
 1

The Minimal Buffering Requirements of Congestion Controlled
Interactive Multimedia Applications

�

Kang Li1, Charles Krasic1, Jonathan Walpole1, Molly H. Shor2, and Calton Pu3
1
Oregon Graduate Institute, Department of Computer Science and Engineering, { kangli, krasic, walpole} @cse.ogi.edu

2
Oregon State University, Electrical and Engineering Department, { shor@ece.orst.edu}

3
Georgia Institute of Technology, College of Computing, { calton@cc.gatech.edu}

Abstract

This paper uses analysis and experiments to study the minimal buffering requirements of congestion
controlled multimedia applications. Applications in the Internet must use congestion control protocols,
which oscillate rates according to network conditions. To produce a smooth perceptual quality, multimedia
applications use buffering and rate adaptations to compensate rate oscillations. While several adaptation
policies are available, they require different amounts of buffering at end-hosts.

We study the relationship between buffering requirements and adaptation policies. In particular, we focus
on a widely pursued policy that adapts an application’s sending rate exactly to the average available
bandwidth to maximize throughput. Under this adaptation policy, at least a minimal amount of buffering is
required to smooth the rate oscillation inherent in congestion control, and we view this minimal buffering
requirement as a cost of maximizing throughput. We derive the minimal buffering requirement for this
policy assuming that applications use additive-increase-and-multiplicative-decrease (AIMD) algorithm for
congestion control. The result shows the relationship between parameters of AIMD algorithms and the
delay cost. We found that the buffering requirement is proportional to the parameters of AIMD algorithm
and quadratic to the application’s sending rate and round-trip-time; and we verify this relationship
through experiments. Our result indicates that adaptations of maximizing throughput are not suitable for
interactive applications with high rate or long round-trip-time.

1. Introduction
Interactive multimedia applications, such as videoconferencing and IP telephony, are becoming
an important component of the Internet. Unlike traditional broadcast networks used for television
or cable, the modern Internet is highly dynamical and is characterized with rapidly changing
conditions. Applications must use congestion control protocols to react to the dynamics of the
Internet, in order to keep the Internet’s stability [FF99].

TCP is the de-facto standard transport protocol for bulk data transfer in the Internet; however, it
does not work well for interactive multimedia applications. Its retransmissions and drastic rate
adjustments could cause significant delays to applications. In recent years, researchers have
proposed various TCP-friendly congestion control protocols, such as equation-based congestion
control [FHPJ00] and general additive-increase-and-multiplicative-decrease (AIMD) based
congestion control [YL00]. These TCP-friendly congestion control protocols have significantly
improved the performance of multimedia applications over the Internet [RHE99a], and flows of
these protocols interact well with other TCP traffic. However, using TCP-friendly congestion
control reduces but does not remove the oscillations in the transmission rate.

The rate oscillations of congestion control protocols are unavoidable, because of the Internet
dynamics and the nature of congestion control algorithms. The Internet dynamic is a result of the

Θ This work was supported in part by DARPA/ITO under the Information Technology Expeditions, Ubiquitous
Computing, Quorum, and PCES programs, and in part by NSF Grant CCR-9988440 and ECS-9988435.

 2

huge varieties of its applications, their users, and usage patterns [AP99, PKC96]. As a result of
these varieties, the Internet bandwidth share of an application keeps varying with time. In
addition to the Internet dynamics, congestion control protocols have to probe the bandwidth share
for applications, because no information about bandwidth sharing is directly available to
congestion control protocols. The process of probing for bandwidth and reacting to observed
congestion induce oscillations in the achievable transmission rate, and is an integral part of the
nature of all end-to-end congestion management algorithms.

Applications generally use buffering at the receiver side to smooth the oscillations of the data
arriving rate (the network transmission rate), because users of interactive multimedia applications
prefer a smooth playback quality rather than playing back at the network transmission rate. In
addition to buffering, multimedia applications adjust their playback qualities based on the
available transmission rates. This mechanism is known as quality-of-service (QoS) adaptation,
which can be performed to adjust an application’s sending rate (as well as playback rate) in a
number of ways [JE96, KW99, BLM01].

