
1

Bundles in Captivity:
An Application of Superimposed Information1

by
Lois Delcambre, David Maier, Shawn Bowers, Longxing Deng, Mathew Weaver

Computer Science and Engineering Department
Oregon Graduate Institute

{lmd, maier, shawn, longxing, mweaver}@cse.ogi.edu
and

Paul Gorman, Joan Ash, Mary Lavelle, Jason A. Lyman
Medical Informatics and Outcomes Research

Oregon Health Sciences University
{gormanp, ash, lavellem, lymanja}@ohsu.edu

Abstract

It is a common human trait to gather bits of information in one place, and group, classify,
and otherwise annotate them, such as on the back of an envelope or in the margins of a
paper. Such “bundles” of information appear to serve several different purposes, such as
creating and maintaining situation awareness, problem solving, and aiding communication.
These bundles are often structured via mechanisms such as juxtaposition of items, headings,
and nesting. Bundles often repeat or reference information that exists elsewhere, but can
contain new information as well.

Our observational work in the medical domain confirms that bundles are widely used and
reused. We focus in this paper on the challenges of building generic technology that
supports the creation of structured, digital bundles, with an emphasis on keeping
references that appear in the bundle linked to the referenced information in its original
source. Bundles are one form of superimposed information, information placed over a
base layer of data. To explore issues associated with bundles, and more generally
superimposed information, we have implemented SLIMPad, the Superimposed Layer
Information Manager scratchPad, an application for creating structured, digital bundles.

1 Introduction: What we’ve observed

In field observations of expert clinicians caring for patients in critical care units, bundles appear
to be a widely used means of managing information to support diverse, complex, often
simultaneous tasks. A bundle, for this work, is any sort of information collected and structured
by the clinician during problem solving. A bundle can be created on the back of an envelope, on
a blank sheet of paper, or on a form of sorts with headings and groupings. Regardless of the
media, bundles are free form; both the content and the structure are created by and for the
clinician. Figure 1 shows several examples of bundles in the wild, i.e., bundles that we have
observed in our work [8]. We see two bundles that have been written on the most available scrap
of paper (an unopened bandage package on the left and a paper towel on the right). On the left
side of Figure 1 we see (underneath the bandage package) a more structured bundle called a
flowsheet, where the status of an intensive care patient is tracked over time.

1 This work is supported, in part, by the National Science Foundation, Grant Number II-98-17492.

2

Figure 1: Selected bundles from the Intensive Care Unit.

Bundles may be especially useful in these settings characterized by high uncertainty, low
predictability and potentially grave outcomes, where time and especially attention are highly
constrained, and where interdisciplinary teamwork is essential. Reports of observations from
other, analogous domains such as air traffic control suggest that bundle use may be common,
outside the medical area [9, 10, 12, 18].

Bundles facilitate the selection, collection, organization, and sharing of information. They enable
individuals or groups to create and maintain a coherent representation of the current state and
expected future states. There is benefit in creating them (through the active processing of
information to improve understanding), in reusing them (by triggering memory) and in sharing
them to establish collectively maintained, situated awareness. Bundles give meaning to
information by organizing it in a context-specific, problem-focused way. Selection alone adds
value by excluding information that’s not considered important or relevant to the current context.

Computer-based tools for creating and managing bundles may be useful as the information in
these settings is increasingly represented in electronic information systems. We report here on
our first prototype application for creating bundles, specifically digital bundles that are
manipulated on a computer screen. The remainder of the paper discusses the more general
context of our work on digital bundles as an example of superimposed information. We note that
our prototype was not designed specifically for the medical domain, though it has influenced our
continuing development.

2 SLIMPad: What we’ve built

The Superimposed Layer Information Manager scratchPad (SLIMPad) allows users to create
structured, digital bundles. SLIMPad is motivated by our observational work indicating that
structured bundles are widely used and reused. Although SLIMPad is not necessarily intended to
support any specific, observed medical task, it has allowed us to explore technology for
superimposed information in parallel with the observational work.

