
Infopipes for Composing Distributed Information Flows

Rainer Koster

University of Kaiserslautern, koster@informatik.uni-kl.de

Andrew P. Black, Jie Huang, Jonathan Walpole

Oregon Graduate Institute, {black,jiehuang,walpole}@cse.ogi.edu

Calton Pu

Georgia Institute of Technology, calton@cc.gatech.edu

Abstract

Building applications that process information
flows on existing middleware platforms is diffi-
cult, because of the variety of QoS requirements,
the need for application-specific protocols, and the
poor match of the commonly used abstraction of
remote invocations to streaming. We propose In-
fopipes as an high-level abstraction for building
blocks that handle information flows. The abil-
ity to query individual Infopipe elements as well
as composite Infopipes for properties of supported
flows enables QoS-aware configuration. Similarly
to local protocol frameworks Infopipes provide a
flexible infrastructure for configuring communica-
tion services from modules, but unlike protocols the
abstraction uniformly includes the entire pipeline
from source to sink, possibly across process and
node boundaries.

1 Introduction

Interaction using common middleware platforms is
based on mechanisms such as remote procedure
call or remote object invocation. Procedure and
method interfaces are specified in an interface defi-
nition language (IDL). Using this specification of a
service, client and server can be developed indepen-
dently of each other. Moreover, from an IDL de-
scription stubs and skeletons can be generated that
handle remote communication via a standard pro-
tocol, transparently to the application developer.

This approach, however, does not support
streaming and processing of distributed informa-
tion flows well.

• The request-response style of interaction is
built on control flowing to the server and back
to the client, rather than on a continuous in-
formation flow.

This work is partially supported by DARPA/ITO under
the Information Technology Expeditions, Ubiquitous Com-
puting, Quorum, and PCES programs, by NFS award CDA-
9703218, and by Intel.

• Information flows typically have timing and
other non-functional requirements. Hence,
Quality of Service (QoS) properties need to
be an integral part of the abstraction. Besides,
a built-in standard protocol is insufficient for
supporting this variety of requirements.

• Conventional middleware builds application-
specific components (client and server) on top
of generated (stubs and skeletons) and system-
provided (ORB, standard protocol) compo-
nents. For flows, application-specific and
platform-provided components may be mixed
in various ways.

A flow-based application typically wants infor-
mation to be transmitted from a source to a sink
with specific flow properties being maintained. A
variety of components may be needed for this task.
Some of them are structured in pairs like proto-
col layers such as compression and decompression,
marshaller and unmarshaller, or feedback actua-
tor and sensor. Other elements such as filters and
format converters can be placed in several posi-
tions of the pipeline. Hence, it is important to
enable applications to control their own structure
and to have well defined interfaces between each
two stages rather than the three interfaces used by
standard middelware: client-stub, standard proto-
col, and skeleton-server. Most of these elements are
built to process specific types of information. Their
functionality is neither general enough to provide
them as part of the middleware platform nor spe-
cific to particular applications. Hence, there needs
to be support for reusing and composing these
pipeline stages.

As an example, consider a simple video pipeline
from a source producing compressed data to a dis-
play. Then, the different formats require a decoder
for that codec. If producer and consumer are on
different nodes connected by a best-effort network,
a feedback mechanism should be used to control,
which data is dropped, rather than incurring arbi-
trary dropping in the network. The feedback and
decoding elements are likely to be specific to the

1



filter network sensor decoder

displayfeedback

source pump
netpipe

buffer pump sink

Figure 1: Infopipe Example

given flow format, but can be used in video on de-
mand, video conferencing, or surveillance applica-
tions.

The Infopipe abstraction simplifies the task of
building distributed streaming applications by pro-
viding basic elements such as pipes, filters, buffers,
and pumps [1, 9]. Each element specifies the prop-
erties of the flows it can support, including data
formats and QoS parameters. When stages of a
pipeline are connected flow properties for the com-
posite can be derived, facilitating the composition
of larger building blocks and incremental pipeline
setup.

Section 2 describes the Infopipe abstraction.
Section 3 discusses an approach to support
application-controlled pipeline setup. Related
work is summarized in Section 4 before the con-
clusions in Section 5.

2 Infopipes

Infopipes model pipeline elements for information
flow analogously to plumbing for water flow. The
goal is supporting a similarly simple composition
of pipelines from elements.

The most common elements have one input and
one output. Such pipes can just transport infor-
mation, filter certain information items, or trans-
form the information. Buffers provide temporary
storage and remove rate fluctuations that cause
jitter. There are pumps to keep the information
flowing, pulling items from upstream and pushing
them downstream. Hence, pumps have two active
ends and buffers have two passive ones, while filters
and transformers have two ends of opposite polar-
ity but can typically be used in either push or pull
mode [1]. Sources and sinks have only one end,
and can be either active or passive.

More complex pieces have more ports. Exam-
ples are tees for splitting and merging information
flows. Splitting includes splitting an information
item into parts that are sent different ways, copy-
ing items to each output (multicast), and selecting
an output for each item (routing). Merging can
combine items from different sources into one item
or pass on information to one output in the order
it arrives at any input.

