

1

Reifying Communication at the Application Level

Andrew P. Black Jie Huang Jonathan Walpole

black@cse.ogi.edu jiehuang@cse.ogi.edu walpole@cse.ogi.edu

Department of Computer Science & Engineering
Oregon Graduate Institute of Science & Technology

A Position Paper submitted to the International Workshop on Multimedia Middleware, Ottawa, October 2001

Introduction

Middleware, from the earliest RPC systems to recent
Object-Oriented Remote Message Sending (RMS) sys-
tems such as Java RMI and CORBA, claims

transpar-
ency

as one of its main attributes. Coulouris

et al.

 [1]
define transparency as “the concealment from the …
application programmer of the separation of components
in a distributed system.” They go on to identify eight dif-
ferent kinds of transparency,

We considered titling this paper “Transparency
Considered Harmful”, but that title is misleading
because it implies that all kinds of transparency are bad.
This is not our view. Rather, we believe that the choice
of

which

 transparencies should be offered by a middle-
ware platform is critically dependent on the use to be
made of that platform. Specifically, we argue that net-
work transparency and concurrency transparency are
inappropriate for middleware that is designed to support
multimedia applications. This is because a network that
is “transparent” is a network that is hidden, and thus one
whose Quality of Service aspects are also hidden.

The ability to hide communication is a great
strength of RPC and RMS. Hiding the network frees the
programmer to focus on the real purpose of the program,
that is, executing complex application logic. But hiding
can also be a great weakness: for many multimedia sys-
tems, the real purpose of the program is to

control com-
munication

, and this requires that communication be
exposed, not hidden.

Consider a multimedia player streaming live video
and audio over the internet. The complexity of this appli-
cation does not lie in the display of video on the screen
or the playing of audio through the speaker; these prob-
lems have largely been solved and library code is avail-
able for reuse. Instead, the complexity comes from

controlling the communication

 between the source and
the sink, that is, in deciding what to do if packets are
lost, if bandwidth is suddenly restricted, or if latency
becomes highly variable. How can we address these
problems if our middleware hides communication?

But exposing communication does not mean
revealing all of the details of its implementation in terms
of byte streams or shared memory buffers. The exposure

should be at a level of abstraction appropriate to the
application. For example, a video player is concerned
with video frames, not streams of bytes, and so its com-
munications operations should be in terms of frames.

Application Level Abstractions

Our view of QoS specification and control is primarily
an adaptive one, based on dynamic observation and con-
trol, as opposed to static specification of requirements
and reservation of resources. This contrasts with conven-
tional approaches to QoS in networks, such as RSVP
and the IETF's Integrated Services Architecture. We
believe that our abstractions can support both
approaches, but in our experience building multimedia
applications over the Internet, we have found that the
former approach is more useful than the latter. In this
adaptive view, QoS specification and enforcement are
done

by the application

: applications continually moni-
tor their own performance and make appropriate adjust-
ments. For this to be natural, both the monitoring and the
control of quality must be in application-level terms.

In essence, our approach argues for an appropriate
division of concerns between application, middleware
and system layers. We believe that system-level or
resource-level details, such as the available (or desired)
bandwidth measured in bits or packets per second,
should be hidden from applications, and

not

 reified as in
current network QoS approaches. Instead, we reify qual-
ity in application-level terms, and provide interfaces for
controlling it, also in application-level terms. These con-
trol interfaces, together with appropriate feedback con-
trol elements (

e.g

., from the SWiFT Toolkit [2]), provide
the basic abstractions and building blocks for this
approach. Specifically, monitoring is done by connecting
the control interfaces (which are defined in application-
level terms) to an appropriate feedback controller.

InfoPipes

InfoPipes are the name we give to these application level
abstractions for information flow. InfoPipes are a mid-
dleware framework in which communication is

reified

rather than hidden.
The verb reify refers to the process of taking some-

thing abstract and making it real. InfoPipes are “real”
objects: they can be created, named, and manipulated at
will. They can be sent messages, and will respond with

This work was partially supported by DARPA/ITO under the Infor-
mation Technology Expeditions, Ubiquitous Computing, Quorum,
and PCES programs, by NSF Grant CCR-9988440 and by Intel.

