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Abstract 
 
This paper uses analysis and experiments to study the minimal buffering requirements of congestion 
controlled multimedia applications. Applications in the Internet must use congestion control protocols, 
which oscillate rates according to network conditions. To produce a smooth perceptual quality, multimedia 
applications use buffering and rate adaptations to compensate rate oscillations. While several adaptation 
policies are available, they require different amounts of buffering at end-hosts. 
 
We study the relationship between buffering requirements and adaptation policies. In particular, we focus 
on a widely pursued policy that adapts an application’s sending rate exactly to the average available 
bandwidth to maximize throughput. Under this adaptation policy, at least a minimal amount of buffering is 
required to smooth the rate oscillation inherent in congestion control, and we view this minimal buffering 
requirement as a cost of maximizing throughput. We derive the minimal buffering requirement for this 
policy assuming that applications use additive-increase-and-multiplicative-decrease (AIMD) algorithm for 
congestion control. The result shows the relationship between parameters of AIMD algorithms and the 
delay cost. We found that the buffering requirement is proportional to the parameters of AIMD algorithm 
and quadratic to the application’s sending rate and round-trip-time; and we verify this relationship 
through experiments. Our result indicates that adaptations of maximizing throughput are not suitable for 
interactive applications with high rate or long round-trip-time.  
 

1. Introduction 
Interactive multimedia applications, such as videoconferencing and IP telephony, are becoming 
an important component of the Internet. Unlike traditional broadcast networks used for television 
or cable, the modern Internet is highly dynamical and is characterized with rapidly changing 
conditions. Applications must use congestion control protocols to react to the dynamics of the 
Internet, in order to keep the Internet’s stability [FF99]. 
 
TCP is the de-facto standard transport protocol for bulk data transfer in the Internet; however, it 
does not work well for interactive multimedia applications. Its retransmissions and drastic rate 
adjustments could cause significant delays to applications. In recent years, researchers have 
proposed various TCP-friendly congestion control protocols, such as equation-based congestion 
control [FHPJ00] and general additive-increase-and-multiplicative-decrease (AIMD) based 
congestion control [YL00]. These TCP-friendly congestion control protocols have significantly 
improved the performance of multimedia applications over the Internet [RHE99a], and flows of 
these protocols interact well with other TCP traffic. However, using TCP-friendly congestion 
control reduces but does not remove the oscillations in the transmission rate. 
 
The rate oscillations of congestion control protocols are unavoidable, because of the Internet 
dynamics and the nature of congestion control algorithms. The Internet dynamic is a result of the 
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huge varieties of its applications, their users, and usage patterns [AP99, PKC96]. As a result of 
these varieties, the Internet bandwidth share of an application keeps varying with time. In 
addition to the Internet dynamics, congestion control protocols have to probe the bandwidth share 
for applications, because no information about bandwidth sharing is directly available to 
congestion control protocols. The process of probing for bandwidth and reacting to observed 
congestion induce oscillations in the achievable transmission rate, and is an integral part of the 
nature of all end-to-end congestion management algorithms. 
 
Applications generally use buffering at the receiver side to smooth the oscillations of the data 
arriving rate (the network transmission rate), because users of interactive multimedia applications 
prefer a smooth playback quality rather than playing back at the network transmission rate. In 
addition to buffering, multimedia applications adjust their playback qualities based on the 
available transmission rates. This mechanism is known as quality-of-service (QoS) adaptation, 
which can be performed to adjust an application’s sending rate (as well as playback rate) in a 
number of ways [JE96, KW99, BLM01].  
 
In this paper, we study the buffering requirements of different adaptation policies, which are 
application’s ways of estimating the network transmission rate and adjusting its playback rate. 
Adaptation policies have significant impacts on the buffering requirements. A sluggish adaptation 
that loosely tracks the network transmission rate would require a large amount of buffering to 
sustain the application’s playback when the transmission rate goes lower; an aggressive 
adaptation tracking the network transmission rate closely requires less buffering. 
 