Many bundles in the wild have a scratchpad-like feel and appearance. SLIMPad provides this
same scratchpad look and feel, in a computerized tool. The data model we used to implement
SLIMPad is shown in Figure 2, represented using the Unified Modeling Language (UML) [17].

The data model consists of four main entities with several relationships. The top-level object is a
SLIMPad, which serves as a container for all of the other objects. The SLIMPad is an
AbstractBundle and thus can contain any number of Scraps and any number of Bundles. In a
similar way, each Bundle is an AbstractBundle and can contain any number of Scraps or Bundles.
A Scrap object (i.e., a single piece of information) may or may not contain a Mark object − and
appears either directly in the SLIMPad or contained in a Bundle. The Mark object contains a

3

Bundle

bundleName : String
bundleXPos : Number
bundleYPos : Number
bundleHeight : Number
bundleWidth : Number

Scrap

scrapName : String
scrapXPos : Number
scrapYPos : Number

AbstractBundle

SLIMPad

padName : String

Mark

markId : String

1

*

1

*

*0..1

Figure 2: Structured Bundle Model for SLIMPad.

mark identifier, which is used to reference an information element in the base layer (i.e., the
original information source).

The SLIMPad application provides an interface between the user and data in this data model.
Each visual entity the user sees on the screen corresponds to an object in an instance of the data
model. Figure 3 shows the SLIMPad application being used in a medical setting. The larger
window, titled ‘Rounds’, is the visual representation of a SLIMPad object. In this scenario, the
user has created a bundle, titled ‘John Smith’. The bundle contains three scraps and another
bundle. The top two scraps represent medications the patient has received. The mark contained
in each scrap references the corresponding medication in a complete medication list (shown in a
Microsoft Excel document). By double clicking on the scrap, the mark is de-referenced and the
original information source, the medication list, is displayed with the appropriate medication
highlighted, as shown in the upper right of Figure 3.

The ‘Electrolyte’ bundle contains a set of scraps that come from a lab report – in this case,
formatted as an Extensible Markup Language (XML) document. Each of these scraps can be
double-clicked, which opens the report and highlights the appropriate section of the XML
document referenced by the scrap.

To create a new scrap on the SLIMPad, the user first selects an information element from a base-
layer application (such as Excel or an XML viewer). The base-layer application must support the
creation of marks, which act as a reference to base-layer information. Once the user has created a
mark, it can be placed onto the SLIMPad, which creates a scrap that can be named and moved
within the SLIMPad (e.g., strategically placed next to related scraps or placed in an appropriately
titled bundle). By creating the mark and attaching it to a scrap, the user creates a digital “sticky-
note,” which comes with a digital “wire” that always leads back to the information in the original
data source, as referenced by the mark. It is important to note that the user defines the physical
layout of the scraps and the bundles. The scraps and bundles seen on the screen are a
representation of the user’s conceptual model. For example, each number in the ‘Electrolyte’
bundle has a specific meaning to a medical professional, which can quickly be deduced by their
arrangement relative to each other. The SLIMPad data model does not impose structure – but
allows the user to create structure.

4

Figure 3: SLIMPad Screenshot showing two marks: one to Excel and one to XML.

SLIMPad provides building blocks so the user can digitally construct his or her own conceptual
model, while at the same time keeping the user only a click away from the underlying data. The
SLIMPad application is our first application that supports digital bundles; SLIMPad uses a
relatively simple model of nested, digital bundles containing scraps. We are also investigating
the notion of digital bundles in a more general context where the model may be more complex,
e.g., with more structure, with multiple marks per scrap, and with explicit linkages between
scraps.

3 Digital Bundles: What issues we considered

In our first SLIMPad implementation, we included the following key features for digital bundles:

• Users can select precisely which scraps they want to include on a pad or in a bundle.

