
Supporting Low Latency TCP-Based Media Streams

Ashvin Goel Charles Krasic Kang Li Jonathan Walpole

Oregon Graduate Institute, Portland

{ashvin,krasic,kangli,walpole}@cse.ogi.edu

Abstract

The dominance of the TCP protocol on the Internet and

its success in maintaining Internet stability has led to sev-

eral TCP-based stored media-streaming approaches. The

success of these approaches raises the question whether

TCP can be used for low-latency streaming. Low latency

streaming allows responsive control operations for media

streaming and can make interactive applications feasible.

We examined adapting the TCP send buffer size based on

TCP’s congestion window to reduce application perceived

network latency. Our results show that this simple idea

significantly improves the number of packets that can be

delivered within 200 ms and 500 ms thresholds.

1 Introduction

Traditionally, the multimedia community has considered

TCP unsuitable for streaming audio and video data. The

main issues raised against TCP-based streaming have

been related to congestion control and packet retrans-

missions. TCP congestion control is designed to probe

available bandwidth through deliberate manipulation of

the transmission rate. This rate variation can impede ef-

fective streaming because the streaming requirements are

not necessarily matched with the transmission rate, caus-

ing either data dropping or accumulation of buffered data

and thus delay. In addition, congestion control can lead

to sustained or long-term reduction in rate.

TCP uses packet retransmissions to provide in-order,

lossless packet delivery. Packet retransmissions can po-

tentially introduce unacceptable end-to-end latency and

thus re-sending media data may not be appropriate be-

cause it would arrive too late for display at the receiver.

Recently, several approaches have been proposed to

overcome these problems [12, 38, 22, 36, 28]. These TCP-

based stored media streaming approaches use a combi-

nation of client-side buffering and efficient QoS adapta-

tion of the streamed data. Client-side buffering essen-

tially borrows some current bandwidth to prefetch data

to protect against future rate reduction. Thus, with suf-

ficient client-side buffering, short-term rate variations in-

troduced by TCP as well as the delay introduced by

packet retransmissions can both be handled. QoS adapta-

tion allows fine-grained adjustment of the rate-distortion

tradeoff (or rate versus quality adjustment) during the

transmission process and thus allows handling long-term

rate changes by adjusting quality dynamically.

TCP-based streaming is desirable because TCP offers

several well known advantages. TCP provides congestion

1



controlled delivery which is largely responsible for the re-

markable stability of the Internet despite an explosive

growth in traffic, topology and applications [20]. TCP

handles flow control and packet losses, so applications do

not have to worry about recovery from packet losses. In

addition, given its large user base, there is great interest

in improving TCP performance. Such improvements can

also help media streaming.

In this paper, we study the feasibility of using TCP

for low-latency media streaming. We are concerned with

protocol latency, which we define as the time difference

from a write on the sender side to a read on the receiver

side, i.e., socket to socket latency. Low latency streaming

is desirable for several applications. For streaming me-

dia, control operations such as the sequence of start play,

fast forward and restart play become more responsive be-

cause the network and the end-points have low delay in

the data path. For video on demand servers, low latency

streaming offers faster channel surfing (starting and stop-

ping of different channels). Similarly, multimedia docu-

ment browsing becomes more responsive. Finally, with

sufficiently low latency streaming, interactive streaming

applications become feasible. In general, quality-adaptive

applications benefit from low-latency streaming because

the sending side can wait longer before making its quality

adaptation decisions, i.e., it has more control and flexi-

bility over what data should be sent and when it should

be sent.

Although there have been several studies that describe

the packet delays experienced by TCP flows [7, 6, 30,

34, 16, 42] there has been much less work describing the

protocol latency observed by applications streaming over

TCP. This lack of study of protocol latency is partly

because TCP has often been considered impractical for

streaming applications and thus few TCP-based stream-

ing applications have been developed. In addition, non-

QoS adaptive streaming applications require large buffer-

ing at the ends to handle bandwidth variations, so pro-

tocol latency can be a second order effect. Fortunately,

with quality adaptive streaming applications, the buffer-

ing needed at the end-points can be tuned and made small

and thus protocol latency becomes more significant.

