superimposed information management.

• Application-Specific APIs: Based on an application developer’s desires, we can provide
specialized programming interfaces to superimposed information, which provide capabilities for
schema and instance creation, update, storage, and retrieval based on the application’s model.  By
using an application-specific API, superimposed applications aren’t required to use the generic
representation directly, are simpler to develop, and still have the benefits of generic
representation.

• Information Sharing: By having a common representation of superimposed information,
applications can easily exchange their data. The idea of sharing information is central in our
illustration of superimposed tools.  For example, information originally represented in the
scratchpad is used by the spreadsheet, which is then used by the checkbook program.

The remainder of this paper describes our approach to representing superimposed information and

how the representation is used to enable information sharing and generic support with application-specific

APIs.  Section 2 describes the superimposed information metamodel, which is essential to defining our

representation scheme.  The metamodel serves as a formalism from which superimposed models can be

defined.  Section 3 describes our approach to representing superimposed information.  We employ a flat

representation scheme, using RDF and RDF Schema, which allows us to easily store models, schemas,

and data (termed instances) of a superimposed layer.  The representation scheme can be used across

multiple models and represents the entire superimposed layer in a uniform way.  Additionally, we provide

a visual method, based on the Unified Modeling Language (UML) [18], to help model engineers describe

superimposed models.  In Section 4, we use basic production rules over the representation scheme to

formally specify and implement superimposed-layer mappings from one representation to another.

Section 5 discusses our approach to providing generic support for two superimposed applications.  We

introduce TRIM Store, which is used to provide creation, update, storage, and retrieval capabilities using
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our representation scheme.  We also describe our use of application-specific APIs and describe a

mechanism to automatically generate interfaces based on an application’s superimposed model.  Our

approach to providing generic support with application-specific capabilities is unobtrusive and can

simplify the development of superimposed applications.  We discuss related work in Section 6 and

summarize our conclusions and future work in Section 7.

2. The Superimposed-Information Metamodel

Figure 1 shows the basic arrangement of the superimposed and base layers.  The base layer consists

of information sources that are referenced by marks in the superimposed layer.  Marks reference

information at an appropriate granularity within a source, as permitted by an addressing scheme.

Example information-source types include HTML pages, XML elements within XML documents, PDF

files, and Microsoft PowerPoint presentations.  The superimposed layer consists of three levels: model,

schema, and instances.  For a given superimposed layer, the model specifies the constructs that can be

used to structure data.  We use the term data to refer to both schema-level and instance-level data.

Model

Schema Data

Instance Data with Marks

Information
Source1

Information
Source2

Superimposed
Layer

Base
Layer

marksmarks

Figure 1. The superimposed and base layers.

To describe multiple superimposed models, we define a level of abstraction above the model, called a

metamodel, which is used to define the model of interest to the superimposed application.  Figure 2 shows

the role of the metamodel for three superimposed layers representing RDF, Topic Maps, and XML.

The metamodel describes the basic abstractions used to define model constructs and their

relationships.  A model consists of schema and instance constructs that are used to define data.

Additionally, the model describes the conformance relationship between instance-level data and schema-

level data.  Each level of the architecture can be viewed as an instantiation of the levels above it.  More

specifically, model constructs (i.e., schema and instance constructs) are particular instantiations of the

abstractions defined by the metamodel, schema-level data are particular instantiations of the model’s
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schema constructs, and instance-level data are instantiations of the model’s instance constructs and can

conform to the schema-level data.

RDF
Model

RDF Schema
Triples

RDF Triples

Topic Map
Model

Topic Map
Definition

Topic Map
Instances

Metamodel

XML
Model

XML
DTD

XML Document

Basic Set of
Abstractions

Model
Constructs

Schema Level
 Data

Instance Level
Data

Figure 2. The RDF, Topic Map, and XML models within a superimposed layer.

Superimposed
Layer

Figure 3 shows an example of model, schema, and instance data for XML.  Notice that we use an

“open” DTD, which means that additional elements and attributes not defined in the DTD can be included

in XML documents.

Constructs and Construct Relationships
• Elements, Element types, Attributes, Attribute types, etc.
• Elements contain Attributes
• Elements can be Nested
• …

Simplified
XML Model

<!ELEMENT league (team*)>
<!ELEMENT team (player*)>
<!ATTLIST team teamName CDATA #REQUIRED>
<!ELEMENT player (position*)>
<!ATTLIST player playerName CDATA #REQUIRED>
<!ELEMENT position #PCDATA>

XML DTD
(Schema)

XML
Document
(Instances)

<league>
  <team teamName=”Blazers”>
    <player playerName=”Steve Smith”/>
      <position> Guard </position>
      <rebounds> 4.2 </rebounds>
    </player>
    <player playerName=”Brian Grant”>
      <position> Forward </position>
      <rebounds> 5.3 </rebounds>
    </player>
  </team>
  …
</league>

Defines a league as an instance of an
Element Type (schema construct)

Defines a teamName as an instance of an
Attribute Type (schema construct)

An instance of an Element that conforms to
the team Element Type defined in the DTD

An instance of an Attribute that conforms to
the playerName Attribute Type defined
in the DTD

An instance of an Element that has no type
defined in the DTD.

Model constructs and their relationships
are defined using the abstractions of the
metamodel.

Figure 3. An example of each of the three levels (model, schema, and instance) for XML.

The definition of our superimposed-information metamodel is similar to other metamodel approaches

in the object [17, 18] and database communities [1-4, 5, 16] for describing structural models.  Examples

of structural models include the entity-relationship model, the relational model, the hierarchical model,

and the various semantic data models including the UML.
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However, superimposed information models have a number of unique features that are additionally

supported by our metamodel.  One such feature is the inclusion of marks, which are references from the

superimposed layer to elements within the base layer and may appear at various places within a

superimposed model [12].

Another distinguishing characteristic of superimposed models is their relaxation of schema-first

definitions that require schema to be created prior to instances.  For example, in a relational database, a

table (which represents schema information) must be created before any of its rows.  Many superimposed

models do not enforce schema-first definitions, including the Topic Map model, in which it is possible to

first create a topic and then later attach its type.

Not only do superimposed models relax schema-first definitions, they also allow for data that is not

explicitly typed.  For example in a Topic Map, a topic can exist without being associated to any type.

Finally, multiple levels of schema-instance relationships can occur within some superimposed models.  In

a Topic Map, topics can have a type that is also a topic, and so it too can have a type, resulting in two

levels of schema and instance definition.

Figure 4 shows the abstractions of the superimposed-information metamodel.  The two basic elements

are the construct, which represents a basic structural definition within a model, and structural connector,

which represents a relationship between constructs.

Construct Structural
Connector

Mark Lexical Conformance

Connects 2 Constructs
Basic  Metamodel

Elements

Special Kinds of Metamodel
Elements

Figure 4. The elements defined by the superimposed-information metamodel.

Generalization

There are two special constructs: mark and lexical. A mark describes a model construct whose

instances represent connection-points to the base layer.  A lexical describes a model construct whose

instances contain primitive-value types (e.g., string).  There are also two special structural connectors:

conformance, which specifies a schema-instance relationship, and generalization, which specifies

inheritance between constructs.

Table 1 shows an example of the XML model defined in terms of our metamodel.  The XML model

has been simplified to consist of Element Types, Elements, Attribute Types, Attributes, Primitive Content

Type (e.g., PCDATA), and Primitive Content along with a minimal set of relationships between them.
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Table 1. The XML model described in terms of the superimposed-information metamodel. The elements of the
XML model (bottom) are instances of the corresponding Metamodel element definitions (top).

Metamodel
Elements

Constructs Lexicals Connectors Conformance Connectors

XML
Model

Element
Type

Attribute
Type

Element

Attribute

Primitive
Content

Primitive
Content
Type

Nested Element Type

Connects Two Element Types

Nested Element

Connects Two Elements

Element Content

Connects an Element to Primitive Content

Element Content Type

Connects an Element Type to Prim. Content Type

Element Attribute

Connects an Element to an Attribute

Attribute Element Type

Connects and Element Type to an Attribute Type

Element Instance Of

Connects an Element to its Element Type

Attribute Instance Of

Connects an Attribute to its Attribute Type

Content Instance Of

Connects Prim. Content to its Prim.
Content Type

Element constructs in XML form a hierarchy and are represented by the model connector Nested

Element.  By using multiplicity constraints, we can specify that an Element is either not nested or nested

within one parent Element, and can have many Elements nested within it.