In this paper, we study the buffering requirements of different adaptation policies, which are
application’s ways of estimating the network transmission rate and adjusting its playback rate.
Adaptation policies have significant impacts on the buffering requirements. A sluggish adaptation
that loosely tracks the network transmission rate would require a large amount of buffering to
sustain the application’s playback when the transmission rate goes lower; an aggressive
adaptation tracking the network transmission rate closely requires less buffering.

In particular, we notice a trend of research efforts toward an adaptation policy that tries to fully
utilize the available bandwidth while preserves a smooth playback quality. Several existing
research work [JE96, KWLG01, RHE99b] have designed mechanisms, such as smart buffer
managements and fine-grained adaptations, to push the adaptation toward the direction of
maximizing throughput. These work are mainly in the context of streaming media over the
Internet, with a clear benefit – bandwidth efficiency. Without inspecting the effect of this
adaptation policy, people might think using it for interactive multimedia applications. However,
we believe there is a cost associated with fully utilizing the achievable transmission rate. This
cost is the buffering delay required to smooth the inherent rate oscillations of congestion control
protocols; and depending on an application’s delay constraint, this delay may not be affordable.

In this paper, we derive the minimal buffering required to smooth the inherent rate oscillations of
a congestion control protocol. We assume applications use general AIMD (GAIMD) based
congestion control protocols. GAIMD congestion control protocols use TCP’s AIMD algorithm
but with an arbitrary pair of increase/decrease parameters (α,β). Throughout this paper, we use
AIMD(α,β) to indicate a GAIMD-based congestion-controlled flow with (α,β) as parameters. For
example, TCP’s congestion control uses AIMD(1,1/2).

Our result shows that the minimal buffering requirement is proportional to the increment
parameter α when the AIMD-based congestion control is TCP-friendly1. And more importantly,
the buffering requirement increases quadratically as the increments of its rate and round-trip-time
(RTT). This result indicates that using a small increment parameter can reduce the buffering
requirement, but the effect is limited as rate or RTT increases.

The rest of the paper is organized as follows: in Section 2, we describe the architecture of our
target application, and how it adapts; in Section 3, we describe the general AIMD algorithm, and

1 Appendix A.1 presents the rule of choosing AIMD parameters for TCP-friendliness.

 3

the analytical derivation of buffering requirement; in Section 4, we present the experiment
architecture and results. Section 5 concludes the paper and describes some future work.

2. Buffering and Adaptations
This section presents the structure of our target application and how adaptation and buffering are
used in this application, and then describes the relationships between various adaptation policies
and their minimal buffering requirements.

2.1 Application Structure
Figure 2.1 describes our target application’s structure2. It includes a data source (e.g., a video
camera) and a data sink (e.g., a display) connected through the Internet. The sender side generates
data on the fly and sends data to the congestion control protocol through a buffer. Data is
transmitted over the Internet under the limit of congestion control protocol and is put into a
receiver side buffer. The data sink fetches data from the buffer and presents it to users.

The transmission rate over the Internet oscillates over time. To achieve a stable playback quality
at the data sink, a receiver-side buffering and a sender-side adaptation are used in this structure.
We assume that a constant playback quality of the application maps to a constant bit rate (CBR)3.
Thus, the users’ preference of constant playback quality maps to the preference of a constant
draining rate from the receiver-side buffer.

The receiver delays the start of playback at the data sink side until enough data has been
accumulated in the receiver-side buffer, so that the sink can keep playing even when the network
transmission rate drops below the playback rate. As long as the network transmission rate can
catch up before the receiver-side buffer reaches empty, the user would not perceive any network
rate oscillation. Once the transmission rate is higher than the playback rate, the buffer would start
to fill again.

Determining what data to send and how to fill the buffer is complex. Applications require smart
buffer filling strategies so that all buffered data are useful to compensate network rate drop in the
future. Since the buffer management is not the focus of our work, we simply assume that the
application can fully utilize all the buffered data. Studies of smart buffer managements can be
found in recent research work [KWLG01, RHE99b].

2 We assume the application has only one-way traffic. A typical interactive application usually involves two-way
traffic, which can be divided to two applications with one-way traffic but with tight dependency on each other.
3 In reality, a constant quality could map to a variable bit rate [KW99], which will be more complex but won’ t
invalidate the buffering delay derivation in this work.