• Users can label scraps however they like.

• Users can collect related scraps into a bundle.

• Users can label bundles however they like.

• Users can nest bundles inside other bundles.

• Users can put additional information, e.g., annotation or a “to do” list, in a bundle.

Digital bundles can be compared to other technologies including views, collections, forms, and
workflows, but we believe there are key distinctions in each case.

A digital bundle is not a view because it might contain less information or it might contain more
information than a view defined on an underlying data source. One could define a view over a

5

patient medical record and list all the known problems for the patient. However, a clinician may
select three items from the problem list for a patient in an Intensive Care Unit (ICU) when, in
fact, there are seven known problems. On the other hand, a bundle may also contain arbitrary
information, such as annotation, highlighting, or structuring, which is not deducible from the
underlying data.

In a similar way, a digital bundle is not an index because the set of scraps need not be complete
and because the bundle may contain additional information. The scraps in a bundle serve as an
index to the corresponding information elements in the original information source but it’s a
specialized form of index.

A digital bundle provides a way to group marks and supplemental information but a digital
bundle is not simply a collection of documents. Each scrap in a bundle contains one mark;
each mark references an information element in an underlying information source. But a mark
may reference information at various levels of granularity,2 e.g., a whole element or a single
attribute value in an XML document, or one cell or a contiguous block of cells in an Excel
spreadsheet. Moreover, the mark references the information in situ, without extracting it or
copying it. A digital bundle, by its very nature, contains a collection of scraps but it is not a
conventional collection of documents.

In our observational work, we observe “bundles in the wild.” Whenever someone gathers
together a bit of information, perhaps with groupings or headings, we call that a bundle. Some of
the bundles we have observed are quite elaborate. They can be highly structured and are
sometimes written on preprinted sheets, and their creation and maintenance has been
institutionalized. But a digital bundle is not a form. The primary difference is in the
prescriptive vs. proscriptive dimension. A form is rigid; it sets forth the fields that can be entered
into the system. A digital bundle, on the other hand, is essentially free form. Structure can be
introduced, fields can be named and possibly even typed, but the user is never limited to the
currently available structure. Some of the bundles that we observed in use by clinicians look like
preprinted forms, with fields, headers, and divided areas. But some areas, such as in the ICU
flow sheet, are intentionally multi-purpose. This flexibility in structure, including the possibility
of no structure, is a dominant theme of our research. We are exploring schema-optional and
schema-later approaches for managing information in bundles. We seek to exploit structure when
it’s present but not require it, unlike traditional database management systems.

Finally, a digital bundle is not a workflow. The information present in a digital bundle,
especially observed over time, may be the result of the execution of a workflow. But it need not
be. For example, certain information might be placed into a bundle just before a physician begins
rounds. As each patient is examined, certain information may be annotated or highlighted and
new information may appear, e.g., as a reminder to order new medications or lab tests. However,
the bundle doesn’t dictate the order in which information is gathered, where it is gathered, nor
even if it has to be gathered. We are currently not working on the specification of a workflow or
on the problem of linking workflows to the contents of a bundle.

4 Superimposed Information: What we’re researching

Bundles and scraps are one example of superimposed information [6, 13]. In general,
superimposed information is used to organize, highlight, supplement, connect, and reuse select
information from pre-existing information sources. With SLIMPad, users can organize and

2 The granularity of a mark is limited to the granularity supported by the various addressing schemes used
in the marks supported on different sources.

6

annotate marks to information sources through bundles and scraps. We define superimposed
information as a layer of data (the superimposed layer) placed over existing information sources
(the base layer) with the following characteristics (see Figure 4):

• It can contain additional data, not included in the information sources.

• It can have varying degrees of structure.

• It does not modify the existing information sources.

• It contains marks, which connect superimposed information to information sources.

Superimposed
Layer

Base
Layer

Information
Source1

Information
Source2

Information
Sourcen

…

marks

Figure 4: The superimposed and base layers with marks.