We use conformance connectors to specify schema-instance relationships between Attribute and

Attribute Type, Element and Element Type, and Primitive Content and Primitive Content Type.  We may

also wish to apply constraints to the relationship.  For example, by assigning the appropriate multiplicity

constraints, we can specify whether an instance construct must be created prior to a schema construct.

The metamodel does not restrict model constructs to be at the instance- or schema-level, which

allows models to have multiple levels of schema and instance definition.  For example, in the Topic Map

model we could define a Topic construct that has a conformance connector to itself.

Finally, we allow an Element Type construct to contain a Primitive Content Type construct.  We

define Primitive Content Type as a lexical construct, which means instances of the Primitive Content

Type can be primitive types such as string, integer, or more specialized types such as PCDATA for XML.

Elements that conform to the Element Type must then contain Primitive Content with the type specified

by the Primitive Content Type.

3. Representing Superimposed Models, Schemas, and Instances

Superimposed models defined by the metamodel are stored using a representation scheme based on

RDF.  Although model engineers can specify superimposed models directly using the RDF
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representation, we believe it is more convenient to define models visually. Therefore, we also define a

visual representation of models using a subset of the UML.

3.1 The Resource Description Framework

RDF is a graph-based model for attaching metadata to information sources on the web (and can be

itself considered a superimposed information model).  It consists of a set of statements that are

represented as triples.  A triple denotes an edge between two nodes and has a property name (an edge), a

resource (a node), and a value (a node).  A value can be either a resource or a literal.  Resources can

represent anything from web pages to abstract concepts.  A literal is a primitive type such as an integer or

string.  For example, the RDF triple (creator, “index.html”, “Ora Lassilla”) can be read as “the creator of

index.html is Ora Lassilla” where “creator” is a property name, “index.html” a resource, and “Ora

Lassilla” a string [14].

RDF Schema is a type system for RDF.  It provides a mechanism to define classes of resources and

property types, which restrict the domain and range of a property.  The resource Class is used to type

resources and the resource Property is used to type properties.  Each Property consists of a domain and

range constraint.  In addition, RDF Schema defines the property subClassOf to represent a subset-

superset relationship between classes, subPropertyOf for a specialization relationship between properties,

and type to specify resource creation.  The RDF and RDF Schema specifications define XML as an

interchange format to exchange RDF and RDF Schema triples.

3.2 The Metamodel Defined using RDF

Figure 5 shows the definition of the superimposed-information metamodel using both the RDF XML

syntax and RDF triples (for readability, the namespaces rdf and rdfs are not included).  We represent

construct, mark, and lexical as RDF classes, where mark and lexical are sub-classes of construct.

Similarly, we represent connector, generalization, and conformance as properties, each with a construct as

domain and range.  Generalization and conformance are both sub-properties of connector.

Domain and range multiplicity constraints are defined as RDF ConstraintProperties.  A Constraint

Property is a higher-order property that can be used to add constraints (beyond domain and range) to a

Property.  To create model constructs and connectors as well as schema and instance data, we define a

property called instanceOf.  Notice that the domain and range of instanceOf is not defined, which means

that it can be used over any resource and contain any value.  We also create two lexical constructs: string

and number.  If desired, a model engineer can specify a new primitive type (e.g., PCDATA) using a
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similar definition, providing new primitive types are primitive (i.e., data of the type must have some form

of string representation like a float, integer, or date).

(type, “Construct”, Class)
(type, “Mark”, Class)
(subClassOf, “Mark”, Construct)
(type, “Lexical”, Class)
(subClassOf, “Lexical”, Construct)
(type, “Connector”, Property)
(domain, “Connector”, Construct)
(range, “Connector”, Construct)
(type, “Conformance”, Property)
(subPropertyOf, “Conformance”, Connector)
(type, “Generalization”, Connector)
(subPropertyOf, “Generalization”, Connector)

(type, “domainMult”, ConstraintProperty)
(domain, “domainMult”, Connector)
(range, “domainMult”, String)
(type, “rangeMult”, ConstraintProperty)
(domain, “rangeMult”, Connector)
(range, “rangeMult”, String)

(type, “instanceOf”, Property)

(instanceOf, “String”, Lexical)
(instanceOf, “Number”, Lexical)

<RDF>
  <Class ID=”Construct”/>
  <Class ID=”Mark”>
     <subClassOf resource=”#Construct”/>
  </Class>
  <Class ID=”Lexical”>
     <subClassOf resource=”#Construct”/>
  </Class>
  <Property ID=”Connector”>
     <domain resource=”#Construct”/>
     <range resource=”#Construct”/>
  </Property>
  <Property ID=”Conformance”>
     <subPropertyOf resource=”#Connector”>
  </Property>
  <Property ID=”Generalization”>
     <subPropertyOf resource=”#Connector”>
  </Property>

  <ConstraintProperty ID=”domainMult”>
     <domain resource=”#Connector”/>
     <range resource=”#String”/>
  </ConstraintProperty>
  <ConstraintProperty ID=”rangeMult”>
     <domain resource=”#Connector”/>
     <range resource=”#String”/>
  </ConstraintProperty>

  <Property ID=”instanceOf”/>

  <Lexical ID=”String”/>
  <Lexical ID=”Number”/>
 </RDF>

Figure 5. The superimposed-information metamodel represented in RDF XML and as RDF Triples.

RDF XML Syntax RDF Triples

Construct and
Connector Definitions

Constraint
Definitions

Creation
Property

Primitive Type
Definition

3.3 The RDF and Visual Model Representation

Figure 6 depicts both the RDF and visual representations of the XML model of Section 2 using the

metamodel.  In the visual description, UML classes are mapped to constructs; relationships and class

attributes are mapped to connectors.  Attributes must have a primitive type as a range (e.g., string or

number) and implicitly have a domain multiplicity of zero-or-one and a range multiplicity of one. UML

stereotypes are used to distinguish marks and lexicals from constructs, and conformance connectors from

regular connectors.  Additionally, UML generalization relationships require a name (which is not a

general requirement of UML).

The schema-level constructs of Figure 6 are Element Type, Attribute Type, and Primitive Content

Type.  The instance-level constructs are Element, Attribute, and Primitive Content.  The conformance

connector between Element and Element Type, Attribute and Attribute Type, and Primitive Content and

Primitive Content Type specify the schema-instance relationships.  The conformance connectors only

represent a structural connection between the constructs and do not fully define the meaning of the
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conformance (e.g., if an Element conforms to an Element Type, then each nested Element should conform

to the appropriate nested Element Type).

<RDF>
  <Construct ID=”ElementType”/>
  <Construct ID=”AttributeType”/>
  <Construct ID=”Element”/>
  <Construct ID=”Attribute”/>
  <Construct ID=”Content”/>
  <Lexical ID=”ContentType”/>

  <Connector ID=”elemTypeName”>
     <domain resource=”#ElementType”/>
     <range resource=”#String”/>
     <domainMult value=”*”/>
     <rangeMult value=”1”/>
  </Connector>
  <Connector ID=”nestedElemType”>
     <domain resource=”#ElementType”/>
     <range resource=”#ElementType”/>
     <domainMult value=”0..1”/>
     <rangeMult value=”*”/>
  </Connector>
  <Conformance ID=”elemInstOf”>
     <domain resource=”#Element”/>
     <range resource=”#ElementType”/>
     <domainMult value=”*”/>
     <rangeMult value=”0..1”/>
  </Conformance>
  …
</RDF>

ElementType

AttributeType

Element Attribute

PrimitiveContent

elemTypeName : String

attTypeName : String

tagName : String attName : String
attValue : String

<<conformance>>
elemInstOf

holds

attributeOf

attTypeOf

<<conformance>>
attInstOf

*

*

*

*

0..1

0..1
1

1
*

0..1
1

nestedElemType

nestedElem

*

0..1

0..1

Figure 6. The XML model represented using UML with a sample of the RDF representation.