In particular, we notice a trend of research efforts toward an adaptation policy that tries to fully 
utilize the available bandwidth while preserves a smooth playback quality. Several existing 
research work [JE96, KWLG01, RHE99b] have designed mechanisms, such as smart buffer 
managements and fine-grained adaptations, to push the adaptation toward the direction of 
maximizing throughput. These work are mainly in the context of streaming media over the 
Internet, with a clear benefit – bandwidth efficiency. Without inspecting the effect of this 
adaptation policy, people might think using it for interactive multimedia applications. However, 
we believe there is a cost associated with fully utilizing the achievable transmission rate. This 
cost is the buffering delay required to smooth the inherent rate oscillations of congestion control 
protocols; and depending on an application’s delay constraint, this delay may not be affordable. 
 
In this paper, we derive the minimal buffering required to smooth the inherent rate oscillations of 
a congestion control protocol. We assume applications use general AIMD (GAIMD) based 
congestion control protocols. GAIMD congestion control protocols use TCP’s AIMD algorithm 
but with an arbitrary pair of increase/decrease parameters (α,β). Throughout this paper, we use 
AIMD(α,β) to indicate a GAIMD-based congestion-controlled flow with (α,β) as parameters. For 
example, TCP’s congestion control uses AIMD(1,1/2). 
 
Our result shows that the minimal buffering requirement is proportional to the increment 
parameter α when the AIMD-based congestion control is TCP-friendly1. And more importantly, 
the buffering requirement increases quadratically as the increments of its rate and round-trip-time 
(RTT). This result indicates that using a small increment parameter can reduce the buffering 
requirement, but the effect is limited as rate or RTT increases.  
 
The rest of the paper is organized as follows: in Section 2, we describe the architecture of our 
target application, and how it adapts; in Section 3, we describe the general AIMD algorithm, and 
                                                
1 Appendix A.1 presents the rule of choosing AIMD parameters for TCP-friendliness. 
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the analytical derivation of buffering requirement; in Section 4, we present the experiment 
architecture and results. Section 5 concludes the paper and describes some future work. 

2. Buffering and Adaptations 
This section presents the structure of our target application and how adaptation and buffering are 
used in this application, and then describes the relationships between various adaptation policies 
and their minimal buffering requirements. 

2.1 Application Structure 
Figure 2.1 describes our target application’s structure2. It includes a data source (e.g., a video 
camera) and a data sink (e.g., a display) connected through the Internet. The sender side generates 
data on the fly and sends data to the congestion control protocol through a buffer. Data is 
transmitted over the Internet under the limit of congestion control protocol and is put into a 
receiver side buffer. The data sink fetches data from the buffer and presents it to users. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The transmission rate over the Internet oscillates over time. To achieve a stable playback quality 
at the data sink, a receiver-side buffering and a sender-side adaptation are used in this structure. 
We assume that a constant playback quality of the application maps to a constant bit rate (CBR)3. 
Thus, the users’  preference of constant playback quality maps to the preference of a constant 
draining rate from the receiver-side buffer. 
  
The receiver delays the start of playback at the data sink side until enough data has been 
accumulated in the receiver-side buffer, so that the sink can keep playing even when the network 
transmission rate drops below the playback rate. As long as the network transmission rate can 
catch up before the receiver-side buffer reaches empty, the user would not perceive any network 
rate oscillation. Once the transmission rate is higher than the playback rate, the buffer would start 
to fill again.  
 
Determining what data to send and how to fill the buffer is complex. Applications require smart 
buffer filling strategies so that all buffered data are useful to compensate network rate drop in the 
future. Since the buffer management is not the focus of our work, we simply assume that the 
application can fully utilize all the buffered data. Studies of smart buffer managements can be 
found in recent research work [KWLG01, RHE99b]. 

                                                
2 We assume the application has only one-way traffic. A typical interactive application usually involves two-way 
traffic, which can be divided to two applications with one-way traffic but with tight dependency on each other.  
3 In reality, a constant quality could map to a variable bit rate [KW99], which will be more complex but won’ t 
invalidate the buffering delay derivation in this work.  
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Figure 2.1: A QoS-Adaptive Application over the Internet 
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To reduce the buffering requirements, the target application makes QoS adaptation to adjust 
sending rate according to the network transmission rate. We assume that the adaptation is fine-
grain layer-based, and the application can adapt its rate closely to the network transmission rate. 
Several research work have shown ways of making fine-grained rate adaptations to the available 
bandwidth. For example, Jacobs et al. [JE96] adapt encoding parameters according to the 
available bandwidth; Krasic et al. [KW99] propose a priority-based encoding mechanism and 
make a scalable rate adjustment for video streams; and more recently, Byers et al. apply a fine-
grained rate adaptation [BLM01] to multicast environments.  