SLIMPad uses a specific model of superimposed information, the SLIMPad-bundle-scrap model.
But, there are a number of other, general-purpose superimposed models gaining in popularity
including Topic Maps [1], the Resource Description Framework (RDF) [11], and XML [3] when
used with an addressing scheme such as XLink [7]. An important property of these models is the
use of schema to optionally type superimposed information. Figure 5 shows an example of the
superimposed layer for model-based superimposed information, where the superimposed layer
consists of the application’s superimposed model, schema information (which is possibly
optional), and the superimposed data, termed instances.

Superimposed
Layer

Base
Layer

Information
Source1

Information
Source2

Information
Sourcen

…

marks

Model

Schema

Instances

Figure 5: Model, schema, and instances as the superimposed layer.

In general, we are interested in model-based superimposed information because tools that use
specific models of information are broadly applicable. For example, CASE tools, SQL, and even
spreadsheet tools each exploit a fixed model of information and are applicable across diverse data
that conform to their model. We see SLIMPad as such a tool, which leverages a superimposed
model and can be used universally for information that conforms to the SLIMPad-bundle-scrap
model.

7

Our goal in researching superimposed information is twofold. We want to provide superimposed
applications such as SLIMPad with generic tools: (1) to perform mark management including the
ability to mark heterogeneous information sources; and (2) to represent and manage model-based
superimposed information.

There are a number of examples of superimposed applications, including Multivalent Documents
(MVD) [15, 16], CoNote [5], and Third Voice [20], which are designed to let users add
superimposed information to Web pages and digital documents using annotations. Other, more
general examples of the use of superimposed information include pages of related links,
bookmark lists, and Web indexes such as the Open Directory [14]. Although the Open Directory
uses metadata to provide additional structure to information sources, metadata is generally not
considered superimposed information since it is typically embedded within the documents of the
base layer. Also, it is important to note that superimposed information and superimposed
applications are not limitted to the Web, SLIMPad being one such example.

5 Generic Technology for Superimposed Information: How We Built It

Figure 6 shows the architecture we use to provide generic technology to support the management
of superimposed information. A superimposed application (e.g., SLIMPad) interacts with both
base-layer applications and the generic management components, which manage marks to base-
layer data as well as the application’s superimposed information (e.g., bundles and scraps).
Superimposed applications can use one or more base applications through the mark management
component, which allows the superimposed application to access and resolve marks. Base
applications use mark management to create marks. A mark contains an address that is
understood by the base application. For example, with Microsoft Excel, a mark can represent a
spreadsheet cell through its row and column position, which can be used to access the information
element within the cell. Further, the base application knows how to render or extract the
information elements referenced by marks.

Superimposed
Application(s)

Superimposed
Information Management

Mark Management

Base
Application(s)

Generic Technology

Base Information

Application
Data

Marks

Figure 6: Overview of our Architecture for Superimposed Applications.

There are three basic viewing styles for superimposed applications: simultaneous viewing,
enhanced base-layer viewing, and independent viewing as shown in Figure 7.

8

Superimposed
Application

Base
Applicationuser

Simultaneous Viewing Enhanced Base-Layer Viewing

Base
Application

user

Added
Superimposed
Functionality

Independent Viewing

Figure 7: Three viewing styles for superimposed applications.

Superimposed
Application

Base
Application

user

borrows
functionality

With simultaneous viewing, a user accesses a superimposed- and base-layer application at the
same time. Usually, there are two windows active on the computer screen: one for the
superimposed application and one for the base application. A user interacts with either window as
desired.

With enhanced base-layer viewing, the functionality of a base application is enhanced to manage
superimposed information. Third Voice is such an example, which enhances Microsoft’s Internet
Explorer and Netscape’s Navigator by allowing the user to create and view annotations in the
same browser window as the Web page.