<<Lexical>>
PrimitiveContentType

text : String

*

<<conformance>>
contentHasType

0..1elemContType

0..1*

<RDF>
  …
  <ElementType ID=“player_type”>
    <elemTypeName value=“player”/>
    <nestedElemType resource=“#position_type”/>
    <attTypeOf resource=“playerName_attr”/>
  </ElementType>
  <ElementType ID=“position_type”>
    <elemTypeName value=“position”/>
  </ElementType>
   <AttributeType ID=“playerName_attr”>
    <attName value=“playerName”/>
  </AttributeType>
  <Element ID=“player1”>
    <elemInstOf resource=“#player_type”/>
    <tagName value=“player”/>
    <attributeOf resource=“#playerName1”/>
    <nestedElem resource=“# position1”/>
    <nestedElem resource=“#rebounds1”/>
  </Element>
  <Attribute ID= “playerName1”>
    <attInstOf resource=“#playerName_attr”/>
    <attName value=“playerName”/>
    <attValue value=“Steve Smith”/>
  </Attribute>
  <Element ID=“position1”>
    <elemInstOf resource=“#position_type”/>
    <tagName value=“position”/>
  </Element>
  <Element ID=“rebounds1”>
    <tagName value=“rebounds”/>
  </Element>
</RDF>

RDF XML Syntax RDF Triples

…
(instanceOf, “player_type”, ElementType)
(elemTypeName, “player_type”, “player”)
(nestedElemType, “player_type”,  position_type)
(attTypeOf, “player_type”, playerName_attr)

(instanceOf, “position_type”, ElementType)
(elemTypeName, “position_type”, “position”)

(instanceOf, “playerName_attr”, AttributeType)
(attName, “playerName_attr”, “playerName”)

(instanceOf, “player1”, Element)
(elemInstOf, “player1”, player_type)
(tagName, “player1”, “player”)
(attributeOf, “player1”, playerName1)
(nestedElem, “player1”, position1)
(nestedElem, “player1”, e5)

(instanceOf, “playerName1”, Attribute)
(attInstOf, “playerName1”, playerName_attr)
(attName, “playerName1”, “playerName”)
(attValue, “playerName1”, “Steve Smith”)

(instanceOf, “position1”, Element)
(elemInstOf, “position1”, position_type)
(tagName, “position1”, “position”)

(instanceOf, “rebounds1”, Element)
(tagName, “rebounds”, rebounds)

Figure 7. Schema and instance data of the XML model.
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Figure 7 shows example schema- and instance-level data that represent the XML document excerpt

of Figure 4. (See Appendix A for the full representation.)  Notice that RDF provides a uniform

representation of model, schema, and instance by allowing the entire superimposed layer to be completely

described with RDF triples.

Figures 8 and 9 describe the Structured-Map and Structured-Bundle models using the UML visual

representation.  The Structured-Map model is a simplified version of the Topic-Map model, which uses a

single level of schema and instance definition to allow Structured-Map data to be easily stored in a

relational database.  The model is designed for CARTE [11], which is a program that dynamically creates

Web pages to navigate Structured-Map data.  In CARTE, marks are represented as URLs.  The user

navigates through Topic Types, Topic Instances, and Topic Relations to reach Anchors, which contain

marks.  When a mark is selected, the referenced URL is displayed in a new Web browser window.

TopicType, TopicRelType, and AnchorType represent the schema constructs of the model.

TopicInstance, TopicRelInst, AnchorInst, and Address represent the instance constructs of the model.

CARTE requires schema-first definitions.  For example, a TopicType (perhaps named “painter”) must

exist prior to creating a conforming TopicInstance (e.g., with the name “Van Gogh”).  We express this

requirement through the use of range multiplicity constraints on each conformance relationship.

TopicType

ttypename : String

<<Mark>>
Address

markId : String

topic
Type1

1

*

Figure 8. CARTE’s Structured Map model.

TopicInstance

title : String
topicInsID : Number

TopicRelType

relType : String

TopicRelInst

AnchorInstAnchorType

anchorRole : String

topic
Type2

1

1 1topic
Ins1

topic
Ins2

<<conformance>>
topic_instOf

<<conformance>>
rel_instOf

<<conformance>>
anchor_instOf

topicType

* * * *

1

*

1

topicIns

*
1

address

1

1

1 *

*

*

The Structured-Bundle model is used by SLIMPad (Superimposed-Layer Information Manager

scratchpad), which is a scratchpad application being built for the Traces project [19].  The goal is to

develop specialized applications similar to SLIMPad that enable medical experts to organize important
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facts and issues excerpted from a base layer of digital medical documents.  Currently, users interact with

SLIMPad by selecting content from any of a number of information sources including XML documents,

Microsoft PowerPoint slides, Excel spreadsheets, and PDF files, and dragging it into the scratch pad.

Once content is placed into SLIMPad, a scrap is created that contains a mark with a reference back to the

content.  Scraps can be organized into bundles and bundles can be nested.  By selecting a scrap, the

content referenced by the corresponding mark (inside the scrap) is displayed and highlighted at the

information source.

In SLIMPad, users can create and use templates as schema-level data.  By instantiating a template, the

user is provided with a set of default bundles organized hierarchically within the scratch pad.  However,

as shown by the multiplicity constraints, bundles can be created without an associated template.  Within

the medical domain, we see a number of templates being used for specialized tasks (e.g., templates for

making drug-interaction decisions for individual patients differ from templates for managing the state of

an Intensive Care Unit).  While SLIMPad and CARTE handle multiple schemas, we envision a number of

schema-specific versions of SLIMPad designed around a single template (schema), in which the schema-

level data is designed by an application developer.

Bundle

bundleName : String
bundleXPos : Number
bundleYPos : Number

Scrap

scrapName : String
scrapXPos : Number
scrapYPos : Number

AbstractBundle
AbstractTemplate

SlimPad

padName : String

PadTemplate

templateName : String

<<conformance>>
pad_instOf

BundleTemplate

bundleTypeName : String

parent
Bundle

nested
Bundle

parent
Template

nested
Template

<<Mark>>
ScrapMark

markId : String

<<conformance>>
bundle_instOf

enclosing
Bundle

bundle
Content scrap

Mark

1

*

1

*

1

*

* 1

*

*

0..1

0..1

Figure 9. SLIMPad’s Structured Bundles Model.

subBundle

subBundle

subTemplate

subTemplate

Note that in Figure 9 we use the UML subclass symbol to denote generalization.  However, we

require that the relationship be named, since we are creating a new connector instance in the model.

Additionally, arrows are not included in the association between a Scrap and an AbstractBundle since the
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association represents two independent connectors.  We use AbstractTemplate and AbstractBundle as

constructs to stop the recursion created by the nested Template and nested Bundle connectors,

respectively.

4. Superimposed-Layer Mappings

In this section, we describe an approach to information sharing between superimposed applications

that use different models and schemas.  In general, there will be various ways to map between

superimposed layers, depending on the user’s desires and the applications of interest.  Therefore, instead

of trying to automatically generate mappings between superimposed layers, we provide a technique for

mappings to be specified manually, and perform the conversions as needed.

4.1 Mapping Rules

Superimposed-layer mappings are specified using production rules.  The rules are defined over triples

of the RDF representation scheme for superimposed information.  Since a triple is a simple predicate

(e.g., “triple(creator, index.html, Ora Lassilla)”), we can specify mapping rules using a logic-based

language such as Prolog, which allows us to both specify and implement the mappings.  It is important to

note that we do not require mappings between superimposed layers to be complete, since only part of a

model or schema may be needed while using a specific tool.

Table 2 contains the basic definitions used to specify mappings.  RDF triples are represented with the

predicate τ.  Quotes are used to denote constants and upper-case letters denote variables.  For example,

the predicate τ(‘creator’, X, Y) is used in a mapping rule to match all triples that are related through the

property “creator” (since X and Y are variables).  The predicate S is true if its τ-predicate is in a

superimposed layer L.  For example, S(‘xml’, τ(‘instanceOf’, ‘Element’, ‘Construct’)) would be true if

there were an “Element” construct defined in a superimposed layer named “xml.”  Finally, we define a

mapping rule as a production in which the left- and right-hand sides consist of S-predicates.  The left-hand

side S-predicates must be true in order to generate the right-hand side S-predicates (i.e., the right-hand

side S-predicates are produced by the rule).  For example, the mapping rule S(‘source’, τ(‘creator’, X, Y))

⇒ S(‘target’, τ(‘owner’, X, Y)) would add a triple τ(‘owner’, X, Y) to the superimposed layer named

“target” for every triple that matched τ(‘creator’, X, Y) in the superimposed layer named “source.”