This paper examines TCP protocol latency by showing

the latency observed at the sender side, receiver side and

the network under various network conditions. Our re-

sults show that, surprisingly, a significant portion of the

protocol latency occurs due to TCP’s send buffer and this

latency can be eliminated by making some simple send-

buffer modifications to the sender side TCP stack without

changing the TCP protocol in any way. Our experiments

show that these modifications reduce the average proto-

col latency to well within the interactive latency limits of

approximately 200 ms [19] when the underlying network

round-trip time is less than 100 ms (coast-to-coast round-

trip time in the US [16]).1 This reduction in latency

comes at a small expense in throughput. Our modifica-

tions adapt the send buffer size and have similarity to the

send-buffer tuning work by Semke [40]. However, unlike

their work which focuses on improving TCP throughput,

this work focuses on reducing socket to socket latency.

The sender-side modifications reduce average protocol

latency significantly but are not sufficient for interactive

streaming applications since many packets can still ob-

serve latencies much higher than 200 ms. These latency

1We are focusing on protocol latency (or socket to socket latency)
and ignore the processing times at the application end points in this
paper.

2



spikes occur due to packet dropping and retransmissions

and thus motivate the need for mechanisms that reduce

packet dropping in the network. One such mechanism is

explicit congestion notification (ECN) [14]. With ECN,

routers use active queue management [13, 4] and indi-

rectly inform TCP of impending congestion by setting

an ECN bit on packets that would otherwise have been

dropped. TCP uses the ECN bit to pro-actively reduce

its sending rate, thus reducing network load and packet

dropping in the network. This paper explores how TCP

enabled with ECN effects protocol latency.

The next section presents our modifications to the TCP

sending side to reduce protocol latency. Section 3 de-

scribes our experimental methodology for evaluating the

latency behavior of TCP. Section 4 presents our results.

Section 5 summarizes related work in multimedia and low

latency streaming, and TCP congestion control. Section

6 discusses future work in low-latency TCP streaming,

and finally, Section 7 presents our conclusions.

2 TCP Send Buffer

This section discusses our approach to reducing protocol

latency by dynamically adjusting the TCP send buffer

size. TCP is a window-based protocol, where its win-

dow size is the maximum number of distinct (and unac-

knowledged) packets in flight in the network at any time.

TCP adapts the size of its window based on congestion

feedback and stores this size value in the TCP variable

CWND. TCP uses a fixed size send buffer to store applica-

tion data before the data is transmitted. This buffer has

two functions. First, it handles rate mismatches between

the application sending rate and TCP’s transmission rate.

Second, it is used to keep copies of the packets in flight

(its current window) so they can be retransmitted when

needed. Since CWND stores the number of packets in

flight, its value can never exceed the send buffer size.

From a latency perspective, the fixed size send buffer

can introduce significant latency into the TCP stream. As

a concrete example, the send buffer in most current Unix

kernels is at least 64KB. For a 300 Kbs video stream, a

full send buffer contributes 1700 ms of delay. By compar-

ison, the round trip delay may lie between 50-100 ms for

coast-to-coast transmission within the United States. In

addition, the buffering delay increases for smaller band-

width streams or with increasing competition since the

stream bandwidth goes down.

We believe that for latency sensitive streams, sender-

side buffering should be moved out of the TCP stack

and applications should be allowed to handle buffering

as much as possible. This approach is in keeping with

the end-to-end principle followed by TCP where the pro-

tocol processing complexity is moved out of the network

as much as possible to the stream end points. We do

not modify TCP receive-side buffering because our ap-

plications aggressively remove data from the receive-side

buffer. Thus, receive-side delay is only as issue when

packets are retransmitted by TCP. This issue is discussed

further in Section 4.3.

2.1 Adapting Send Buffer Size

One method for reducing the latency caused by the send

buffer is to statically reduce the size of the send buffer.

This approach has a negative effect on the throughput

of the flow if the number of packets in flight (CWND) is

limited by the send buffer (and not by the network conges-

tion signal). In this case, the flow throughput is directly

3



proportional to the send buffer size and decreases with

a smaller send buffer. We reject this approach because

although our main goal is to reduce protocol latency, we

also aim to achieve throughput comparable to standard

TCP.

Now suppose that the send buffer was sufficiently large

that TCP could adjust the value of CWND based only

on congestion (and receiver buffer) feedback. It should be

clear that for this condition to hold, the size of the send

buffer should be at least CWND packets. A smaller value

would limit CWND to the send buffer size and reduce the

throughput of the flow. A larger value should not affect

throughput significantly since TCP would not send more

than CWND packets anyway. However, a larger value in-

creases protocol latency because only CWND packets can

be in flight at any time, and thus the rest of the packets

have to sit in the send buffer until acknowledgments have

been received for the previous packets.