With independent viewing, the base application is hidden from users. A user sees only the
superimposed application, which exposes the functionality of the base application, usually in a
limited way. The base application can work in the background to extract base information
elements for the superimposed layer, or it can work as an in-place viewer for base information
(i.e., part of the base application is embedded within the superimposed application).

SLIMPad is most often used with simultaneous viewing, but it can also use independent viewing.
In most cases, the user juxtaposes the SLIMPad window and a base document viewer to interact
with base and superimposed information simultaneously. Independent viewing is used when
marks on the SLIMPad support in-place viewing, e.g., to read a range of spreadsheet cells in the
SLIMPad without launching Excel. In-place viewing can be effective when the user does not
need full spreadsheet functionality to manipulate the marked information because Excel is a
resource-consuming application that is slow to launch.

Figure 8 shows how SLIMPad fits into the architecture of Figure 6. Currently, five kinds of base
information types are supported: XML documents, Microsoft PowerPoint files, Excel
spreadsheets, Web pages and Adobe PDF files. Each kind of base information uses a specific
type of mark, and each type of mark can access information at different granularities. For
example, a PowerPoint mark can reference not only individual pages (i.e., slides), but also
individual graphics and text within a page, whereas the finest granularity supported for PDF
marks are at the page level. Both the format of base information and the capabilities of the base
application influence the granularity of marks.

5.1 The Mark Management Component

Mark management hides the details of the different kinds of marks from the superimposed
application. From the superimposed application’s viewpoint, a base information element is
addressed by a mark, which can be of any type (e.g., an XML or PowerPoint mark). This
transparency greatly simplifies the development of superimposed applications. The architecture

9

XML
Viewer

user
MS

PowerPoint
MS

Excel
IE

Explorer

XML Documents PPT Files Excel Spreadsheets Web Pages

Superimposed
Information Management

Mark Management

Generic TechnologyPDF
Viewer

PDF files

SLIMPad

Figure 8: The SLIMPad Architecture.

is also easy to extend; new kinds of base information can be introduced into the system without
disturbing existing superimposed applications.

In the current implementation, a mark is represented as a Java object, called a mark object. Each
mark object has a unique identifier (Mark-ID). The main content of a mark object is an address.
Mark objects know their own type, know how to find the correct base information elements, and
know how to invoke corresponding base applications for rendering or extraction.

Figure 9 shows the general architecture of mark management (within the SLIMPad
implementation). The mark manager is the kernel of mark management; it creates, stores, and
retrieves mark objects with unique Mark-IDs. The mark database is the repository of mark
objects. A mark module is used to handle the addressing scheme used for a particular type of
mark. In order to support new kinds of base information, new mark modules need to be
introduced. The base application must be enhanced to support the creation of marks and react
appropriately when asked to resolve a mark by its corresponding mark module.

SLIMPad

Mark Management

XML
Viewer

Mark Manager

Mark
Database

HTML
ModuleMS

PowerPoint
MS
IE

Excel
Module

PowerPoint
Module

XML
ModulePDF

Viewer

PDF
ModuleMS

Excel

Figure 9: Architecture for Mark Management (as implemented in SLIMPad).

10

5.2 The Superimposed Information Management Component

Along with managing marks, we are also interested in providing generic technology to manage
the superimposed information used by superimposed applications. Figure 10 shows our general
strategy for providing superimposed information management. To build a superimposed
application within our framework, the application designer first defines a superimposed model or
model-schema combination. Based on the fixed model or model-schema, we automatically
generate [19] a set of application-specific programming interfaces (APIs) for the application.
These specialized APIs let the superimposed application manage application data, which
represents superimposed information for the application.

Superimposed Information Management

Superimposed
Application

Application
Data

Application
Specific

API

Generic
Management
Component

Generic
Representation of

Superimposed
Information

creates and
manages

Figure 10: The general architecture for managing superimposed information.