2.2 Adaptation Policies 
For layered-based adaptations, adaptation policies are rules determining when a layer should be 
added or removed. Buffering requirements at the receiver side are closely related to how the 
application adapts its rate. In this section, we use examples to show this relationship.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 shows the running scenarios of four adaptation policies with the same saw-tooth shape 
transmission rate, which is a typical result of using up to the rate achievable by AIMD-based 
congestion control protocols.  
 
Scenario (1) shows an aggressive adaptation policy that closely tracks the network transmission 
rate: whenever the instant transmission rate is one layer higher than the current application 
sending rate, a layer is added; whenever the instant transmission rate is lower than the current 
application sending rate, layers are dropped until the application’s sending rate is equal to or 
lower than the network transmission rate. This adaptation policy does not require any receiver 
side buffering but results quality variations.  
 
Scenario (2) illustrates a lazy adaptation policy that is opposite to the aggressive one and 
produces a very stable playback rate. The policy does not adjust application’s sending rate 
according to the available bandwidth in the network. However, it requires to buffer a large 

Figure 2.2: Buffering Requirements of Different Backing-off Scenarios 

Time 

Rate 

Playback Rate Network Sending Rate Data Consumed from buffer 

Scenario (1) Aggressive Adaptation Scenario (2) Lazy Adaptation 

Scenario (3) Conservative Adaptation Scenario (4) Ideal Adaptation 
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amount of data to compensate the rate variations when it chooses a playback rate that is close to 
the average network transmission rate.  
 
Scenario (3) shows a conservative adaptation policy that always sends data in a rate lower than or 
equal to the lowest transmission rate in the recent history. This policy makes a layer adjustment 
decision at every time the congestion control backs off its rate, and the adaptation chooses layers 
to have a rate lower than the lowest rate of the recent saw-tooth shape. With this policy, 
applications require no receiver-side buffering, and give users a relative stable playback rate. 
However, this policy doesn’ t let the application use all the achievable transmission capacity 
detected by the congestion control protocols.  
 
Scenario (4) presents an adaptation policy that is called ideal adaptation by us. It is ideal because 
we assume it knowing ahead the rate of one saw-tooth in the future. Since it knows one saw-tooth 
ahead of the future, it can choose the average of the next saw-tooth as its sending rate. Therefore 
it achieves a stable quality (in the next saw-tooth period) and maximizes the throughput. The 
buffering requirement by this ideal adaptation policy is the amount of data to smooth one saw-
tooth of the network transmission rate. 

2.3 Cost for the Ideal Adaptation  
This ideal adaptation might not be a preferred adaptation policy by applications. However, as an 
extreme case of adaptations, it exposes the minimal buffering requirement for maximizing the 
throughput.  
 
For other “ realistic”  policies, if they push the application rate to the upper bound of the network 
transmission rate achievable by congestion control protocols, they require at least the same 
amount of buffering of using this ideal adaptation. This buffering cost is caused by the 
mechanisms that smooth out the inherent rate oscillation in the congestion control protocols. This 
buffering is required because the application does not want to oscillate its quality with the rate of 
congestion control (such as the rate variations within one saw-tooth). This buffering delay could 
be significant depending on the application’s sending rate and round-trip-time. At the time this 
buffering delay cost is too much, this “ ideal”  adaptation would no longer be ideal to interactive 
applications at all. We give a simple derivation for this inherent buffering requirement in Section 
3. 
 

3. Buffering Requirement for General AIMD Congestion Control 
An AIMD-based congestion control protocol uses a General AIMD algorithm to limit its sending 
rate to avoid congesting the network. It is a window-based congestion control protocol, which 
uses a congestion window to limit the maximum amount of data sent out by the application within 
one round-trip-time. 
 
In this section, we first describe the GAIMD algorithm, and then derive the minimal buffer 
requirement to smooth the rate oscillations in AIMD-based congestion control protocols. 