2

answers. For example, we might send a message asking
an InfoPipe how many frames have passed through it in
a given time interval, or we might connect one InfoPipe
to another by sending one the

–>>

 message with the
other as argument. InfoPipes are part of the communica-
tions infrastructure of the Infosphere project [6].

Data Interfaces

InfoPipes have been described elsewhere [3, 4], so we
will limit ourselves here to a quick overview. An anal-
ogy with plumbing conveys the big picture: just as a
water distribution system is built by connecting together
pre-existing pipes, tees, valves and application-specific
fixtures, so we envisage an information flow system
being built by connecting together pre-defined and
application-specific InfoPipes.

When two InfoPipes are connected, either of them
may initiate the process of information transfer. So the
data interface of an InfoPipe has two operations:

pull

and

 push: anItem

†

. As shown in Figure 1, an InfoPipe
may send the

push:

 message to its downstream InfoPipe,
thus transmitting an information item, or may send the

pull

 message to its upstream InfoPipe to request an
information item. Our initial plan was to use a

polarity
check

 to ensure that only compatible components could
be connected [3]. We have subsequently realized that, in
many cases, given a component of one polarity, we can
automatically generate a component with the same func-
tionality but with the opposite or different polarity [5].

We intend to support application level streaming
and to maintain application level QoS-properties in
information flows. For example, an MPEG player can
view the information flow as video frames rather than
UDP packets. We can timestamp video frames so that
we can calculate the current frame rate. We can label

video frames with priorities so that the less important
frames will be the ones that will be dropped during con-
gestion. These functions can be accomplished by vari-
ous kinds of filters.

Control Interfaces

The control interface of an InfoPipe exposes and
manages two sets of properties: the properties of the
InfoPipe itself, and the properties of the information
flowing through it. To see the distinction, consider an
InfoPipe implemented over a dedicated network connec-
tion. The bandwidth of this

NetPipe

 is a property of the
underlying network connection. However, the actual
data flow rate, although bounded by the bandwidth, may
vary with the demands of the application.

We regard both pipe and flow properties as control
properties because they are clearly related. Indeed,
expressing pipe properties such as bandwidth in applica-
tion-level terms (

e.g.

, frames per second rather than
bytes per second) requires information about the flow.

Different kinds of InfoPipe provide different con-
trol interfaces. For example, we have

fillLevel

 for buffers
and

slower

 and

faster

 for pumps. We are investigating
the properties and control information that should be
maintained in InfoPipes and in information flows to sup-
port comprehensive control interfaces.

Some InfoPipe Interfaces

To make the above a little more concrete, we now
describe the interfaces of some significant InfoPipe
components in enough detail for the reader to begin to
see how they might be used to build an application.

Ports

It is not obvious that InfoPipes need the concept of port.
Indeed, our first prototypes of “straight line” InfoPipes
did not have ports: a pipe was connected directly to its
upstream and downstream neighbours, and each pipe
understood two connection messages,

input:

 and

 output:

However, the introduction of

Tees

, that is, pipes
with multiple inputs and outputs, would have made the
connection protocol more complex and less uniform.
Ports avoid this, and turn out to simplify

NetPipes

 and

CompositePipes

 as well, as we shall explain.
Ports are either

InPorts

 or

OutPorts

; both have
exactly one owner: the InfoPipe component in which
they are embedded.

OutPorts

 understand the message

anInPort

, which sets up a connection to

anInPort

.

Each InfoPipe has a set of named

InPorts

 and a set
of named

OutPorts

. For straight-line pipes, each of these
sets has a single element, named

Primary

. InfoPipes also
understand the

–>>

 message, which is defined as con-
necting the

Primary

OutPort

 of the upstream pipe to the

Primary InPort

 of the downstream pipe.

Sources

 and

Sinks

 are InfoPipes in which one or
other of these sets of ports is empty.