In combining elements of a pipeline it is impor-
tant to check the compatibilty of supported flows
and to evaluate the characteristics of the composite

Infopipe. From each basic or composite Infopipe a
Typespec of supported flows can be queried. These
types include supported formats of data items, in-
teraction properties such as the capability of op-
erating in push or pull mode, and ranges of QoS
parameters that can be handled.

To integrate different transport protocols into
the Infopipe framework, they can be encapsulated
in netpipes. These netpipes support plain data
flows and may handle low-level properties such as
bandwidth and latency. Marshalling filters on ei-
ther side translate the raw data flow to a higher-
level information flow and vice-versa. These ele-
ments also encapsulate the QoS mapping transla-
tion between netpipe properties and information
flow specific properties.

Figure 1 shows the video pipeline used as an ex-
ample in Section 1. At the producer side, frames
are pumped through a filter into a netpipe encap-
sulating a best-effort transport protocol. The filter
drops frames controlled by a feedback mechanism
using a sensor on the consumer side. After decod-
ing, the frames are buffered to reduce jitter. A
second, timer-controlled pump finally releases the
frames to the display sink.

The Infopipe abstraction has emerged from our
experience building continuous media applications.
Currently we are building a middleware framework
based on these concepts. On top of this platform
we are going to reimplement our video pipelines to
facilitate further development.

3 Distributed Setup

Due to the diversity of application-specific QoS
requirements and trade-offs, the Infopipe frame-
work does not try to build pipelines automati-
cally from declarative requirements but lets the ap-
plication itself control its structure. For setting
up protocol stacks in this procedural way hierar-
chical blueprints have been proposed [5]. These
blueprints can contain alternative configurations
that may be chosen depending on the availability
of required sub-components and resources. More-
over, they are not necessarily complete, but may
be mixed with declaratively configured parts.

This hybrid approach can be used for Infopipes.
While the right choice of compression algorithms,
feedback mechanisms, or underlying transport pro-
tocols is likely to be application-specific and com-

2



SkeletonStubClient Server

ServerClient
Smart

Proxy

Figure 2: Smart Proxies

ponents should be explicitly selected, the flow prop-
erties can also be used for partial declarative con-
figurations. If data needs to be converted from one
format to another, a transformation can be chosen
automatically as in some exisiting streaming frame-
works [6,10]. The classical case of marshalling, that
is the conversion between a network-packet repre-
sentation and an in-memory representation,1 falls
into this categorie. In this case, the transformation
component can even be automatically generated.

For Infopipes, there also needs to be an interface
between consumer and producer applications, sim-
ilar to the need for a well-defined interface between
clients and servers. For application-level protocols
such as FTP the service interface is defined in terms
of commands sent over a connection, and for con-
ventional message-based middleware it is defined in
IDL. The former interface is low-level and between
the hosts, the latter is high-level and identical on ei-
ther side. For an Infopipe consisting of potentially
many stages, it is more difficult to locate the inter-
face that conceptually separates consumer and pro-
ducer. The low-level transport-protocol interface
would not be a good choice, because a consumer
and a producer would only be compatible if they
happen to use the same protocol, even if they han-
dle the same type of flow on a higher level. Choos-
ing a high-level interface locates it necessarily on
either side of the network. Producers or consumers
could be in charge of configuring the remote flow.

For realising this high-level approach in CORBA
with additional transport protocols, dynamically
loadable Smart Proxies have been proposed [3, 4].
The server logically extends to the client node and
controls the network part of the pipeline as shown
in Figure 2. At connection setup, the server chooses
a communication mechanism based on information
about the available resources. A video server, for
instance, could use shared memory if it happens to
be on the same node as the client, a compression
mechanism and UDP across the Internet, or raw
Ethernet on a dedicated LAN. It then transmits the
code for a Smart Proxy to the client implementing
the respective communication endpoint functional-
ity. In this way, application specific remote commu-
nication can be used without making the network

1There are several in-memory representations in a het-
erogeneous environment.

protocol the actual service interface. In that case,
all client applications would have to implement all
protocols that are used by any servers they may
ever connect to. With Smart Proxies, the service
interface can still be described on a high level in an
IDL. Client applications are programmed accessing
this interface as if the server were on the same ma-
chine, but actually communicate with the proxy.

The same idea can be applied to Infopipes in a
generalized way. Since there are high-level inter-
faces between all elements of a pipeline the granu-
larity of composition can be finer. It is not neces-
sary to send monolithic proxies implementing ev-
erything between the consumer interface and the
network. It is rather possible to use standard
pipeline elements that may be available on the con-
sumer side for composing the required functional-
ity. It may be sufficient to send a proxy blueprint
as discussed above, or to send small specialized el-
ements in addition.

The consumer could be put in charge of the net-
work, too. In this way, application-specific adapta-
tion policies could be uploaded to the producer, for
instance. It is also possible to decouple respon-
sibilities even further and let a third party con-
trol the network pipeline. Then both consumers
and producers can benefit from various transport
pipelines that can be developed and improved in-
dependently. A specialized transportation service
needs to send configurations and potentially code
to either side.