3.1 GAIMD Algorithm 
GAIMD generalizes TCP’s AIMD algorithm in the following way: 
 

(1) Additive Increase:   
 (3.1), 

(2) Multiplicative Decrease:  

0; >×+←+ αα MSSWW tRTTt
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in which Wt is the congestion control’s window size (in bytes) at time t, RTT is the round-trip-
time, and MSS is the packet size4. α and β are parameters of AIMD algorithm, which control the 
paces of the additive increase and multiplicative backing off respectively. The rate behavior of 
GAIMD algorithm is similar to the saw-tooth shape of TCP congestion control, which uses an 
AIMD(1, ½). 

3.2 Minimal Buffering Requirement 
 
 
 
 
 
 
 
 
 
 
 
To determine the buffering requirement for smoothing the rate oscillations, we need to describe 
how the rate of AIMD-based protocol evolves along time. Figure 3.1 shows a AIMD flow with a 
playback rate R. For an AIMD flow, the achievable rate in a RTT is its window size divided by 
the RTT, and the window size evolution of a GAIMD flow is controlled by the algorithm stated in 
(3.1): if the window size before a back off is W, the achievable network transmission rate for this 
flow periodically varies from β*W / RTT to W/RTT. 
 
With an ideal adaptation, the application playback rate is the average of the achievable 
transmission rate: 

2/)(
RTT

W

RTT

W
R β+=  (3.2), 

The application fetch data from the receiver-side buffer in this rate R, but the network delivers 
data to the buffer in a rate of the saw-tooth shape. Therefore, the data buffering required to 
smooth the rate oscillations in one saw-tooth is equal to the area of triangle ∆abc in Figure 3.1, 
which is: 

222)
1

1
(

2

1
RTTR

MSS
abc ××

+
−×=∆

β
β

α
 (3.4). 

The details of the derivation are in Appendix A.2. 
 
From this simple derivation, we can see the buffering requirement is related to the selection of 
AIMD parameters (α,β). More importantly, this buffering requirement is in proportion to the 
square of rate and RTT, which is significant for high rate and long RTT applications. This result 
indicates that interactive applications might not want to fully utilize all the available bandwidth in 
order to avoid this buffering cost. 
 
With the amount of buffering indicated by (3.4), an application will have a stable playback 
quality within one saw-tooth period. If the bandwidth share is very stable and saw-tooth shape is 
evenly repeated along time, then the application keeps a stable quality all the time and utilizes its 
entire bandwidth share.  
                                                
4 We assume the congestion control protocol uses a constant packet size and a constant RTT. 

Figure 3.1: Buffering Requirement of an AIMD-based Congestion Control 
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However, in the Internet, even a relative stable bandwidth share would not produce a regularly 
repeated saw-tooth shape. Very often, back-offs come closely to each other for a while, and 
spread sparsely for another while. With the ideal adaptation, application changes its playback 
quality at every saw-tooth period. If application prefers a more stable playback quality, it should 
buffer more data for the rate oscillations caused by closely spaced back-offs. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 shows an example of two closely spaced back-offs. If an application wants to keep a 
stable playback quality when two back-offs happen continuously, the buffering requirement 
would be at most be the area of triangle ∆def, which is 

222
2

2 )
1

21
(

2

1
)21( RTTR

MSS
abcdef ××

+
−+×=∆+=∆
β

ββ
α

β   (3.5). 

Similar derivations can be applied to the buffering requirement that is used to smooth more than 2 
continuous back-offs. 

3.3 Buffering Requirement for AIMD-based TCP-friendly Congestion Control Protocols 
 
Early work [FHP00, YL00] have studied how to make AIMD-based congestion control friendly 
to other TCP traffic in the Internet. A simplified result from the TCP-friendliness study can be 

expressed as a constraint on its α and β parameters: 
β
βα

+
−=

1

)1(3
. The derivation is available in 

Appendix A.1. With this α and β relationship, we can refine the buffering requirement to smooth 
the inherent oscillation of AIMD-based TCP-friendly congestion control as: 

22

18
RTTR

MSS
abc ××=∆ α   (3.6), 

and the buffering requirement to smooth out two continuous backing off as: 
2222

18
)

3

9
()21( RTTR

MSS
abcdef ×××

+
−=∆+=∆ α

α
αβ  (3.7). 