Tees

 are InfoPipes
in which one or both of the sets of ports have multiple
members. These ports can be accessed by sending the
Tee the messages

 inPortAt: aName

 and

outPortAt:

†

We follow the Smalltalk convention of using a colon (rather than
parenthesis) to indicate where an argument is required, Often we
will provide an example argument with a meaningful name.

Direction of information flow

 Figure 1: push and pull flows

reply [ack]

push [item]

 Infopipe A Infopipe B

pull

reply [item]

 Infopipe A Infopipe B

port

–>>

3

aName

; the ports can then be connected as required.
Figure 2 shows an example

.

NetPipes

NetPipes implement network information flows
using whatever mechanisms are appropriate to the
underlying medium and the application. For example,
we have built a low-latency, unreliable NetPipe using
UDP. How can such an InfoPipe interact with other
InfoPipe components?

A

NetPipe

 contains a buffer at the output end, so
we can monitor it and manipulate the data items in it;
this would not be possible if we did not reify the exist-
ence of buffering in the network. Hence, a

NetPipe

 pro-
vides the same data interface as a

Buffer

. InfoPipes with
data connections to a

NetPipe

 may not know that it is a

NetPipe

. Naturally, the control interface of a

NetPipe

 is
different from that of a

Buffer

; it reflects the properties
of the underlying network. For example, the latency of a

NetPipe

 depends on the latency of its network connec-
tion and the capacity of its buffer.

We use a remote messaging package called S2S to
implement

NetPipe

. (S2S is like Java RMI, but for
Squeak Smalltalk). As shown in Figure 3, a NetPipe’s

InPort

 is remote. The netpipe and its InPort can commu-
nicate through S2S remote messages easily, but rela-
tively slowly. S2S is used to send the connection
messages while the pipeline is being built. After the con-
nection is set up, the

NetPipe

 uses UDP for information
transfer.

Using S2S provides us with access transparency:
the same connection establishment protocol is used for
local and remote connections. However, we do not pro-
vide location transparency: connections between adja-
cent Infopipes must be local, and the

 –>>

 method checks
explicitly that the ports that it is about to connect are co-
located. Without this check, data would still flow
through the pipeline, but the

push

 or

pull

 of each data
item would require a remote method invocation. As well
as being very much less efficient, this would mean that
the application would have no control of network com-
munication.

Figure 4 shows the code for setting up a MIDI
pipeline using a NetPipe. The first two statements obtain
s2s proxies for source and pump objects, lets call them

s

and

p

, that already exist on a remote machine called

MusicStore

. The third statement builds a

NetPipe

 from

MusicStore

 to the local machine. The fifth statement,

"Create some Infopipes"
 source ← SequentialSource new.
 pump ← Pump new.
 multicastTee ← MulticastTee new.
 mixTee ← MixTee new.
 sink ← Sink new.

"Connect them"
 source �>> pump �>> multicastTee.
 (multicastTee outPortAt: #Primary) �>> (mixTee inPortAt: #Primary).
 (multicastTee outPortAt: #Secondary) �>> (mixTee inPortAt: #Secondary).
 mixTee �>> sink.

"Make data items flow."
pump startPumping: 1000.

"result pipeline"

 Figure 2: Building a pipeline with Tees

mixsource pump sinkmcast

Primary Primary

Secondary Secondary

 Figure 3: Working with a NetPipe

a netpipe

a proxy of
the in-port

remote message
passing in S2Sconnection

between Infopipes

machine Bmachine A
data flow
in UDP

the in-port of
the netpipe

4

source

—>>

 pump

—>>

 …,

constructs the pipeline. It is
interesting to see in detail how this is accomplished.

The message

–>>

 is sent to

source

, which is a local
proxy for remote object

s

. S2S translates this into a mes-
sage send to the real object

s

 on

MusicStore

. Moreover,
because the argument,

pump

, is a proxy for

p

, and

p

 is
co-located with

s

, S2S will present

p

 as the argument.
The method for

–>>

 will then execute locally to both the

s

 and

p

, creating a connection with no residual depen-
dencies on the machine that built the pipeline.