This discussion shows that adjusting the send buffer

size to follow CWND can reduce protocol latency without

significantly affecting flow throughput. We have imple-

mented this approach, as described in Section 2.2. This

approach impacts throughput when TCP could have sent

a packet but there are no new packets in the send buffer.

This condition can occur for several reasons. First, with

each acknowledgment arrival, standard TCP has a packet

in the send buffer that it can send immediately. If the

send buffer size is limited to CWND, then TCP must

inform the application and the application must write

the next packet before TCP can send it. Thus, system

timing and scheduling behavior can affect TCP through-

put. Second, back-to-back acknowledgment arrivals ex-

acerbate this problem. Finally, the same problem occurs

when TCP increases CWND. These adverse affects on

throughput can be reduced by adjusting the buffer size

so that it is larger than CWND. To study the impact on

throughput, we experimented with three different send

buffer configurations as described in the next section.

2.2 Send Buffer Modifications

To reduce sender-side buffering, we have made a small

send-buffer modification to the TCP stack on the sender

side in the Linux 2.4 kernel. This modification can be

enabled per socket by using a new SO TCP MIN BUF

option, which limits the send buffer size to A ∗CWND +

MIN(B,CWND) packets at any given time. The send

buffer size is at least CWND because Amust be an integer

greater than zero and B is zero or larger. We assume, as

explained in more detail later, that the size of each appli-

cation packet is MSS (maximum segment size). With the

send-buffer modification, an application is blocked from

sending when there are A ∗ CWND + MIN(B,CWND)

packets in the send buffer. In addition, the application is

woken up when at least one packet can be admitted in the

send buffer. By default A is one and B is zero, but these

values can be made larger with the SO TCP MIN BUF

option. From now on, we call a TCP stream that has the

SO TCP MIN BUF option turned on with parameters A

and B, a MIN BUF(A, B) stream.

With these modifications to TCP and assuming a

MIN BUF(1, 0) stream, the send buffer will have at most

CWND packets after an application writes a packet to the

socket. TCP can immediately transmit this packet since

this packet lies within TCP’s window. After this trans-

mission, TCP will again allow the application to write

data. Thus as long as CWND is non-decreasing, TCP

4



will not add any buffering delay to a stream. Delay is

added only during congestion when TCP decreases the

value of CWND. Our experiments in Section 4 show that

this delay is generally much smaller than the standard

TCP send-buffer delay.

The SO TCP MIN BUF option exposes the parame-

ter A and B, because they represents a tradeoff be-

tween latency and throughput. Larger values of A or

B add latency but can improve throughput as explained

in the previous section. We experimented with three

MIN BUF streams: MIN BUF(1, 0), MIN BUF(1, 3) and

MIN BUF(2, 0). These streams should have increasing

latency and throughput. A MIN BUF(1, 0) stream is the

default stream with the least protocol latency. We ex-

pect a MIN BUF(2, 0) stream to have the same through-

put as TCP because there are CWND extra packets in

the send buffer and even if acknowledgments for all pack-

ets in the previous window come simultaneously, the next

window of packets can be sent without first getting pack-

ets from the application. Thus a MIN BUF(2, 0) stream

should behave similarly (in terms of throughput) to a

TCP stream [26]. Finally, we chose a MIN BUF(1, 3)

stream to see how three extra packets affect latency and

throughput. If no more than three acknowledgments ar-

rive back to back, then this stream should behave similar

to TCP in terms of bandwidth. Section 4 presents latency

and throughput results for the three streams. Briefly, our

results show that 1) MIN BUF(1, 0) and MIN BUF(1, 3)

flows has similar latencies and these latencies are much

smaller than MIN BUF(2, 0) or TCP flows, and 2) while

a MIN BUF(1, 0) flow suffers 30 percent bandwidth loss,

the MIN BUF(1, 3) flow suffers less than 10 percent band-

width loss. Thus, the MIN BUF(1, 3) flow represents a

good latency-bandwidth compromise.

Sack Correction

The previous discussion about the send buffer limit ap-

plies for a non-SACK TCP implementation. For TCP

SACK [24], we make a sack correction by adding an addi-

tional term sacked out to A ∗CWND + MIN(B,CWND).

The sacked out term (or an equivalent term) is main-

tained by a TCP SACK sender and is the number of selec-

tively acknowledged packets. With TCP SACK, when se-

lective acknowledgements arrive, the packets in flight are

no longer contiguous but lie within a CWND+sacked out

packet window. We make the sack correction to ensure

that the send buffer limit includes this window and is

thus at least CWND+sacked out. Without this correc-

tion, TCP SACK is unable to send new packets for a

MIN BUF flow and assumes that the flow is application

limited. It can thus reduce the congestion window multi-

ple times after the arrival of selective acknowledgements.