 

4. Experiments 
We make several experiments to verify our derivation of minimal buffering requirements with 
various pairs of AIMD parameters. All these experiments are conducted in ns simulator [NS]. 
 
We use the simple topology5 shown in Figure 4.1, which has N nodes on each side of a bottleneck 
link. The bottleneck link uses RED queue management with ECN [FJ93]. Every pair of nodes 
(Si,Ri) corresponds to a flow which is either a ECN enabled AIMD-based flow or a UDP flow. 
                                                
5 The simulation is available for download at http://www.cse.ogi.edu/~kangli/buffering_delay.html 

Figure 3.2: Buffering Requirement for Two Continuous Back-offs 
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The number of flows, the bottleneck link bandwidth and its delay are set to different values to 
produce various experiment setups. Their values are stated within each experiment. 
 
Each experiment includes two steps. First, we run a non-adaptive infinite source application over 
an AIMD flow to monitor the rate available to the flow. Second, after we have the whole trace of 
the achievable rate by the AIMD congestion control, we simulate application’s adaptation 
behavior with the rate trace as the available bandwidth, and compare the buffering requirement of 
different adaptation policies. In this step, we use a simulated adaptive application, which is a fine-
grain layer-encoded application with a rate range of 100Kbps to 1.5Mbps, in constantly spaced 
layers of 50Kbps.  
 
 
 
 
 
 
 
 
 
 
 

4.1 Comparisons of Various Adaptation Policies 
The first experiment we conducted is to illustrate the difference of buffering requirements and 
bandwidth efficiency for various adaptation policies. In this experiment, the bottleneck link 
bandwidth is set to 1Mbps with 40ms delay. To produce regularly behaved saw-tooth rate shape 
we run a single AIMD(1,1/2) flow with a 256B packet size. Parallel with this AIMD(1,1/2) flow, 
a UDP flow runs through this bottleneck link. We adjust the UDP flow’s rate to control the 
available bandwidth of the AIMD(1,1/2) flow. In this experiment, the UDP flow is set to 
400Kbps CBR except a short 10 seconds burst to 600Kbps.  
 
For this particular rate trace, we plot the rate behaviors of our simulated layered application. 
Figures 4.2 – 4.5 show the application rate together with the network transmission rate for each 
adaptation policy. We summarize the result of this experiment in Table 4.1.  
 
 

Adaptation Policy Minimal Buffer 
Requirement 

Bandwidth 
Efficiency 

Number of Quality 
Adjustments 

Aggressive Adaptation 0 92% 105 
Conservative Adaptation 0 58% 5 

Lazy Adaptation > 300KB 92% 0 
Ideal Adaptation 7.8KB 92% 5 

 
For the buffering requirement, both aggressive and conservative adaptation policies keep the 
application’s sending rate lower than the available network transmission rate, thus they don’ t 
need any receiver side buffering. The lazy adaptation has a relatively large buffering requirement, 
which is related to the length of transmission rate degradation.  In this experiment, a 300KB 
buffer is about 5 seconds delay for the application. For the ideal adaptation, it requires 7.8KB to 
smooth its saw-tooth size, which is about 100ms for the AIMD flow with a 600Kbps sending rate. 

Figure 4.1: Basic Experiment Topology 
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Table 4.1: Comparison of Various Adaptation Policies 
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Any other adaptation policy that maximizes the throughput would experience a delay between the 
delays of ideal and lazy adaptation policies. 
 