Therefore, if τ(‘creator’, ‘index.html’, ‘Ora Lassilla’) is a triple in the superimposed layer named
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“source,” then the triple τ(‘owner’, ‘index.html’, ‘Ora lassilla’) will be added to the superimposed layer

named “target.”

Table 2. Predicate and mapping rule definitions.

Symbol Definition

τ A predicate that represents an RDF triple, for example τ(‘creator’, ‘url’, ‘person’).

L A set (i.e., database) of triple predicates τ for superimposed layer L.

S A predicate of the form S(L, τ) that is true if τ ∈ L.

Μ A mapping that consists of a set of mapping rules.

m A mapping rule with the form:

T ⇒ T′, where T, T′ are sets of S predicates.  The rule can be read as follows: if the left hand side matches (i.e., each S ∈ T is true)
then for each S(L, τ) ∈ T′ add τ to L.

Table 3 describes the functions that are used to perform mappings.  The conversion function applies a

set of mapping rules to a source and target superimposed layer.  Conversion generates a new

superimposed layer that contains the generated triples of the mappings.  In our current implementation,

Prolog performs the conversion function.

Table 3.  Functions used to provide mappings.

Function Definition

Conversion : Μ × Ls × Lt → Lr Conversion takes a mapping Μ and applies the mapping rules of Μ to a source layer Ls and a target layer Lt,
and returns a new layer Lr.  Conversion is a basic rule-based algorithm that computes the fixed-point of
applying mapping rules to the source and target superimposed layers.

ExtractModel : L → L′ L′ = L1 ∪ L2 where:

L1 = {t | t∈L and t=τ(‘instanceOf’,X,Y} where X=‘Construct’, ‘Mark’, ‘Lexical’, ‘Connector’,
‘Conformance’, or ‘Generalization’}

L2 = {u | u,t∈L and t=τ(‘instanceOf’,X,Y) where Y=’Connector’, ‘Conformance’, or ‘Generalization’ and
u=τ(P,X,Z)}.

ExtractSchema : L → L′ L′ = L1 ∪ L2 where:

L1 = {v | t,u,v∈L and t=τ(‘instanceOf’,P,’Conformance’} and u=τ(P,Y,Z) and v=τ(‘instanceOf’,Z,X)}

L2 = {u | u ∈L and t1,t2∈ L1 and t1=τ(‘instanceOf’,S1,X) and t2=τ(‘instanceOf’,S2,Y) and u=τ(P,S1,S2)}.

guid → x A 0-ary Skolem function that returns a unique identifier x.

The extract model function is used to extract model information from a superimposed layer.  It can

also be applied to the result of a conversion.  For example, in an inter-model mapping, we want the

resulting superimposed layer to contain the model of the target layer.  By using the extract model

function, we can add the appropriate triples of the target layer to the superimposed layer returned by the

conversion function.

Similarly, the extract schema function gathers schema information from the target layer.  Extract

schema returns the construct instances that are at the schema-ends of conformance connectors along with

the connections between the schema construct instances.  (Note that this approach works for cases where
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there is only one level of schema and instance.)  To add target model and schema information to the result

of an inter-schema mapping we would use the extract model and schema functions as follows:

conversion(M, Ls, Lt) ∪ extractModel(Lt) ∪ extractSchema(Lt), where Lt is the target layer, Ls the source

layer, and the result of the clause is a new superimposed layer.

4.2 Inter-Model, Inter-Schema, and Model-to-Schema Mappings

Figure 11 illustrates three types of mappings.  Each example shows information from a source layer

being mapped to a target layer to convert data from the source layer into data that conforms to the target

layer.  Although we focus on conversion, it is also possible to perform integration between superimposed

layers.  Integration goes a step further by combining the source and target data.  The mapping rules can be

used to provide integration at both the schema and instance levels.
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Model1

Schema1

Instances with
Marks

Superimposed
Model2

Schema2

Instances with
Marks

Superimposed
Model2

Schema2’

Instances with
Marks

Superimposed
Model3

Schema3

Instances with
Marks

converted

mapped

converted

mapped

converted

converted

converted

mapped

a. b. c.

Figure 10. Three superimposed layer mappings: (a) inter-model, (b) inter-schema, and (c) model-to-schema.

Figure 10(a) is an inter-model mapping in which the schema- and instance-level data of the source

superimposed-layer are converted to valid schema- and instance-level data of the target superimposed-

layer.  Figure 11 shows an inter-model mapping between the Structured-Bundle model and the

Structured-Map model.  The goal of the mapping is to allow SLIMPad data to be used with CARTE.

Structured-Bundle
Model

Templates

Bundles, Scraps,
and Marks

Structured-Map
Model

Type Definitions

Topic, Relation,
and Anchors

source target
mapping

converted

converted

Figure 11.  An inter-model mapping between the Structured Bundles and Structured Maps.

Figure 12 illustrates four mapping rules between the Structured-Bundle model (shown as the source)

and the Structured-Map model (shown as the target) using the UML model representation.  The first

mapping rule, Figure 12(a), specifies a mapping between the Bundle Template schema-construct and the

Topic Type schema-construct.  That is, all Bundle Templates in the source superimposed-layer will be
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converted to Topic Types in the resulting superimposed layer.  Figure 12(b) is a mapping between

Bundles and Topic Instances, which are both at the instance-level.  Figure 12(c) is a mapping between

two conformance connectors: bundle_instOf and topic_instOf.  The mapping states that each

bundle_instOf relationship in the source-layer should be converted to a topic_instOf relationship in the

target-layer.  Finally, the mapping in Figure 12(d) shows the nestedTemplate connector being mapped to

a Topic Relationship Type.  As the data is converted, a new Topic Relationship Type will be created with

the relType attribute set to the string “nested_template,” the domain of the nestedTemplate connector

assigned to the range of topicType1, and the range of the NestedTemplate connector assigned to the range

of topicType2.

BundleTemplate TopicType

a. Construct to Construct

source target

mapping Bundle TopicInstance

b. Instance to Schema Construct

mapping

Bundle TopicInstance

c. Connector to Connector

mapping

BundleTemplate TopicType

topic_instOfbundle_instOf

AbstractTemplate

d. Connector to Construct

PadTemplate BundleTemplate nested
Template

parent
Template

TopicType

TopicRelType

relType : String

topic
Type1

topic
Type1

mapping

Figure 12. Inter-model mappings from Structured Bundles to Structured Maps represented visually.

source target

source targetsource target

Figure 13. Inter-model mappings from Structured Bundles to Structured Maps.

a. Construct to Construct
S(‘source’, τ(‘instanceOf’, X, ‘BundleTemplate’))
⇒
S(‘result’, τ(‘instanceOf’, X, ‘TopicType’))

c. Connector to Connector
S(‘source’, τ(‘bundle_instOf’, X, Y)),
S(‘result’, τ(‘instanceOf’, X, ‘TopicInstance’)),
S(‘result’, τ(‘instanceOf’, Y, ‘TopicType’))
⇒
S(‘result’, τ(‘topic_instOf’, X, Y))

b. Instance to Schema Construct
S(‘source’, τ(‘instanceOf’, X, ‘Bundle’))
⇒
S(‘result’, τ(‘instanceOf’, X, ‘TopicType’))

d. Connector to Construct
S(‘source’, τ(‘nestedTemplate’, P, B)),
S(‘result’, τ(‘instanceOf’, P, ‘TopicType’)),
S(‘result’, τ(‘instanceOf’, B, ‘TopicType’)),
X = guid()
⇒
S(‘result’, τ(‘instanceOf’, X, ‘TopicRelType’)),
S(‘result’, τ(‘relType’, X, ‘nested_template’)),
S(‘result’, τ(‘topicType1’, X, P)),
S(‘result’, τ(‘topicType2’, X, B))

Figure 13 shows the mapping rules that specify the mappings of Figure 12.  We use the constant

‘source’ to represent the Structured Bundles superimposed layer, the constant ‘target’ to represent the

Structured Maps superimposed layer, and the constant ‘result’ to represent the new superimposed layer
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that is created from the mappings.  (See Appendix B for an example of the full mapping between the

models.)