2.3 Application Model

In this paper, we are concerned with protocol latency. We

ignore the processing time at the application end points

since these times are application dependent. However,

these times must also be included when studying the fea-

sibility of a low latency application such as an interactive

media streaming application.

We assume that latency-sensitive applications use non-

blocking read and write socket calls. The protocol la-

tency is measured from the initial write of a packet on

the sender side to the final read of the same packet on

the receiver side.2 The use of non-blocking calls gener-

2With non-blocking reads and writes, multiple reads or writes
may have to be performed before an entire packet is transferred.

5



ally means that the application is written using an event-

driven architecture [33].

We also assume that applications explicitly align their

data with packets transmitted on the wire (application

level framing) [8]. This alignment has two benefits: 1) it

minimizes any latency due to coalescing or fragmenting

of packets below the application layer, 2) it ensures that

low-latency applications are aware of the latency cost and

throughput overhead of coalescing or fragmenting appli-

cation data into network packets. For alignment, an ap-

plication writes MSS (maximum segment size) sized pack-

ets on each write. TCP determines MSS during stream

startup but the MSS value can change due to various net-

work conditions such as routing changes [27]. A latency-

sensitive application should be informed when TCP de-

termines that the MSS has changed. Currently, we detect

MSS changes at the application level by querying TCP for

the MSS before each write. Another more efficient option

would be to return a write error on an MSS change for a

MIN BUF socket.

Finally, in our experiments, we use the TCP CORK

socket option in Linux, which ensures that TCP sends

data only when there are at least MSS bytes of data avail-

able. Thus application data is never broken up by TCP

into less than MSS sized packets. This option improves

throughput by always sending maximum sized packets

but does not affect protocol latency since applications

have already aligned their data with MSS sized packets.

3 Experiments

In this section, we describe the tests we performed to

evaluate the latency and throughput behavior of stan-

dard TCP and MIN BUF streams under various network

conditions. All streams use TCP SACK and MIN BUF

streams use the sack correction described in Section 2.2.

We performed our experiments on a Linux 2.4 test-bed

that simulates WAN conditions by introducing delay at

an intermediate Linux router in the test-bed.

3.1 Experimental Scenarios

The first set of tests considers the latency response of

TCP streams to a sudden increase in congestion. Increase

in congestion is triggered with three types of flows: 1)

competing long-lived TCP flows, 2) a flash crowd of many

small TCP flows, and 3) a competing constant bit rate

(CBR) flow, such as a UDP flow. The long-lived compet-

ing flows are designed to simulate other streaming traffic.

The flash crowd of short TCP flows simulates web trans-

fers. In our experiments, the small flows have fixed packet

sizes and they are run back to back so that the number

of active TCP connections is roughly constant [18]. The

CBR flow simulates non-responsive UDP flows.

While these traffic scenarios do not necessarily accu-

rately model reality, they are intended to explore and

benchmark the latency behavior of TCP and MIN BUF

streams in a well characterized environment. These tests

are designed to emulate a heavily loaded network envi-

ronment.

The second set of tests measures the relative through-

put share of TCP and MIN BUF streams. Here we are

mainly concerned with the bandwidth lost by MIN BUF

traffic. These experiments are performed with the same

types of competing flows described above.

The third set of experiments measures the process-

ing overhead of MIN BUF streams. MIN BUF streams

have potentially higher processing overhead because of

6



the tighter integration between the TCP stack and the

application. With a smaller send buffer, TCP must in-

form the application when buffer space is available more

frequently and the application writes smaller amounts of

data on each write. To estimate the processing overhead,

we run MIN BUF streams and TCP streams on a gigabit

test-bed where the sender CPU is fully utilized in both

cases and measure the throughput achieved by each set

of flows. The results of this experiment set are not fully

available now and not presented in this paper but will be

presented in the final paper.

We are interested in several metrics of a latency-

sensitive TCP flow. We explore three metrics in this pa-

per: 1) protocol latency distribution, and specifically, the

percentage of packets that arrive at the receiver within a

delay threshold, 2) average packet latency, and 3) nor-

malized throughput, the ratio of the throughput of a

MIN BUF flow to a TCP flow. We choose two delay

thresholds, 200 ms, which is related to interactive stream-

ing performance, and 500 ms, which is somewhat arbi-

trary, but chosen to represent the requirements of respon-

sive media streaming control operations.