C
on

ge
st

io
n

C
on

tr
ol

Se

nd
er

Q
oS

 A
dj

us
tm

en
t

Sender-Side
Buffer

Internet

Figure 2.1: A QoS-Adaptive Application over the Internet

C
on

ge
st

io
n

C
on

tr
ol

R

ec
ei

ve
r

D
at

a
So

ur
ce

D
at

a
Si

nk

Receiver-Side
Buffer

Network Transmission Rate Application Playback Rate

 4

To reduce the buffering requirements, the target application makes QoS adaptation to adjust
sending rate according to the network transmission rate. We assume that the adaptation is fine-
grain layer-based, and the application can adapt its rate closely to the network transmission rate.
Several research work have shown ways of making fine-grained rate adaptations to the available
bandwidth. For example, Jacobs et al. [JE96] adapt encoding parameters according to the
available bandwidth; Krasic et al. [KW99] propose a priority-based encoding mechanism and
make a scalable rate adjustment for video streams; and more recently, Byers et al. apply a fine-
grained rate adaptation [BLM01] to multicast environments.

2.2 Adaptation Policies
For layered-based adaptations, adaptation policies are rules determining when a layer should be
added or removed. Buffering requirements at the receiver side are closely related to how the
application adapts its rate. In this section, we use examples to show this relationship.

Figure 2.2 shows the running scenarios of four adaptation policies with the same saw-tooth shape
transmission rate, which is a typical result of using up to the rate achievable by AIMD-based
congestion control protocols.

Scenario (1) shows an aggressive adaptation policy that closely tracks the network transmission
rate: whenever the instant transmission rate is one layer higher than the current application
sending rate, a layer is added; whenever the instant transmission rate is lower than the current
application sending rate, layers are dropped until the application’s sending rate is equal to or
lower than the network transmission rate. This adaptation policy does not require any receiver
side buffering but results quality variations.

Scenario (2) illustrates a lazy adaptation policy that is opposite to the aggressive one and
produces a very stable playback rate. The policy does not adjust application’s sending rate
according to the available bandwidth in the network. However, it requires to buffer a large

Figure 2.2: Buffering Requirements of Different Backing-off Scenarios

Time

Rate

Playback Rate Network Sending Rate Data Consumed from buffer

Scenario (1) Aggressive Adaptation Scenario (2) Lazy Adaptation

Scenario (3) Conservative Adaptation Scenario (4) Ideal Adaptation

 5

10; <<×←+ ββδ tt WW

amount of data to compensate the rate variations when it chooses a playback rate that is close to
the average network transmission rate.

Scenario (3) shows a conservative adaptation policy that always sends data in a rate lower than or
equal to the lowest transmission rate in the recent history. This policy makes a layer adjustment
decision at every time the congestion control backs off its rate, and the adaptation chooses layers
to have a rate lower than the lowest rate of the recent saw-tooth shape. With this policy,
applications require no receiver-side buffering, and give users a relative stable playback rate.
However, this policy doesn’ t let the application use all the achievable transmission capacity
detected by the congestion control protocols.

Scenario (4) presents an adaptation policy that is called ideal adaptation by us. It is ideal because
we assume it knowing ahead the rate of one saw-tooth in the future. Since it knows one saw-tooth
ahead of the future, it can choose the average of the next saw-tooth as its sending rate. Therefore
it achieves a stable quality (in the next saw-tooth period) and maximizes the throughput. The
buffering requirement by this ideal adaptation policy is the amount of data to smooth one saw-
tooth of the network transmission rate.

2.3 Cost for the Ideal Adaptation
This ideal adaptation might not be a preferred adaptation policy by applications. However, as an
extreme case of adaptations, it exposes the minimal buffering requirement for maximizing the
throughput.

For other “ realistic” policies, if they push the application rate to the upper bound of the network
transmission rate achievable by congestion control protocols, they require at least the same
amount of buffering of using this ideal adaptation. This buffering cost is caused by the
mechanisms that smooth out the inherent rate oscillation in the congestion control protocols. This
buffering is required because the application does not want to oscillate its quality with the rate of
congestion control (such as the rate variations within one saw-tooth). This buffering delay could
be significant depending on the application’s sending rate and round-trip-time. At the time this
buffering delay cost is too much, this “ ideal” adaptation would no longer be ideal to interactive
applications at all. We give a simple derivation for this inherent buffering requirement in Section
3.