Figure 10(b) is an inter-schema mapping in which the source and target models are the same, but two

distinct schemas are mapped so that the source instance-level data can be converted to data that conforms

to the target schema.  Figure 14 illustrates an inter-schema mapping using the XML model.  The source is

an animal taxonomy DTD containing Element Types such as genus and species.  The target is a bookmark

list DTD with Element Types such as folder and bookmark.  One reason to perform this type of mapping

is to reuse existing tools for browsing bookmark lists on taxonomies.

XML

Animal Taxonomy
DTD

XML Taxonomy
Documents

XML

Bookmark List
DTD

XML Bookmark
Lists

source target

mapping

converted

Figure 14.  An example of a schema to schema mapping between two DTDs.

Figure 15 demonstrates three rules that are used to perform part of the mapping of Figure 14. The first

rule takes content that is designated as genus (e.g., “homos”) and maps it to a folder (titled “homos”).

Similarly, species content (e.g., “sapiens”) is mapped as a nested folder (titled “sapiens”) within a genus

folder.

Source Schema

  τ(‘instanceOf’, ‘genus_type’, ‘ElementType’)
  τ(‘elementTypeName’, ‘genus_type’, ‘genus’)
  τ(‘instanceOf’, ‘species_type’, ‘ElementType’)
  τ(‘elementTypeName’, ‘species_type’, ‘species’)
  τ(‘nestedElement’, ‘genus_type’, ‘species_type’)

Target Schema

  τ(‘instanceOf’, ‘folder_type’, ‘ElementType’)
  τ(‘elementTypeName’, ‘folder_type’, ‘folder’)
  τ(‘nestedElement’, ‘folder_type’, ‘folder_type’)

Mapping Rules

Figure 15.  Example of schema-to-schema mapping between two XML model schemas.

S(‘source’, τ(‘elemInstOf’, X, ‘genus_type’) )
⇒
S(‘result’, τ (‘elemInstOf’, X, folder_type))

S(‘source’, τ(‘elemInstOf’, X, ‘species_type’) )
⇒
S(‘result’, τ(‘elemInstOf’, X, ‘folder_type’))

S(‘source’, τ(‘nestedElement’, X, Y) )
⇒
S(‘result’, τ(‘nestedElement’, X, Y))

The last mapping of Figure 10, shown as Figure 10(c), is called a model-to-schema mapping.  Here,

the model of the source layer is mapped to schema-level data in the target layer, which allows the

schema- and instance-level data of the source to be converted to valid instance-level data in the target.

Figure 16 shows a model-to-schema mapping in which the Structured-Map model is mapped to an XML



18

DTD.  The Structured-Map schema-level and instance-level data are converted to an XML document.

The benefit of doing this mapping is to use XML as the interchange format for Topic Maps.

Structured-Map
Model

Type Definitions

Structured Maps
Instances

XML

XML
DTD

XML
Document

source target

mapping

converted

converted

Figure 16.  Example of a model to schema mapping.

To specify the mapping, we could map a Topic Instance construct in the Structured-Map model to an

Element Type in an XML DTD with an Attribute Type titled “name”.  Then, for a particular Topic

Instance (e.g., “painter”), the conversion would result in the XML tag <topic name=”painter”/> .

Figure 17 shows two rules to perform the mapping.  Notice that the first rule has an empty left-hand side.

Rules without left-hand sides automatically match, which means that the right-hand side triples are

always added.

Source Model

  S(‘source’, τ(‘instanceOf’, ‘TopicInstance’, ‘Construct’))
  S(‘source’, τ(‘instanceOf’, ‘title’, ‘Connector’))
  S(‘source’, τ(‘instanceOf’, ‘t1’, ‘TopicInstance’))
  S(‘source’, τ(‘title’, ‘t1’, ‘painter’))

Mapping Rule:

  ⇒
  S(‘result’, τ(‘instanceOf’, ‘topic_inst’, ‘ElementType’)),
  S(‘result’, τ(‘elemTypeName’, ‘topic_inst’, ‘topic’)),
  S(‘result’, τ(‘instanceOf,’ ‘topicInst_att’, ‘AttributeType’)),
  S(‘result’, τ(‘attTypeName’, ‘topicInst_att’, ‘name’)),
  S(‘result’, τ(‘attTypeOf’, ‘topic_inst’, ‘topicInst_att’))

  S(‘source’, τ(‘instanceOf’, X, ‘TopicInstance’)),
  S(‘source’, τ(‘title’, X, Y))
  ⇒
  S(‘target’, τ(‘instanceOf’, X, ‘Element’)),
  S(‘target’, τ(‘tagName’, X, ‘topic’)),
  S(‘target’, τ(‘elemInstOf’, X, ‘topic_inst’)),
  Z = guid(),
  S(‘target’, τ(‘instanceOf’, Z, ‘Attribute’)),
  S(‘target’, τ(‘attName’, Z, ‘name’)),
  S(‘target’, τ(‘attInstOf’, Z, ‘topicInst_Att’)),
  S(‘target’, τ(‘attributeOf’, X, Z)),
  S(‘target’, τ(‘attValue’, Z, Y))

Figure 17.  A model-to-schema mapping rule between the Structured Maps and XML.

Target Model

  S(‘target’, τ(‘instanceOf’, ‘ElementType’, ‘Construct’))
  S(‘target’, τ(‘instanceOf’, ‘AttributeType’, ‘Construct’))
  S(‘target’, τ(‘instanceOf’, ‘elementTypeName’, ‘Connector’))
  S(‘target’, τ(‘instanceOf’, ‘attTypeOf’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘attTypeName’, ‘Connector’))
 S(‘target’, τ(‘instanceOf’, ‘Element’, ‘Construct))
  S(‘target’, τ(‘instanceOf’, ‘Attribute’, ‘Construct’))
  S(‘target’, τ(‘instanceOf’, ‘elemInstOf’, ‘Conformance’))
  S(‘target’, τ(‘instanceOf’, ‘attInstOf’, ‘Conformance’))
  S(‘target’, τ(‘instanceOf’, ‘tagName’, ‘Connector’))
  S(‘target’, τ(‘instanceOf’, ‘attName’, ‘Connector’))
  S(‘target’, τ(‘instanceOf’, ‘attValue’, ‘Connector’))
  S(‘target’, τ(‘instanceOf’, ‘attributeOf’, ‘Connector’))

5. Application Support for the use of Superimposed Information

This section describes our approach to providing applications with support for the management of

superimposed information.  Our goal is to provide generic support with application-specific programming
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interfaces.  Generic support leverages our representation scheme to create, store, update, and retrieve RDF

triples across models.  Application-specific APIs provide applications with specialized capabilities to

manage superimposed information based on the application’s model (or schema).  By providing

specialized interfaces, applications are able to create, store, manipulate, and retrieve superimposed

information without directly using our representation scheme, which is automatically managed for the

application.

Figure 18(a) depicts the general strategy we use to provide support for the use of superimposed

information in SLIMPad and CARTE.  On the left of Figure 18(a) sits the superimposed application,

which can directly access Application Data.  The Application Data represents superimposed information

presented to the application in its desired format.  For example, SLIMPad (shown in Figure 18(b)), which

is written in Visual Basic, accesses superimposed information through ActiveX Objects.  On the other

hand, CARTE (shown in Figure 18(c)) uses relational tables to access superimposed information. The

information represented by Application Data is redundant since it is also represented as RDF triples.

However, by directly using the Application Data, applications can access superimposed information in a

natural way.

The Superimposed Layer Information Manager (SLIM) is used to create and manipulate Application

Data.  SLIM provides the management capabilities required by the superimposed application and

maintains consistency between RDF-triples and Application Data.  For CARTE, SQL is used as the SLIM

component to manipulate relational tables that represent Application Data.  SLIMPad uses an ActiveX

component as SLIM (called the SLIMPad API) to create and update Application Data.  Together, SLIM

and the Application Data represent the application-specific API.

Lying between SLIM and the RDF representation is the Storage Manager, which provides generic

support for the management of RDF triples for SLIM.  For example, CARTE uses Microsoft Access as a

Storage Manager, which represents the RDF triples as a relational table.  Similarly, SLIMPad uses the

TRIM Store (Triple Manager), which is a Java component, to provide general management of RDF triples

that are represented as Java objects.   TRIM Store provides creation, update, storage, and simple retrieval

capabilities over the RDF triples.

An advantage to the general architecture in Figure 18(a) is that it is unobtrusive.  For example,

CARTE was originally developed to store its superimposed information directly as relational tables.  We

were able to use the same relational tables, but convert them into views, using SQL, over the RDF-triple
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table.  (Note that for CARTE, SQL along with the relational tables act as an application-specific API).