An application-specific API has two roles. First, it is used by the superimposed application for
general management functions such as creation, update, removal, query, and storage of
application data (i.e., superimposed information). The second role is to maintain consistency
between the application data and the underlying representation of the superimposed information.
While the specialized API and application data are used for a particular application’s model or
model-schema combination, the underlying representation is generic for any superimposed model
and schema.

The generic representation uses a metamodel for superimposed information [2] that allows
multiple superimposed models to be defined in a standard way. The metamodel is defined using
RDF Schema [4], which allows superimposed models, schemas, and instances to be represented
as RDF data. All three levels (model, schema, and instance) are represented uniformly as RDF
triples [2].

Figure 11 shows how SLIMPad uses our superimposed information management architecture.
Application data is represented as ActiveX objects written in Java. SLIMPad uses the SLIMPad
API, also a Java ActiveX object, to create and manage the application data. The SLIMPad API
maintains consistency between the application data and the generic representation with the TRIM
Store (Triple Manager). The TRIM Store provides basic management capabilities such as
creation, update, removal, query, and retrieval over the RDF triples.

There are a number of advantages to our approach for managing superimposed information.
First, by defining a generic representation, applications can store superimposed information using
their desired model instead of a common, fixed data model such as those used in traditional
database management systems (e.g., the relational or object-oriented model). With TRIM Store,
however, we can still provide general management capabilities over the representation.
Additionally, for a particular model-based application such as SLIMPad, we provide specialized
management capabilities and access to superimposed information based on the application’s

11

Superimposed Information Management

SLIMPad

Java Objects
(ActiveX)

SLIMPad
API

(ActiveX)

TRIM Store
(Java) RDF

Triples

creates and
maintains

Figure 11: The architecture for managing SLIMPad’s superimposed information.

desired model or model-schema. These specialized interfaces can be automatically generated for
the application and allow the application to access superimposed information in a convenient way
(e.g., as objects in an object-oriented application). Besides ActiveX objects, we have also
represented application data as relational database views over the RDF triples. In this way, we
are able to leverage existing database functionality to support the management of superimposed
information, where the relational database acts as both the specialized API and TRIM Store.
Notice that in general, applications will not want the overhead required by a relational database
management system.

Another advantage of our architecture is that it supports application interoperability through a
common representation of superimposed information. That is, using the generic representation,
applications can share and reuse superimposed information. We have looked at using mapping
rules between superimposed layers to transform and convert superimposed information from one
application into valid superimposed information of another. With this approach, users can
manipulate superimposed information by leveraging one application, and then convert the
superimposed information into another tool to exploit the new tool’s capabilities.

6 Open Issues and Work in Progress: What we’re doing next

Our planned future work falls into three major areas: extension and refinement of the SLIMPad-
bundle-scrap model, issues in modeling and architecture for superimposed information in general,
and producing and testing a SLIMPad-like tool to help with specific clinician tasks.

Some issues we are interested in that concern modeling bundles include:

• “Schema” for bundles: As embodied in SLIMPad, the model is fixed, consisting of bundles
and scraps, with bundles built up from scratch. It is clear from our observations, however,
that people or groups often create multiple bundles with common patterns. We would like to
support such patterns with templates that predefine certain bundles and labels, and possibly
predefine scraps. However, templates should be less restrictive than a normal database
schema, in that users should be allowed to extend or modify the predefined collection of
bundles in a template. On the other hand, we would like bundles to be more than just
stationary (as in a word processor). When a bundle originally comes from a template, we
want to remember that fact, to identify common semantics, e.g., to assist with merging the
information from two SLIMPads.