3. Buffering Requirement for General AIMD Congestion Control
An AIMD-based congestion control protocol uses a General AIMD algorithm to limit its sending
rate to avoid congesting the network. It is a window-based congestion control protocol, which
uses a congestion window to limit the maximum amount of data sent out by the application within
one round-trip-time.

In this section, we first describe the GAIMD algorithm, and then derive the minimal buffer
requirement to smooth the rate oscillations in AIMD-based congestion control protocols.

3.1 GAIMD Algorithm
GAIMD generalizes TCP’s AIMD algorithm in the following way:

(1) Additive Increase:
 (3.1),

(2) Multiplicative Decrease:

0; >×+←+ αα MSSWW tRTTt

 6

in which Wt is the congestion control’s window size (in bytes) at time t, RTT is the round-trip-
time, and MSS is the packet size4. α and β are parameters of AIMD algorithm, which control the
paces of the additive increase and multiplicative backing off respectively. The rate behavior of
GAIMD algorithm is similar to the saw-tooth shape of TCP congestion control, which uses an
AIMD(1, ½).

3.2 Minimal Buffering Requirement

To determine the buffering requirement for smoothing the rate oscillations, we need to describe
how the rate of AIMD-based protocol evolves along time. Figure 3.1 shows a AIMD flow with a
playback rate R. For an AIMD flow, the achievable rate in a RTT is its window size divided by
the RTT, and the window size evolution of a GAIMD flow is controlled by the algorithm stated in
(3.1): if the window size before a back off is W, the achievable network transmission rate for this
flow periodically varies from β*W / RTT to W/RTT.

With an ideal adaptation, the application playback rate is the average of the achievable
transmission rate:

2/)(
RTT

W

RTT

W
R β+= (3.2),

The application fetch data from the receiver-side buffer in this rate R, but the network delivers
data to the buffer in a rate of the saw-tooth shape. Therefore, the data buffering required to
smooth the rate oscillations in one saw-tooth is equal to the area of triangle ∆abc in Figure 3.1,
which is:

222)
1

1
(

2

1
RTTR

MSS
abc ××

+
−×=∆

β
β

α
 (3.4).

The details of the derivation are in Appendix A.2.

From this simple derivation, we can see the buffering requirement is related to the selection of
AIMD parameters (α,β). More importantly, this buffering requirement is in proportion to the
square of rate and RTT, which is significant for high rate and long RTT applications. This result
indicates that interactive applications might not want to fully utilize all the available bandwidth in
order to avoid this buffering cost.

With the amount of buffering indicated by (3.4), an application will have a stable playback
quality within one saw-tooth period. If the bandwidth share is very stable and saw-tooth shape is
evenly repeated along time, then the application keeps a stable quality all the time and utilizes its
entire bandwidth share.

4 We assume the congestion control protocol uses a constant packet size and a constant RTT.

Figure 3.1: Buffering Requirement of an AIMD-based Congestion Control

t1 t2 t3
Time

Rate

 b

a c

d

e R

W / RTT

β * W / RTT

Playback Rate

Network Transmission Rate

Data Buffering

 7

However, in the Internet, even a relative stable bandwidth share would not produce a regularly
repeated saw-tooth shape. Very often, back-offs come closely to each other for a while, and
spread sparsely for another while. With the ideal adaptation, application changes its playback
quality at every saw-tooth period. If application prefers a more stable playback quality, it should
buffer more data for the rate oscillations caused by closely spaced back-offs.

Figure 3.2 shows an example of two closely spaced back-offs. If an application wants to keep a
stable playback quality when two back-offs happen continuously, the buffering requirement
would be at most be the area of triangle ∆def, which is

222
2

2)
1

21
(

2

1
)21(RTTR

MSS
abcdef ××

+
−+×=∆+=∆
β

ββ
α

β (3.5).

Similar derivations can be applied to the buffering requirement that is used to smooth more than 2
continuous back-offs.