CARTE is still able to access the original tables as if nothing changed, and so its application logic is

unaffected by adding superimposed information support, while gaining the benefits of information

sharing.
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Figure 18. Superimposed application support represented: (a) generically, (b) with SLIMPad, and (c) with CARTE.

SQL

The SLIMPad application, when compared to CARTE, requires a greater degree of support for the

use of superimposed information.  To create an application-specific API for SLIMPad, we developed a

prototype compiler [20] that automatically generates both the Application Data component and the SLIM

component based on an application’s superimposed model (represented in the RDF XML format).  The

compiler implicitly uses a model-to-schema mapping between the target model (e.g., the Structured-

Bundle model) and the target language, which is currently Java.  We map constructs in the given model to

Java classes, which are immutable to the application, and model connectors to private attributes of the

class representing the domain of the connector.  Additionally, a method is provided for read-access to the

connector’s range.  For example, using the Structured-Bundle model, we generate a Bundle class with an

attribute called “bundleName” and a method called “getBundleName” that returns a string.  The SLIM

component generated by the compiler allows for schema and instance creation and update based on the

construct and connectors of the model.  For example, the SLIMPad API provides a method called
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“create_bundle” to create a Bundle object with a string as a parameter for the bundleName.  When

creation and update is performed through the generated SLIM API, the TRIM Store is notified of the

change, which maintains the underlying superimposed-information stored as RDF.

Providing applications with specialized APIs is a flexible approach for application developers

managing superimposed information.  Currently, we use only a fixed model-to-schema mapping between

a superimposed model and a target language. However, with our approach it is possible to employ other

types of mappings.  For example, an application developer could create a schema for the Structured-

Bundle model with SLIMPad, store the schema-level data, and then use it to generate a new specialized

API based on an inter-model mapping to the target language.  The API would enable specialized instance

creation and update capabilities for the designer’s schema.  Additionally, APIs could be generated for

various target languages, based on the needs of the application designer.  For example, instead of

generating the instance creation and update API for Java, the compiler could produce SQL to create the

appropriate relational tables representing the designer’s schema data.

Providing an application-specific API along with generic support for SLIMPad, we were able to focus

on the basic functionality and user interface of SLIMPad.  In general, we believe that providing generic

support and application-specific APIs not only supports the use of superimposed information, but also

simplifies the development of superimposed applications while allowing applications to share

information.

6. Comparison of Related Work

In this section, we discuss how our work compares to existing approaches for providing support for

multiple models.  A number of metamodels have been developed (see Atzeni and Torlone [1-4], Barsalou

and Gangopadhyay [5], McBrien and Poulovassilis [16], and the Meta Object Facility [17]) with the

primary focus on supporting interoperability.  Our metamodel is different from these approaches because

we do not require model-first nor schema-first definitions.  Rather, we support the independent

specification of model, schema, and instance and we permit the application to explicitly specify the

relationship between schema and instance.  Metamodels for describing both database data models [1-4, 5,

16] and object-oriented models [17-18] require that instances be the extension of schema in which schema

must be defined first.  By not enforcing schema-first definitions and allowing instances to be independent

of schema, our metamodel is able to accurately define superimposed models such as XML and Topic
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Maps.  Additionally, by explicitly representing the relationship between schema and instance we can

specify more complex situations such as multiple levels of schema-instance relationships.

Another major difference between our approach and other metamodel approaches is that we employ a

single, generic representation scheme for model, schema, and instance data.  The representation scheme

allows mappings to be defined in a uniform way between models (inter-model), schema (inter-schema),

model and schema (model-to-schema), and any mixture of the three levels.  McBrien and Poulovassilis

use the Hypergraph Data Model (HDM) to store schemas defined in diverse models.  Their primary goal

is to perform inter-model transformations, which are specified using first-order logic expressions, to map

between semantically equivalent schemas. They also specify transformations from the extent of a schema

in one model (e.g., the relational model) to the extent of a similar schema in a different model (e.g., the

entity-relationship model).  However, both types of transformations are considerably more difficult to

specify, when compared to our mapping rules, because they do not explicitly represent models or

instances using the HDM. Atzeni and Torlone employ procedural inter-model mapping specifications.

Similar to our approach, their specifications can be used to implement the conversions.  However, they

require complete mappings between models, whereas we allow partial mappings to allow for a wider

range of cases, and they do not provide support for other types of mappings (e.g., inter-schema or model-

to-schema mappings).

The Meta Object Facility (MOF) defines an architecture that uses a metamodel to enable the sharing

of information between object-oriented applications.  Currently, the main application of the MOF

architecture is to store and interchange UML class diagrams between analysis and design tools.  The

MOF uses the XML Metadata Interchange (XMI) as a representation scheme for exchange.  XMI

prescribes a method to generate an XML DTD to represent a model.  (Note that the XML DTD is

generated by hand and UML is the only version currently available.)  XML documents that conform to

the DTD represent schema-level data.  Unlike our approach, there is no way to represent instance-level

data.  Also, MOF does not provide any support for mapping between models.  The Microsoft Repository

[6-7] is similar to the MOF, except it does not define a metamodel.  Instead, a global model called the

Open Information Model is used to define schemas.  However, our approach provides a mechanism to

represent various models precisely to leverage available tools that are based on a particular model.

Both the MOF and the HDM provide mechanisms that support schema and instance creation for

models described using their metamodels.  However, both approaches provide a single, fixed mechanism
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to provide schema and instance creation.  For example, HDM provides standard method definitions that

create schema-level data based on the model.  However, neither approach provides application-specific

APIs to allow specialized capabilities or generic support for managing information (both approaches

assume a database is used for management).

7. Conclusions and Future Work

The following list summarizes the contributions of our work.

1. The Superimposed-Information Metamodel: We define a unique metamodel for describing
multiple superimposed models.  The metamodel allows for the explicit specification of the
relationship between schema and instance and allows marks to be placed anywhere within a
model.

2. A Generic Representation Scheme for Superimposed Information: Leveraging the
superimposed information metamodel, we define a single representation scheme, based on
RDF, for superimposed information. Our representation scheme uniformly represents model,
schema, and instance data and can be used generically by diverse superimposed applications.

3. Visual Superimposed-Model Definition: We provide model engineers the ability to define
superimposed models visually by using a subset of the UML.  We believe that being able to
define and view models visually is a benefit, and in addition, model engineers can leverage a
number of existing tools that support UML.

4. Information Sharing: We enable information sharing in two ways.  First, using a common
representation format for superimposed information makes it possible for applications to
dynamically share data.  Second, applications can share superimposed information that differs
in schema or model through mappings.

5. Superimposed-Layer Mappings: We define a formal method, based on production rules, to
uniformly specify superimposed-layer mappings.  We allow partial mappings as well as
mappings between multiple levels of superimposed information.

6. Generic Support with Application-Specific APIs: Based on our representation scheme for
superimposed information, we were able to develop TRIM Store, which provides generic
support for the creation, update, storage, and retrieval of superimposed information across
models.  Additionally, we do not require applications to directly use the representation
scheme by leveraging specialized APIs based on the application’s superimposed model or
schema.  We were successful in integrating superimposed information management into both
CARTE and SLIMPad, while providing the benefits of information sharing.

Our plans for future work are centered on further developing application support for the use of

superimposed information.  We wish to look into specialization and automatic generation approaches to

optimize management facilities for a fixed model or fixed model-schema combination.  Additionally, we

would like to provide applications with the ability to tailor the management facilities they require through

a meta DML (data-manipulation language), which would be used by the API compiler.
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 To leverage the visual representation of models, we are interested in defining parameterized

mapping-rules that can be used to specify inter-model mappings visually. We also plan to look at ways to

enforce constraints defined within a model, such as cardinality and conformance as well as structural

constraints between schema and instances.  One possible approach is to allow model engineers and

application designers to use a first-order logic language to both specify and check complex constraints

between schema- and instance-level data.

Finally, we are working on developing a general architecture to support mark management for

superimposed applications, developing marks to new information sources, further developing SLIMPad,

and creating new superimposed applications.
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Appendix A

The XML model represented as RDF Triples, including sample schema- and instance-data.