• Sharing: As realized in our prototype, the bundles on each SLIMPad are disjoint (though
scraps on different pads can contain the same mark), and are used by one person at a time.
There are several notions of “sharing” we would like to add to this model, such as a bundle

12

that belongs to multiple pads, a pad with multiple simultaneous users, and interchange of
pads and bundles between users. One issue that these various kinds of sharing bring up is the
“scoping” of base layers and marks over those layers. For example, one can currently mark
into a local file. If a scrap containing such a mark is sent to a SLIMPad tool on another
machine, how should that mark be handled? We probably don’t want to interpret it as a mark
into a same-named file on the new machine. Should it just be flagged as “out of scope” if an
application tries to follow it? Or should such an access try to copy or remotely access the
original file? Note that if a scrap has a mark that is currently not resolvable, we shouldn’t
necessarily discard or void the mark because the scrap might eventually find its way back to a
context where it is resolvable. In any case, we need a means to explicitly record the scope for
base layers and marks, so that users know whether marks they create are sharable and to what
extent. The scope can also tell us when a mark is in the proper context for access.

There are several general issues for modeling and management of superimposed information that
have emerged from this work and other efforts.

• Distribution: In our current SLIM architecture, a single mark manager can service multiple
instances of a superimposed application, or even multiple superimposed applications.
However, it’s obvious that having a single mark manager won’t scale, and there are many
decisions to be worked out in implementing distributed mark management. Do multiple mark
managers support a single space of marks, or must applications keep track of which manager
handles a particular mark? Can a mark obtained from one manager be presented to another
manager for resolution? Are there possibly different styles of marks: some that require the
context of a particular manager to interpret, and others that are manager-independent?

• Mark Maintenance: The medical domain has the advantage that much of the base
information takes the form of permanent records, reports or reference material, hence base
documents don’t change much. However, there are instances where they do, and we need to
deal with marks into documents that have been updated. The worst case would be to blithely
interpret the mark over an updated document, and potentially access an element unrelated to
the originally marked element. Better would be to detect that a mark might be invalidated by
an update. Better still would be a mark that holds additional information on how to identify a
marked element, so that a mark could be “reattached” after update, such as in the MVD
system [15, 16].

• New Kinds of Sources and Marks: We can currently mark base documents in XML, PDF,
Excel, PowerPoint, and HTML. However, we are not totally satisfied with the granularity we
can select in each of these sources. Sometimes it is only at the page level (PDF for example).
However, to get finer granularity may require constructing our own viewing applications for
such documents (which we have done for XML). There are other sources, such as databases,
we would like to mark into. A particular challenge comes when the data is encapsulated in a
monolithic application, as is the case with some Electronic Medical Record systems. We have
found it quite difficult to obtain information form such applications on what the current
selection is, and to drive such an application back to a particular selection. We are also
interested in marks into a “base” layer that is actually superimposed information for another
application.

• Application Interface: The SLIMPad uses one particular style of interaction with the
superimposed information and mark management components, but many others are obviously
possible. For example, the SLIMPad currently sees application data as Java objects, but a
different application (or an enhanced SLIMPad) might want a more query-like API. An
interesting problem is coming up with API generator capabilities where the superimposed
information model, the particular schema and the interface style are all configurable. In terms

13

of marks, we recognize that the application from which a mark was obtained need not be the
one used when that mark is accessed. For example, there could be additional applications for
viewing mark contents, or widgets for displaying contents in place. We need a discipline for
registering the different pieces of software that work with different mark types, along with
their capabilities, so that the information doesn’t have to be hard coded into an application.
Such a framework would also make superimposed applications more robust in different
contexts, not depending on particular programs to be present to be able to operate.

• Superimposed Information Conversion: The SLIMPad-bundle-scrap model is just one
example of a superimposed information model (Topic Maps and RDF are others). Different
applications could obviously want to see their superimposed information in different models.
Our current metamodel approach to superimposed information management allows the
possibility of simultaneously presenting the same superimposed information under different
models, without explicit copying or conversion.

Finally, we reiterate that SLIMPad was not originally designed to be a clinicians tool (though our
development direction has been influenced by “bundles in the wild” observations). We plan to
produce a bundle-manager tool directed at a particular task or class of use, and test it with actual
clinicians (though probably not initially in a clinical setting).