Besides the buffering requirement, Table 4.1 also summarizes the bandwidth efficiency and 
numbers of rate adjustment happened during the experiment period shown in Figures 4.2 – 4.5. 
Clearly the conservative adaptation has a relative stable playback quality, but a low bandwidth 
efficiency. All the other three policies have a high bandwidth efficiency. The reason of not using 
100% bandwidth is that the application is layer-encoded, and its sending rate can only 
approximate the available bandwidth with a sum of existing layer rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Buffering Requirements of the Ideal Adaptation Policy  
In this experiment, we verify the buffering requirement relationship described by (3.4). We use 
only one AIMD flow with a 256B MSS, and one UDP CBR flow. First, we set the bottleneck link 
bandwidth to 1.5Mbps with a 40ms one-way delay. We vary the rate of the UDP flow to produce 
available bandwidth from 100Kbps to 1.5Mbps for the AIMD flow.  We run this experiment 3 
times with different AIMD flow parameters: (1,1/2), (1/3, 4/5), and (1/5, 7/8). The measured 
buffering requirements are plotted in Figure 4.6. Second, we give a 1.2Mbps available bandwidth 

Figure 4.3: Lazy Adaptation  

Figure 4.4 Conservative Adaptation Figure 4.5: Ideal Adaptation 

Figure 4.2: Aggressive Adaptation  
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to the AIMD flow and vary the bottleneck propagation delay from 10ms to 120ms. The result of 
the buffering requirement versus the RTT is in Figure 4.7. 
 
The experiment result shows AIMD parameters has an effect on the minimal buffering 
requirement. For example, a 1Mbps AIMD(1,1/2) flow on a 80ms RTT path requires more than 
20KB buffering. This amount of buffering is equivalent to more than 160ms delay for this flow, 
which is too large for interactive applications [C96]. Choosing a small AIMD parameter pair 
(α,β) is able to reduce the buffering delay experienced by the flow. For example, by using AIMD 
(1/5,7/8), the buffering requirement can be reduced to 5KB, which maps to 40ms delay for this 
flow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the experiment result also shows the buffering requirement increases quadratically with 
rate and RTT, which is problematic for interactive applications with high rate and long RTT. In 
Figure 4.6, even with AIMD(1/5,7/8), the buffering delay becomes significant as the application’s 
sending rate gets larger.  
 
RTT has a similar effect on the buffering size as flow rate does, but the case is worse because a 
large RTT for interactive applications usually corresponds to a small buffering delay budget. For 
flows with a small RTT, for example 20ms, the resulted buffering delay is less than 10ms for a 
1.2Mbps data rate. This indicates that the required minimal buffering is not significant for 
interactive applications on a metropolitan area network or even a WAN between cities not far 
away. However, it is problematic for interactive applications across oceans or between coast-to-
coast within a continent (e.g. 80ms RTT in US). For example, for a flow with 100ms RTT and 
1.2Mbps data rate, the required buffering delay is about 300ms, which is much more than most 
interactive applications can tolerant. 
 
Most of the buffering requirement results in this experiment are smaller than the ones predicted 
by (3.4). We believe one reason is that the implementation of AIMD actually increases its rate 
sub-linearly rather than linearly, where the derivation of (3.4) assumes that the additive part of 
AIMD algorithm behaves linearly.  
 
Even with this sub-linear increment, the buffering requirement is still quadratic to the 
application’s rate and RTT. This result confirms our early claim that interactive applications do 
not prefer paying the cost of the buffering delay to maximize their throughputs. On the contrary, 

Figure 4.6 Rate versus Buffering Figure 4.7 RTT versus Buffering 
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we believe interactive applications should send in a lower rate than the rate detected by the 
congestion control protocols in order to avoid any buffering delay. 

5. Conclusion and Future Work 
In this paper, we have addressed the minimal buffering requirement of adapting the application 
data rate to the average available bandwidth, which maximize the multimedia application’s 
throughput. The minimal buffering requirement is used to compensate the rate oscillation of 
congestion control protocols. For AIMD-based congestion control protocols, the required 
buffering is at least the amount of buffer required to smooth the saw-tooth rate shape. 
 
We derived the relationship between the minimal buffer requirements and congestion control’s 
AIMD parameters, application rate, and RTT. Our result indicates that choosing an AIMD-based 
TCP-friendly congestion control with a small increment parameter can reduce the buffer 
requirement, because the buffer requirement is proportional to the increment parameter. However, 
the buffer requirement is also proportional to the square of the application’s sending rate and 
round-trip-time. Thus, adapting application sending rate closely to the average available 
bandwidth is not a preferable adaptation policy for interactive multimedia applications with high 
rate and long RTT. 
 