A similar thing happens with the

netPipe

.
Although the

netPipe

 itself is local, its

InPort

 is on

MusicStore

. Thus, the connection between

p

 and

netPipe

’s

InPort

 is also on

MusicStore

. Data transmis-
sion between

netPipe

’s

InPort

 and

OutPort

 does of
course traverse the network, but it does

not

 use S2S; it
uses a customized transport that is fully encapsulated in
and controlled by netPipe.

Composite Pipes

An important aspect of component-based systems is the
ability to create new components by aggregating old
ones, and then to use the new components as if they
were primitive. CompositePipes provide this functional-
ity: if aPipelineElement is one element of an intercon-
nected network of InfoPipes, we can create a new
component that encapsulates that network by writing
CompositePipe from: aPipelineElement.

In order to connect to a composite pipe in the same
way as a primitive Infopipe, without clients knowing its
internal structure, a composite pipe must have its own
ports. We call these ports PseudoPorts. The PseudoPorts
are in one-to-one correspondence with, but are distinct
from, the open ports of the sub-components. We cannot
use the same object for the PseudoPort and the real port,
because, for example, the real ports are owned by the
sub-components while the PseudoPorts are owned by

the CompositePipe itself. We use a special type of
pipe—a PseudoPipe—to connect PseudoPorts and their
corresponding real ports. Figure 5 shows the internal
structure of a composite pipe. From the outside, it is just
an ordinary Infopipe with multiple InPorts and multiple
OutPorts. Open ports of different sub-components may
have the same name, but their PseudoPorts must have
different names because the ports of an Infopipe must be
distinguishable.

Summary

We believe that middleware for adaptive streaming
applications should reify communication at the applica-
tion level, rather than hiding it like RPC, or exposing it
in implementation terms. We have designed and proto-
typed InfoPipes to capture this belief, and are experi-
menting using InfoPipes to program multimedia
application. The development of InfoPipes continues,
particularly the refinement of the control interfaces.

References

[1] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed
Systems: Concepts and Design, 3rd edn: Addison-Wesley,
2001.

[2] A. Goel, D. Steere, C. Pu, and J. Walpole, “SwiFT: A
Feedback Control and Dynamic Reconfiguration Toolkit,”
Oregon Graduate Institute, Department of Computer Sci-
ence & Engineering, Beaverton, OR, Technical Report
CSE-98-009, June 1998.

[3] J. Huang, A. P. Black, J. Walpole, and C. Pu, “InfoPipes—
an Abstraction for Information Flow,” to be presented at
Workshop on the Next 700 Distributed Object Systems,
Budapest, Hungary, 2001.

[4] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu,
“Infopipes for Composing Distributed Information
Flows,” Oregon Graduate Institute, Department of Compu-
ter Science, Beaverton, OR, Technical Report CSE-01-
005, May 2001. Submitted as a position paper to this
workshop.

[5] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu,
“Thread Transparency in Information Flow Middleware,”
submitted to IFIP/ACM International Conference on Dis-
tributed Systems Platforms—Middleware 2001, Heidel-
berg, Germany, 2001. Available as OGI TR CSE-01-004.

[6] C. Pu, K. Schwan, and J. Walpole, “Infosphere Project:
System Support for Information Flow Applications,” ACM
SIGMOD Record, 30(1), 2001.

source ← 's2s://MusicStore/source1'
asRemoteOjbect.

pump ← 's2s://MusicStore/pump1' asRemoteObject.
netPipe ← NetPipe from: 's2s://MusicStore/'.
sink ← MIDIPlayer new.
source �>> pump �>> netPipe �>> sink.
monitor ← Monitor monitored: netPipe controlled:

pump.
pump startPumping: 100.
monitor startMonitoring: 1000.
sink startPlaying.

 Figure 4: Code for a streaming MIDI pipeline

pump

pump

pump

pseudo port pseudo pipe

 Figure 5: Internal Structure of a Composite Pipe