7 References

[1] Michel Biezunski, Martin Bryan, and Steve Newcomb, editors. ISO/IEC 13250, Topic Maps,
URL:http://www.ornl.gov/sgml/sc34/document/0058.htm.

[2] Shawn Bowers. A generic approach for representing model-based superimposed
information. Technical Report, Oregon Graduate Institute of Science and Technology,
Number CSE-00-008, May 1, 2000.

[3] Tim Bray, Jean Paoli, and C.M. Sperger-McQueen, editors. Extensible Markup Language
(XML) 1.0, W3C Recommendation 10-February-1998, URL:http://www.w3.org/TR/REC-
xml.

[4] Dan Brickley and R.V. Guha, editors. Resource Description Framework Schema (RDFS),
W3C Proposed Recommendation 03 March 1999, URL:http://www.w3.org/TR/PR-rdf-
schema/.

[5] James Davis and Daniel Huttenlocher. Shared annotation for cooperative learning.
Proceeding of the Computer Support for Cooperative Learning Conference, Bloomington,
Indiana, October 17-20, 1995.

[6] Lois Delcambre and David Maier. Models for superimposed information. Advances in
Conceptual Modeling ER ’99, Lecture Notes in Computer Science Volume 1727, pages 264-
280, Paris, France, November 15-18, 1999.

[7] Steve DeRose, Eve Maler, David Orchard, and Ben Trafford, editors. XML Linking
Language (XLINK), W3C Working Draft 21-February-2000, URL:
http://www.w3.org/TR/2000/WD-xlink-20000221.

[8] P.N. Gorman, J.S. Ash, M. Lavelle, J. Lyman, L. Delcambre, and D. Maier. Bundles in the
wild: tools for managing information to solve problems and maintain situation awareness.
Oregon Health Sciences University, Portland, Oregon, June, 2000.

[9] Edwin Hutchins. Cognition in the wild. MIT Press, 1995.

14

[10] E. Hutchins and T. Klausen. Distributed cognition in an airline cockpit. In Y. Engestrom and
D. Middleton, editors, Cognition and communication at work, New York: Cambridge
University Press, pages 15-34, 1996.

[11] Ora Lassila and Ralph R. Swick, editors. Resource Description Framework (RDF) Model
and Syntax Specification, W3C Recommendation 22 February 1999,
URL:http://www.w3.org/TR/REC-rdf-syntax.

[12] W.E. Mackay. Is paper safer? The role of flight strips in air traffic control. ACM
Transactions on Computer-Human Interaction 6(4), pages 311-340, 1999.

[13] David Maier and Lois Declambre. Superimposed information for the Internet. ACM
SIGMOD Workshop on The Web and Databases WebDB’99, pages 1-9, Philadelphia,
Pennsylvania, June 3-4, 1999.

[14] The Mozilla Open Directory. URL:http://dmoz.org.

[15] Thomas Phelps and Robert Wilensky. Multivalent annotations. Research and Advanced
Technology for Digital Libraries (ECDL ’97), Lecture Notes in Computer Science Volume
1324, pages 287-303, Pisa, Italy, September 1-3, 1997.

[16] Thomas Phelps and Robert Wilensky. Robust intra-document locations. Proceedings of the
9th World Wide Web Conference, Amsterdam, May 15-19, 2000.

[17] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

[18] T. von Thaden. Social informatics and aviation technology. Bulletin of the American Society
for Information Science 26(3), pages 13-14, 2000.

[19] Mat Weaver. SlimML. Term project report for CSE 511. Oregon Graduate Institute of
Science and Technology, March 2000.

[20] A. Zeichick. Third voice: extending the interpersonal communications potential of the world
wide web. White Paper, URL:http://www.thirdvoice.com/about/WhitePaperPage1.htm.