(instanceOf, “ElementType”, Construct)
(instanceOf, “Element”, Construct)
(instanceOf, “AttributeType”, Construct)
(instanceOf, “Attribute”, Construct)
(instanceOf, “PrimitiveContent”, Construct)
(instanceOf, “PrimitiveContentType”, Lexical)

(instanceOf, “nestedElemType”, Connector)
(domain, “nestedElemType”, ElementType)
(range, “nestedElemType”, ElementType)
(domainMult, “nestedElemType”, “0..1”)
(rangeMult, “nestedElemType”, “*”)

(instanceOf, “elemTypeName”, Connector)
(domain, “elemTypeName”, ElementType)
(range, “elemTypeName”, String)
(domainMult, “elemTypeName”, “*”)
(rangeMult, “elemTypeName”, “1”)

(instanceOf, “attTypeOf”, Connector)
(domain, “attTypeOf”, ElementType)
(range, “attTypeOf”, AttributeType)
(domainMult, “attTypeOf”, “1”)
(rangeMult, “attTypeOf”, “*”)

(instanceOf, “attTypeName”, Connector)
(domain, “attTypeName”, AttributeType)
(range, “attTypeName”, String)
(domainMult, “attTypeName”, “*”)
(rangeMult, “attTypeName”, “1”)

(instanceOf, “elemInstOf”, Conformance)
(domain, “elemInstOf”, Element)
(range, “elemInstOf”, ElementType)
(domainMult, “elemInstOf”, “*”)
(rangeMult, “elemInstOf”, “1”)

(instanceOf, “nestedElem”, Connector)
(domain, “nestedElem”, Element)
(range, “nestedElem”, Element)
(domainMult, “nestedElem”, “0..1”)
(rangeMult, “nestedElem”, “*”)

(instanceOf, “tagName”, Connector)
(domain, “tagName”, Element)
(range, “tagName”, String)
(domainMult, “tagName”, “*”)
(rangeMult, “tagName”, “1”)

(instanceOf, “attributeOf”, Connector)
(domain, “attributeOf”, Element)
(range, “attributeOf”, Attribute)
(domainMult, “attributeOf”, “1”)
(rangeMult, “attributeOf”, “*”)

(instanceOf, “attName”, Connector)
(domain, “attName”, Attribute)
(range, “attName”, String)
(domainMult, “attName”, “*”)
(rangeMult, “attName”, “1”)

(instanceOf, “attValue”, Connector)
(domain, “attValue”, Attribute)
(range, “attValue”, String)
(domainMult, “attValue”, “*”)

(rangeMult, “attValue”, “1”)

(instanceOf, “attInstOf”, Conformance)
(domain, “attInstOf”, Attribute)
(range, “attInstOf”, AttributeType)
(domainMult, “attInstOf”, “0..1”)
(rangeMult, “attInstOf”, “*”)

(instanceOf, “holds”, Connector)
(domain, “holds”, Element)
(range, “holds”, PrimitiveContent)
(domainMult, “holds”, “1”)
(rangeMult, “holds”, “0..1”)

(instanceOf, “elemContType”, Connector)
(domain, “elemContType”, ElementType)
(range, “elemContType”, PrimitiveContentType)
(domainMult, “elemContType”, “*”)
(rangeMult, “elemContType”, “0..1”)

(instanceOf, “contentHasType”, Conformance)
(domain, “contentHasType”, PrimitiveContent)
(range, “contentHasType”, PrimitiveContentType)
(domainMult, “contentHasType”, “*”)
(rangeMult, “contentHasType”, “0..1”)

-- Schema ---
(instanceOf, “league_type”, ElementType)
(elemTypeName, “league_type”, “league”)
(nestedElemType, “league_type”, team_type)

(instanceOf, “team_type”, ElementType)
(elemTypeName, “team_type”, “team”)
(nestedElemType, “team_type”, player_type)
(attTypeOf, “team_type”, “teamName_attr”)

(instanceOf, “player_type”, ElementType)
(elemTypeName, “player_type”, “player”)
(nestedElemType, “player_type”, position_type)
(attTypeOf, “player_type”, playerName_attr)

(instanceOf, “position_type”, ElementType)
(elemTypeName, “position_type”, “position”)
(elemContType, “position_type”, PCDATA)

(instanceOf, “teamName_attr”, AttributeType)
(attName, “teamName_attr”, “teamName”)

(instanceOf, “playerName_attr”, AttributeType)
(attName, “playerName_attr”, “playerName”)

(instanceOf, “PCDATA”, PrimitiveContentType)

-- Instances --
(instanceOf, “league1”, Element)
(elemInstOf, “league1”, league_type)
(tagName, “league1”, “league”)
(nestedElem, “league1”, team1)

\(instanceOf, “team1”, Element)
(elemInstOf, “team1”, team_type)
(tagName, “team1”, “team”)
(attributeOf, “team1”, teamName1)
(nestedElem, “team1”, player1)
(nestedElem, “team1”, player2)

(instanceOf, “player1”, Element)
(elemInstOf, “player1”, player_type)
(tagName, “player1”, “player”)
(nestedElem, “player1”, position1)
(nestedElem, “player1”, rebounds1)
(attributeOf, “player1”, playerName1)

(instanceOf, “position1”, Element)
(elemInstOf, “position1”, position_type)
(tagName, “position1”, “position”)
(holds, “position1”, content1)

(instanceOf, “rebounds1”, Element)
(tagName, “rebounds1”, “rebounds”)
(holds, “position1”, content2)

(instanceOf, “player2”, Element)
(elemInstOf, “player2”, player_type)
(tagName, “player2”, “player”)
(nestedElem, “player2”, position2)
(nestedElem, “player2”, rebounds2)
(attributeOf, “player2”, playerName2)

(instanceOf, “position2”, Element)
(elemInstOf, “position2”, position_type)
(tagName, “position2”, “position”)
(holds, “position2”, content3)

(instanceOf, “rebounds2”, Element)
(tagName, “rebounds2”, “rebounds”)
(holds, “position2”, content4)

(instanceOf, “teamName1”, Attribute)
(attInstOf, “teamName1”, “teamName_attr”)
(attName, “teamName1”, “teamName”)
(attValue, “teamName1”, “Blazers”)

(instanceOf, “playerName1”, Attribute)
(attInstOf, “playerName1”, “playerName_attr”)
(attName, “playerName1”, “playerName”)
(attValue, “playerName1”, “Steve Smith”)

(instanceOf, “playerName2”, Attribute)
(attInstOf, “playerName2”, “playerName_attr”)
(attName, “playerName2”, “playerName”)
(attValue, “playerName2”, “Brian Grant”)

(instanceOf, “content1”, PrimitiveContent)
(text, “content1”, “Guard”)
(contentHasType, “content1”, PCDATA)

(instanceOf, “content2”, PrimitiveContent)
(text,”content2”, “4.2”)

(instanceOf, “content3”,
PrimitiveContent)
(text,”content3”, “Forward”)

(instanceOf, “content4”,
PrimitiveContent)
(text,”content4”, “5.3”)
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Appendix B

The following Prolog mapping rules specify an inter-model mapping between the Structured-Bundle
model and the Structured-Map model.  Included is sample data and the results of the conversion
represented as RDF triples (note that we can represent these using S predicates as well).

guid(X) :- retract(count_aux(N)),
   X is N+1,
   asserta(count_aux(X)).

:- dynamic(count_aux/1).
count_aux(0).

/* ’source’ = Structured-Bundle model
 * ’result’ = Structured-Map model
 */
s(’source’, t(’instanceOf’, bt1, ’BundleTemplate’)).
s(’source’, t(’bundleTypeName’, bt1, ’Produce’)).
s(’source’, t(’instanceOf’, pt1, ’PadTemplate’)).
s(’source’, t(’templateName’, pt1, ’Grocery List’)).
s(’source’, t(’instanceOf’, p1, ’SlimPad’)).
s(’source’, t(’padName’, p1, ’Weekly List’)).
s(’source’, t(’instanceOf’, b1, ’Bundle’)).
s(’source’, t(’bundleName’, b1, ’Fresh Stuff’)).
s(’source’, t(’instanceOf’, s1, ’Scrap’)).
s(’source’, t(’scrapName’, s1, ’Mushrooms’)).
s(’source’, t(’enclosingBundle’, s1, b1)).
s(’source’, t(’scrapMark’, s1, ’sm1’)).
s(’source’, t(’instanceOf’, sm1, ’ScrapMark’)).
s(’source’, t(’markId’, sm1, ’URLMarkModule@000101’)).
s(’source’, t(’nestedTemplate’, pt1, bt1)).
s(’source’, t(’nestedBundle’, p1, b1)).
s(’source’, t(’pad_instOf’, p1, pt1)).
s(’source’, t(’bundle_instOf’, b1, bt1)).