3.3 Buffering Requirement for AIMD-based TCP-friendly Congestion Control Protocols

Early work [FHP00, YL00] have studied how to make AIMD-based congestion control friendly
to other TCP traffic in the Internet. A simplified result from the TCP-friendliness study can be

expressed as a constraint on its α and β parameters:
β
βα

+
−=

1

)1(3
. The derivation is available in

Appendix A.1. With this α and β relationship, we can refine the buffering requirement to smooth
the inherent oscillation of AIMD-based TCP-friendly congestion control as:

22

18
RTTR

MSS
abc ××=∆ α (3.6),

and the buffering requirement to smooth out two continuous backing off as:
2222

18
)

3

9
()21(RTTR

MSS
abcdef ×××

+
−=∆+=∆ α

α
αβ (3.7).

4. Experiments
We make several experiments to verify our derivation of minimal buffering requirements with
various pairs of AIMD parameters. All these experiments are conducted in ns simulator [NS].

We use the simple topology5 shown in Figure 4.1, which has N nodes on each side of a bottleneck
link. The bottleneck link uses RED queue management with ECN [FJ93]. Every pair of nodes
(Si,Ri) corresponds to a flow which is either a ECN enabled AIMD-based flow or a UDP flow.

5 The simulation is available for download at http://www.cse.ogi.edu/~kangli/buffering_delay.html

Figure 3.2: Buffering Requirement for Two Continuous Back-offs

Time

Rate

 e

d a R

W / RTT

β2* W / RTT

β* W / RTT
f

b

c
Playback Rate

Network Transmission Rate

Data Buffering

 8

The number of flows, the bottleneck link bandwidth and its delay are set to different values to
produce various experiment setups. Their values are stated within each experiment.

Each experiment includes two steps. First, we run a non-adaptive infinite source application over
an AIMD flow to monitor the rate available to the flow. Second, after we have the whole trace of
the achievable rate by the AIMD congestion control, we simulate application’s adaptation
behavior with the rate trace as the available bandwidth, and compare the buffering requirement of
different adaptation policies. In this step, we use a simulated adaptive application, which is a fine-
grain layer-encoded application with a rate range of 100Kbps to 1.5Mbps, in constantly spaced
layers of 50Kbps.

4.1 Comparisons of Various Adaptation Policies
The first experiment we conducted is to illustrate the difference of buffering requirements and
bandwidth efficiency for various adaptation policies. In this experiment, the bottleneck link
bandwidth is set to 1Mbps with 40ms delay. To produce regularly behaved saw-tooth rate shape
we run a single AIMD(1,1/2) flow with a 256B packet size. Parallel with this AIMD(1,1/2) flow,
a UDP flow runs through this bottleneck link. We adjust the UDP flow’s rate to control the
available bandwidth of the AIMD(1,1/2) flow. In this experiment, the UDP flow is set to
400Kbps CBR except a short 10 seconds burst to 600Kbps.

For this particular rate trace, we plot the rate behaviors of our simulated layered application.
Figures 4.2 – 4.5 show the application rate together with the network transmission rate for each
adaptation policy. We summarize the result of this experiment in Table 4.1.

Adaptation Policy Minimal Buffer
Requirement

Bandwidth
Efficiency

Number of Quality
Adjustments

Aggressive Adaptation 0 92% 105
Conservative Adaptation 0 58% 5

Lazy Adaptation > 300KB 92% 0
Ideal Adaptation 7.8KB 92% 5

For the buffering requirement, both aggressive and conservative adaptation policies keep the
application’s sending rate lower than the available network transmission rate, thus they don’ t
need any receiver side buffering. The lazy adaptation has a relatively large buffering requirement,
which is related to the length of transmission rate degradation. In this experiment, a 300KB
buffer is about 5 seconds delay for the application. For the ideal adaptation, it requires 7.8KB to
smooth its saw-tooth size, which is about 100ms for the AIMD flow with a 600Kbps sending rate.

Figure 4.1: Basic Experiment Topology

S1

S2

SN

N1 N2

R1

R2

RN

Bottleneck

RED

100Mb/s

100Mb/s

100Mb/s

100Mb/s

Table 4.1: Comparison of Various Adaptation Policies

 9

Any other adaptation policy that maximizes the throughput would experience a delay between the
delays of ideal and lazy adaptation policies.