4 Related Work

Some efforts aim at integrating streaming services
with middleware platforms based on remote object
invocations such as CORBA. The CORBA tele-
coms specification defines stream management in-
terfaces, but not the data transmission. Exten-
sions to CORBA such as TAO’s pluggable proto-
col framework allow the efficient implementation of
audio and video applications [7].

The QuO architecture [12] complements the IDL
descriptions with specifications of QoS parameters
and adaptive behavior in special languages. From
these declarative descriptions so called delegates
are generated and linked to the client application in
a similar way as stubs are generated from the IDL.
While this approach maintains platform and lan-
guage independence, its flexibility is limited by the
capabilities of the generators and the static linking
of delegates.

In the Jini environment [13] client-server commu-
nication is encapsulated in proxies that are shipped
at run time. Since Jini is based on Java, it inherits
the advantages of security, ease of code shipping,
and platform independence, as well as the draw-
backs of being restricted to one language and the

3



potential performance penalties and unpredictabil-
ity of a virtual machine.

Blair et al. proposed a procedural approach to
reflection as a general design principle for a mid-
dleware architecture [2].

Modular protocol frameworks such as Ensem-
ble [11] or Da CaPo [8] support the composition
and reconfiguration of protocol stacks from mod-
ules. Both provide mechanisms to check the usabil-
ity of configurations and use heuristics to build the
stacks. Unlike these frameworks for local protocols,
Infopipes use a uniform abstraction for handling in-
formation flow from source to sink, possibly across
several network nodes. Moreover, the application
controls the pipeline setup.

5 Conclusions

Infopipes provide a framework for building
pipelines from elements for processing information
flows. This abstraction uniformly extends from
source to sink. The application controls the setup
of the pipelines, configuring their behavior based
on QoS parameters and other properties exposed
by the elements.

Starting from two prototype implementations in
Smalltalk and C++ exploring the general idea and
the threading support respectively, we are extend-
ing the supported functionality by the distributed
setup described above, resource reservations, and
feedback mechanisms. As a test case, we are build-
ing a video streaming application on top of the
framework.

References

[1] Andrew P. Black and Jonathan Walpole. As-
pects of information flow. In ECOOP 2000
Workshop on Aspects and Dimensions of Con-
cerns, 2000.

[2] G. S. Blair, G. Coulson, P. Robin, and M. Pap-
athomas. An architecture for next-generation
middleware. In International Conference on
Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware), pages 191–
206. IFIP, September 1998.

[3] R. Koster and T. Kramp. Loadable smart
proxies and native-code shipping for CORBA.
In Proceedings of the Third International Con-
ference on Trends towards a Universial Service
Market (USM). IFIP/GI, Springer, September
2000.

[4] R. Koster and T. Kramp. Structuring qos-
supporting services with smart proxies. In

Proceedings of the Second International Con-
ference on Distributed Systems Platforms and
Open Distributed Processing (Middleware),
LNCS 1795, pages 273–288. IFIP/ACM,
Springer, April 2000.

[5] T. Kramp and R. Koster. Descriptive-
procedural configuration of communication
bindings. In Proceedings of the International
Conference on Multimedia and Expo (ICME).
IEEE, August 2000.

[6] Mircosoft. DirectX 8.0: DirectShow overview.
http://msdn.microsoft.com/library/

psdk/directx/dx8_c/ds/Oview/about_

dshow.htm, January 2001.

[7] S. Mungee, N. Surendran, and D. C. Schmidt.
The design and performance of a CORBA au-
dio/video streaming service. In HICSS-32 In-
ternational Conference on System Sciences,
minitrack on Multimedia DBMS and WWW,
January 1999.

[8] T. Plagemann and B. Plattner. CoRA: A
heuristic for protocol configuration and re-
source allocation. In Proceedings of the Work-
shop on Protocols for High-Speed Networks.
IFIP, August 1994.

[9] C. Pu, K. Schwan, and J. Walpole. Infosphere
project: System support for information flow
applications. ACM SIGMOD Record, 30(1),
March 2001.

[10] Wim Taymans. GStreamer application de-
velopment manual. http://www.gstreamer.

net/documentation.shtml, January 2001.

[11] R. van Renesse, K. Birman, M. Hayden,
A. Vaysburd, and D. Karr. Building adap-
tive systems using Ensemble. Technical Re-
port TR97-1638, Computer Science Depart-
ment, Cornell University, 1997.

[12] R. Vanegas, J. A. Zinky, J. P. Loyall, D. A.
Karr, R. E. Schantz, and D. E. Bakken.
QuO’s runtime support for quality of ser-
vice in distributed objects. In Proceedings
of the IFIP International Conference on Dis-
tributed Systems Platforms and Open Dis-
tributed Processing (Middleware’98). Springer
Verlag, September 1998.

[13] J. Waldo. The Jini architecture for network-
centered computing. Communications of the
ACM, 42(7):76–82, July 1999.

4