/* BundleType -> TopicType */
stmts( [s(’result’, t(’instanceOf’, X, ’TopicType’))] ) :-
s(’source’, t(’instanceOf’, X, ’BundleTemplate’)).

/* PadTemplate -> TopicType */
stmts( [s(’result’, t(’instanceOf’, X, ’TopicType’))] ) :-
s(’source’, t(’instanceOf’, X, ’PadTemplate’)).

/* bundleTypeName -> ttypename */
stmts( [s(’result’, t(’ttypename’, X, Y))] ) :-
s(’source’, t(’bundleTypeName’, X, Y)),
stmts( [s(’result’, t(’instanceOf’, X, ’TopicType’))] ).

/* templateName -> ttypename */
stmts( [s(’result’, t(’ttypename’, X, Y))] ) :-
s(’source’, t(’templateName’, X, Y)),
stmts( [s(’result’, t(’instanceOf’, X, ’TopicType’))] ).

/* Bundle -> TopicInstance */
stmts( [s(’result’, t(’instanceOf’, X, ’TopicInstance’))] ) :-
s(’source’, t(’instanceOf’, X, ’Bundle’)).

/* SlimPad -> TopicInstance */
stmts( [s(’result’, t(’instanceOf’, X, ’TopicInstance’))] ) :-
s(’source’, t(’instanceOf’, X, ’SlimPad’)).

/* bundleName -> title */
stmts( [s(’result’, t(’title’, X, Y))] ) :-
s(’source’, t(’bundleName’, X, Y)),
stmts( [s(’result’, t(’instanceOf’, X, ’TopicInstance’))] ).

/* padName -> title */
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stmts( [s(’result’, t(’title’, X, Y))] ) :-
s(’source’, t(’padName’, X, Y)),
stmts( [s(’result’, t(’instanceOf’, X, ’TopicInstance’))] ).

/* -> topicInsID */
stmts( [s(’result’, t(’topicInsID’, X, Y))] ) :-
stmts( [s(’result’, t(’instanceOf’, X, ’TopicInstance’))] ),
guid(Y).

/* Scrap -> AnchorType */
stmts( [s(’result’, t(’instanceOf’, X, ’AnchorType’))] ) :-
s(’source’, t(’instanceOf’, X, ’Scrap’)).

/* scrapName -> anchorRole */
stmts( [s(’result’, t(’anchorRole’, X, Y))] ) :-
s(’source’, t(’scrapName’, X, Y)),
stmts( [s(’result’, t(’instanceOf’, X, ’AnchorType’))] ).

/* enclosingBundle -> topicType */
stmts( [s(’result’, t(’topicType’, X, Y))] ) :-
s(’source’, t(’enclosingBundle’, X, Z)),
stmts( [s(’result’, t(’instanceOf’, X, ’AnchorType’))] ),
( s(’source’, t(’bundle_instOf’, Z, Y));
  s(’source’, t(’pad_instOf’, Z, Y)) ),
stmts( [s(’result’, t(’instanceOf’, Y, ’TopicType’))] ).

/* ScrapMark -> Address */
stmts( [s(’result’, t(’instanceOf’, X, ’Address’))] ) :-
s(’source’, t(’instanceOf’, X, ’ScrapMark’)).

/* markId -> markId */
stmts( [s(’result’, t(’markId’, X, Y))] ) :-
stmts( [s(’result’, t(’instanceOf’, X, ’Address’))] ),
s(’source’, t(’markId’, X, Y)).

/* scrapMark -> address */
stmts( [s(’result’, t(’address’, X, Y)),
s(’result’, t(’instanceOf’, X, ’AnchorInst’)),
s(’result’, t(’anchor_instOf’, X, Z)),
s(’result’, t(’topicIns’, X, B))] )

    :-
s(’source’, t(’scrapMark’, Z, Y)),
stmts( [s(’result’, t(’instanceOf’, Z, ’AnchorType’))] ),
s(’source’, t(’enclosingBundle’, Z, B)),
stmts( [s(’result’, t(’instanceOf’, B, ’TopicInstance’))] ),
guid(ID), atom_concat(’ai’, ID, X).

/* nestedTemplate -> TopicRelType */
stmts( [s(’result’, t(’instanceOf’, X, ’TopicRelType’)),
s(’result’, t(’relType’, X, ’nested_template’)),
s(’result’, t(’topicType1’, X, P)),
s(’result’, t(’topicType2’, X, B))] )

    :-
s(’source’, t(’nestedTemplate’, P, B)),
stmts( [s(’result’, t(’instanceOf’, P, ’TopicType’))] ),
stmts( [s(’result’, t(’instanceOf’, B, ’TopicType’))] ),
guid(ID), atom_concat(’trt’, ID, X).

/* nestedBundle -> TopicRelInst */
stmts( [s(’result’, t(’instanceOf’, X, ’TopicRelInst’)),
s(’result’, t(’rel_instOf’, X, NT)),
s(’result’, t(’topicInsID1’, X, TI1)),
s(’result’, t(’topicInsID2’, X, TI2))] )

    :-
s(’source’, t(’nestedBundle’, TI1, TI2)),
stmts( [s(’result’, t(’instanceOf’, TI1, ’TopicInstance’))]),
stmts( [s(’result’, t(’instanceOf’, TI2, ’TopicInstance’))]),
s(’source’, t(’bundle_instOf’, TI2, BT)),
( s(’source’, t(’pad_instOf’, TI1, PT));
  s(’source’, t(’bundle_instOf’, TI1, PT)) ),
stmts( [s(’result’, t(’instanceOf’, NT, ’TopicRelType’)), _,
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s(’result’, t(’topicType1’, NT, PT)),
s(’result’, t(’topicType2’, NT, BT))] ),

guid(ID), atom_concat(’tri’, ID, X).

/* bundle_instOf -> topic_instOf */
stmts( [s(’result’, t( ’topic_instOf’, X, Y ))] ) :-
s(’source’, t(’bundle_instOf’, X, Y)),
stmts( [s(’result’, t(’instanceOf’, X, ’TopicInstance’))] ),
stmts( [s(’result’, t(’instanceOf’, Y, ’TopicType’))] ).

/* pad_instOf -> topic_instOf */
stmts( [s(’result’, t( ’topic_instOf’, X, Y ))] ) :-
s(’source’, t(’pad_instOf’, X, Y)),
stmts( [s(’result’, t(’instanceOf’, X, ’TopicInstance’))] ),
stmts( [s(’result’, t(’instanceOf’, Y, ’TopicType’))] ).

/******************
 * Pretty Printing
 ******************/
printMapping :- findall(_,print,_).
print :-
stmts(S), printEach(S).

printEach( [] ).
printEach( [s(_, S)|Ss] ) :- printStatement(S), nl, printEach(Ss).
printStatement(t(S, P, O)) :-
write(S), write(’, ’),
write(P), write(’, ’),
write(O).

The results of the conversions that were generated from the mapping specification:

?- printMapping.
instanceOf, bt1, TopicType
instanceOf, pt1, TopicType
ttypename, bt1, Produce
ttypename, pt1, Grocery List
instanceOf, b1, TopicInstance
instanceOf, p1, TopicInstance
title, b1, Fresh Stuff
title, p1, Weekly List
topicInsID, b1, 1
topicInsID, p1, 2
instanceOf, s1, AnchorType
anchorRole, s1, Mushrooms
topicType, s1, bt1
instanceOf, sm1, Address
markId, sm1, URLMarkModule@000101
address, ai3, sm1
instanceOf, ai3, AnchorInst
anchor_instOf, ai3, s1
topicIns, ai3, b1
instanceOf, trt4, TopicRelType
relType, trt4, nested_template
topicType1, trt4, pt1
topicType2, trt4, bt1
instanceOf, tri6, TopicRelInst
rel_instOf, tri6, trt5
topicInsID1, tri6, p1
topicInsID2, tri6, b1
topic_instOf, b1, bt1
topic_instOf, p1, pt1
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