Besides the buffering requirement, Table 4.1 also summarizes the bandwidth efficiency and
numbers of rate adjustment happened during the experiment period shown in Figures 4.2 – 4.5.
Clearly the conservative adaptation has a relative stable playback quality, but a low bandwidth
efficiency. All the other three policies have a high bandwidth efficiency. The reason of not using
100% bandwidth is that the application is layer-encoded, and its sending rate can only
approximate the available bandwidth with a sum of existing layer rates.

4.2 Buffering Requirements of the Ideal Adaptation Policy
In this experiment, we verify the buffering requirement relationship described by (3.4). We use
only one AIMD flow with a 256B MSS, and one UDP CBR flow. First, we set the bottleneck link
bandwidth to 1.5Mbps with a 40ms one-way delay. We vary the rate of the UDP flow to produce
available bandwidth from 100Kbps to 1.5Mbps for the AIMD flow. We run this experiment 3
times with different AIMD flow parameters: (1,1/2), (1/3, 4/5), and (1/5, 7/8). The measured
buffering requirements are plotted in Figure 4.6. Second, we give a 1.2Mbps available bandwidth

Figure 4.3: Lazy Adaptation

Figure 4.4 Conservative Adaptation Figure 4.5: Ideal Adaptation

Figure 4.2: Aggressive Adaptation

 10

to the AIMD flow and vary the bottleneck propagation delay from 10ms to 120ms. The result of
the buffering requirement versus the RTT is in Figure 4.7.

The experiment result shows AIMD parameters has an effect on the minimal buffering
requirement. For example, a 1Mbps AIMD(1,1/2) flow on a 80ms RTT path requires more than
20KB buffering. This amount of buffering is equivalent to more than 160ms delay for this flow,
which is too large for interactive applications [C96]. Choosing a small AIMD parameter pair
(α,β) is able to reduce the buffering delay experienced by the flow. For example, by using AIMD
(1/5,7/8), the buffering requirement can be reduced to 5KB, which maps to 40ms delay for this
flow.

However, the experiment result also shows the buffering requirement increases quadratically with
rate and RTT, which is problematic for interactive applications with high rate and long RTT. In
Figure 4.6, even with AIMD(1/5,7/8), the buffering delay becomes significant as the application’s
sending rate gets larger.

RTT has a similar effect on the buffering size as flow rate does, but the case is worse because a
large RTT for interactive applications usually corresponds to a small buffering delay budget. For
flows with a small RTT, for example 20ms, the resulted buffering delay is less than 10ms for a
1.2Mbps data rate. This indicates that the required minimal buffering is not significant for
interactive applications on a metropolitan area network or even a WAN between cities not far
away. However, it is problematic for interactive applications across oceans or between coast-to-
coast within a continent (e.g. 80ms RTT in US). For example, for a flow with 100ms RTT and
1.2Mbps data rate, the required buffering delay is about 300ms, which is much more than most
interactive applications can tolerant.

Most of the buffering requirement results in this experiment are smaller than the ones predicted
by (3.4). We believe one reason is that the implementation of AIMD actually increases its rate
sub-linearly rather than linearly, where the derivation of (3.4) assumes that the additive part of
AIMD algorithm behaves linearly.

Even with this sub-linear increment, the buffering requirement is still quadratic to the
application’s rate and RTT. This result confirms our early claim that interactive applications do
not prefer paying the cost of the buffering delay to maximize their throughputs. On the contrary,

Figure 4.6 Rate versus Buffering Figure 4.7 RTT versus Buffering

 11

we believe interactive applications should send in a lower rate than the rate detected by the
congestion control protocols in order to avoid any buffering delay.

5. Conclusion and Future Work
In this paper, we have addressed the minimal buffering requirement of adapting the application
data rate to the average available bandwidth, which maximize the multimedia application’s
throughput. The minimal buffering requirement is used to compensate the rate oscillation of
congestion control protocols. For AIMD-based congestion control protocols, the required
buffering is at least the amount of buffer required to smooth the saw-tooth rate shape.