In this paper, we studied the buffering requirement of AIMD congestion control. Besides AIMD-
based congestion control protocols, several other algorithms like binomial congestion control 
[BB01], Equation-based congestion control [FHPJ00], and TCP emulation at receivers (TEAR) 
[ROY00] have been proposed to reduce the oscillations in the application sending rate. 
Evaluation of the buffering requirements of multimedia applications using these protocols is one 
of our future work targets. 
 
Another future work is about the interaction between application adaptation and congestion 
control. In this paper, we assume that rate adaptations do not change a flow’s behavior. However, 
the bandwidth sharing system in the Internet is dynamic. The reduction in application’s sending 
rate could reduce the application’s competition with other traffic. Studying this interaction and 
taking its effect into account is another interesting topic that we are studying. 
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Appendix 

A.1 Average Throughput of a GAIMD Congestion Control 
 
For a flow that uses GAIMD algorithm described in (3.1), we can estimate its throughput given 
its packet loss probability p.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.1 illustrates the flow’s rate oscillations along the time, assuming the flow’s packet 
losses are evenly distributed along the time. Because of these periodic packet losses, the flow’s 
congestion window shows a saw-tooth pattern. We assume the flow’s congestion window size 
reaches W upon the arriving of every packet loss event, and backing off to βW after the event. 
Thus, the flow’s rate keeps oscillating between W/RTT and βW/RTT.  
 
Since a GAIMD flow increase its window size by α*MSS per RTT, the time for the flow’s 
congestion window increasing from βW to W can be derived by: 

RTT
MSS

W
tt

α
β )1(

12

−=−   (A.1). 

The total amount of data sent out during this time (t2-t1) is indicated by the area of the shaded 
region abcd, which can be derived as: 

2
2

2

1
...)2()()( W

MSS
WMSSWMSSWWabcdArea

α
βαβαββ −=++++++=  (A.2). 

Since one packet of every Area(abcd)/MSS amount of packets is lost and the packet loss 
probability is p, we can have 

2
2

2
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1)(1
W

MSSMSS

abcdArea

p α
β−==   (A.3). 

Thus, we have  

p

MSS

W

×
−

=
)1(

2
2β

α

    (A.4). 

Finally, the average throughput of the flow can be derived by: 

pRTT

MSS

RTT

W

tt

abcdArea
R ×

−
+×=+=

−
=

β
βαβ

1

1

22

)1()(

12

   (A.5). 

For TCP with AIMD parameter α=1 and β=½, its throughput can be expressed as 

Rate 

Time 
 b 

Transmission Rate 

 a 

 c 

d W / RTT 

β *  W / RTT 

t1 t2 

Figure A.1:  Throughput Derivation for an AIMD flow 
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pRTT

MSS
R

×= 2/3
   (A.6) 

If an GAIMD flow wants to have the same average throughput as TCP when they share the same 
RTT, packet size MSS, and packet losses rate p, the GAIMD flow’s α and β parameters have to 
satisfy the following equations: 

2

3

)1(

)1(

2
=

−
+×

β
βα

   (A.7), 

which can be further simplified as  

β
βα

+
−=

1

)1(3
   (A.8). 

A.2 Buffer Requirement of a GAIMD Congestion Control 
The rate of a GAIMD flow varies because of its way probing bandwidth and making congestion 
avoidance. Once the transmission rate is lower than the receiver play out rate, users will perceive 
the transmission rate oscillations unless there is receiver side data buffering. Receiver side 
buffering is a popular way to tolerant this rate oscillation. The amount of receiver-side buffering 
is needed for the transmission rate to catch up the playing out rate.  
 
Figure 3.1 shows a GAIMD flow with a playing out rate R. We assume the GAIMD flow’s 
transmission rate periodically varies from β * W / RTT to W/RTT.  
 
Since the playing out rate can not be higher than the average the transmission rate, (Otherwise, it 
will run out the receiver side buffer), the playing out rate is limited by: 

2/)(
RTT

W

RTT

W
R β+=    (A.9). 

With this playing out rate, the required data buffering size to avoid receiver side buffer underflow 
is equal to the area of triangle abc in Figure 3.1, which is: 
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Since playback rate R is equal to the average of the transmission rate, we have 

RTTRW ×
+

=
β1

2
, and the receiver-side buffering is 
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