We derived the relationship between the minimal buffer requirements and congestion control’s
AIMD parameters, application rate, and RTT. Our result indicates that choosing an AIMD-based
TCP-friendly congestion control with a small increment parameter can reduce the buffer
requirement, because the buffer requirement is proportional to the increment parameter. However,
the buffer requirement is also proportional to the square of the application’s sending rate and
round-trip-time. Thus, adapting application sending rate closely to the average available
bandwidth is not a preferable adaptation policy for interactive multimedia applications with high
rate and long RTT.

In this paper, we studied the buffering requirement of AIMD congestion control. Besides AIMD-
based congestion control protocols, several other algorithms like binomial congestion control
[BB01], Equation-based congestion control [FHPJ00], and TCP emulation at receivers (TEAR)
[ROY00] have been proposed to reduce the oscillations in the application sending rate.
Evaluation of the buffering requirements of multimedia applications using these protocols is one
of our future work targets.

Another future work is about the interaction between application adaptation and congestion
control. In this paper, we assume that rate adaptations do not change a flow’s behavior. However,
the bandwidth sharing system in the Internet is dynamic. The reduction in application’s sending
rate could reduce the application’s competition with other traffic. Studying this interaction and
taking its effect into account is another interesting topic that we are studying.

Reference

[AP99] Mark Allman, Vern Paxson. “On Estimating End-to-End Network Path Properties” ,

In Proceeding of SIGCOMM’99, pp. 263-274, 1999.

[BB01] D. Bansal and H. Balakrishnan. “Binomial Congestion Control Algorithms”, In

Proceedings of INFOCOM 2001, April 2001.

[BLM01] John Byers, Michael Luby, and Michael Mitzenmacher. “Fine-Grained Layered

Multicast” , In Proceedings of IEEE INFOCOM 2001, April 2001.

[C96] Stuart Cheshire. “Latency and the Quest for Interactivity” . White paper for the

Synchronous Person-to-Person Interactive Computing Environments Meeting, San
Francisco, November 1996. Available at http://www.stuartcheshire.org

 12

[FF99] Sally Floyd, and Kevin Fall. “Promoting the Use of End-to-End Congestion Control
in the Internet” IEEE/ACM Transactions on Networking, August 1999. Available at
http://www.aciri.org/floyd/papers.html

[FHP00] Sally Floyd, Mark Handley, and Jitendra Padhye. “A comparison of equation-based

congestion control and AIMD-based congestion control.” Under submission.
Available at http://www.aciri.org/tfrc.

[FHPJ00] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer. “Equation-based

Congestion Control for Unicast Applications.” In Proceedings of ACM SIGCOMM
2000, August 2000.

[FJ93] S. Floyd and V. Jacobson, “Random early detection gateways for congestion

avoidance”, IEEE/ACM Transactions on Networking, vol.1, pp.397-413, August
1993.

[JE96] S. Jacobs and A. Eleftheriadis. “Providing Video Services over Networks without

Quality of Sevice Guarantees”. In Proceedings of World Wide Web Consortium
Workshop on Real-time Multimedia and the Web, 1996.

[KW99] Charles Krasic and Jonathan Walpole. "QoS Scalability for Streamed Media

Delivery", OGI CSE Technical Report CSE-99-11, September, 1999

[KWLG01] Charles Krasic, Jonathan Walpole, Kang Li, and Ashvin Goel. “The Case for

Streaming Multimedia with TCP”. Submitted for publication. Available as OGI CSE
Technical Report CSE-01-003, March, 2001.

[NS] ns: UCB/LBNL/VINT Network Simulator (Version 2)
 http://www-mash.cs.berkeley.edu/ns/ns.html

[PKC96] K. Park, G. Kim, and M. Crovella. “On the Relatioinship Between File Sizes,

Transport Protocols and Self-Similar Network Traffic” . In Proceedings of
ICNP’1996.

[RHE99a] R. Rejaie, M. Handley, and D. Estrin. “An End-to-End Rate-Based Congestion

Control Mechanism for Realtime Streams in the Internet” . In Proceedings of IEEE
INFOCOM’99, Mar, 1999.

[RHE99b] R. Rejaie, M. Handley, and D. Estrin. “Quality Adaptation for Congestion Controlled

Video Playback over the Internet” . In Proceedings of SIGCOMM’99, Oct., 1999.

[ROY00] Injong Rhee, Volkan Ozdemir, and Yung Yi. “TEAR: TCP emulation at receivers -

flow control for multimedia streaming”. Technical Report Draft available at
http://www.csc.ncsu.edu/eos/users/r/rhee/WWW/export/tear_page

[YL00] Yang Yang, and Simon Lam. “General AIMD Congestion Control” In Proceedings

of ICNP 2000, Osaka, Japan, Nov 2000.

 13

Appendix

A.1 Average Throughput of a GAIMD Congestion Control

For a flow that uses GAIMD algorithm described in (3.1), we can estimate its throughput given
its packet loss probability p.

Figure A.1 illustrates the flow’s rate oscillations along the time, assuming the flow’s packet
losses are evenly distributed along the time. Because of these periodic packet losses, the flow’s
congestion window shows a saw-tooth pattern. We assume the flow’s congestion window size
reaches W upon the arriving of every packet loss event, and backing off to βW after the event.
Thus, the flow’s rate keeps oscillating between W/RTT and βW/RTT.

Since a GAIMD flow increase its window size by α*MSS per RTT, the time for the flow’s
congestion window increasing from βW to W can be derived by:

RTT
MSS

W
tt

α
β)1(

12

−=− (A.1).

The total amount of data sent out during this time (t2-t1) is indicated by the area of the shaded
region abcd, which can be derived as:

2
2

2

1
...)2()()(W

MSS
WMSSWMSSWWabcdArea

α
βαβαββ −=++++++= (A.2).

Since one packet of every Area(abcd)/MSS amount of packets is lost and the packet loss
probability is p, we can have

2
2

2

2

1)(1
W

MSSMSS

abcdArea

p α
β−== (A.3).

Thus, we have

p

MSS

W

×
−

=
)1(

2
2β

α

 (A.4).

Finally, the average throughput of the flow can be derived by:

pRTT

MSS

RTT

W

tt

abcdArea
R ×

−
+×=+=

−
=

β
βαβ

1

1

22

)1()(

12

 (A.5).

For TCP with AIMD parameter α=1 and β=½, its throughput can be expressed as

Rate

Time
 b

Transmission Rate

 a

 c

d W / RTT

β * W / RTT

t1 t2

Figure A.1: Throughput Derivation for an AIMD flow

 14

pRTT

MSS
R

×= 2/3
 (A.6)

If an GAIMD flow wants to have the same average throughput as TCP when they share the same
RTT, packet size MSS, and packet losses rate p, the GAIMD flow’s α and β parameters have to
satisfy the following equations:

2

3

)1(

)1(

2
=

−
+×

β
βα

 (A.7),

which can be further simplified as

β
βα

+
−=

1

)1(3
 (A.8).

A.2 Buffer Requirement of a GAIMD Congestion Control
The rate of a GAIMD flow varies because of its way probing bandwidth and making congestion
avoidance. Once the transmission rate is lower than the receiver play out rate, users will perceive
the transmission rate oscillations unless there is receiver side data buffering. Receiver side
buffering is a popular way to tolerant this rate oscillation. The amount of receiver-side buffering
is needed for the transmission rate to catch up the playing out rate.

Figure 3.1 shows a GAIMD flow with a playing out rate R. We assume the GAIMD flow’s
transmission rate periodically varies from β * W / RTT to W/RTT.

Since the playing out rate can not be higher than the average the transmission rate, (Otherwise, it
will run out the receiver side buffer), the playing out rate is limited by:

2/)(
RTT

W

RTT

W
R β+= (A.9).

With this playing out rate, the required data buffering size to avoid receiver side buffer underflow
is equal to the area of triangle abc in Figure 3.1, which is:

2
2

12 8

)1(
]

2

1
][

2

)1(
[

2

1
]][[

2

1
W

MSSRTT

W

RTT

W
RTT

MSS

W

RTT

W
Rttabc

α
βββ

α
ββ −=−×+−=−−=∆ (A.10).

Since playback rate R is equal to the average of the transmission rate, we have

RTTRW ×
+

=
β1

2
, and the receiver-side buffering is

222)
1

1
(

2

1
RTTR

MSS
abc ××

+
−×=∆

β
β

α
 (A.11).