In addition to comparing the latency behavior of stan-

dard TCP and MIN BUF streams, we are also interested

in understanding the effects on protocol latency of ECN

enabled TCP. Our results describe how this “streaming

friendly” mechanism affects protocol latency.

3.2 Network Setup

All our experiments use a single-bottleneck “dumbbell”

topology and FIFO scheduling at the bottleneck. The

network topology is shown in Figure 1. Each box is a

separate Linux machine. The latency and throughput

measurements are performed for a single stream originat-

ing at the sender S and terminating at receiver R1. This

stream is generated by an application that follows the

application model described in Section 2.3. The sender

generates cross traffic for both receivers R1 and R2. The

router runs nistnet [32], a network emulation program

that allows the introduction of additional delay and band-

width constraints in the network path. The machine DU

is used to dump TCP traffic for further analysis. The

protocol latency is measured by recording the applica-

tion write time for each packet on the sender S and the

application read time for each packet on the receiver R1.

All the machines are synchronized to within one ms of

each other using NTP.

We chose three round-trip times (RTT) for the experi-

ments and conducted separate experiments for each RTT.

The RTTs were 25 ms, 50 ms and 100 ms. These RTTs

approximate some commonly observed RTTs on the In-

ternet. The cable modem from our home to work has 25

ms delay. West-coast to west-coast sites or East-coast to

East-coast sites in the US observe 50 ms median delay

and west-coast to east-coast sites in the US observe 100

ms median delay [16].

We run our experiments over standard TCP and ECN

enabled TCP. For each RTT, two router queue lengths

are chosen so that bandwidth is limited to 12 Mbs and 30

Mbs. The TCP experiments use tail dropping. For ECN,

we use DRED active queue management [15], which is

supported in Nistnet. DRED is a RED variant that is

implemented efficiently in software. The drdmin, drdmax

and drdcongest parameters of DRED were chosen to be

1.0, 2.0 and 2.0 times the bandwidth-delay product, re-

spectively. DRED sends ECN messages for 10 percent of

7



packets when the queue length exceeds drdmin, progres-

sively increasing the percentage until packets are dropped

when the queue length exceeds drdcongest. Unlike RED,

DRED does not average queue lengths.

Sender (S)

Dump (DU)

Receiver (R2)

Receiver (R1)

Router

Figure 1: Network Topology

4 Results

In this section, we discuss the results of our experi-

ments. We start by showing the effects of using TCP and

MIN BUF streams on protocol latency. Then we quantify

the throughput loss of these streams. We investigate the

latencies observed at the sender, network and the receiver

of TCP streams and the causes of each latency. Finally,

we explore using ECN enabled TCP to improve protocol

latencies.

4.1 Protocol Latency

Our first experiment shows the protocol latency of TCP

and MIN BUF streams in response to dynamically chang-

ing network load. The experiment is run for about 80

seconds with load being introduced at various different

time points in the experiment. The TCP or MIN BUF

long-lived stream being measured is started at t = 0s.

We refer to this flow as the latency flow. Then at t =

5s, 15 other long-lived (elephant) flows are started, 7 go-

ing to receiver R1 and 8 going to receiver R2. At t =

20s, each receiver initiates 40 simultaneous short-lived

(mouse) TCP flows. A mouse flow is a repeating short-

lived flow that starts the connection, transfers 20KB of

data, ends the connection and then repeats this process

continuously [18]. The number of mouse flows was cho-

sen so that the mouse flows would get approximately 30

percent of the total bandwidth. At t = 40s, CBR traf-

fic that consumes 10 percent of the bandwidth is started.

At t = 60s, the elephants are stopped and then the mice

and the CBR traffic are stopped at t = 75s. Figure 2

shows the cross traffic (elephants, mice and CBR traffic)

for a 30 Mbs bandwidth, 100 ms RTT experiment. Other

experiments have a similar bandwidth profile.

0

10000

20000

30000

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

K
b/

s)

Time (seconds)

Elephants
Mice
CBR

Figure 2: The bandwidth profile of the cross traffic (15
elephants, 80 mice consuming about 30% bandwidth and
10% CBR traffic)

Figure 3 shows the results of a run with standard TCP

and MIN BUF(1, 0) streams when the bandwidth limit is

30Mbs and the round trip time is 100 ms. Both these

streams originate at sender S and terminate at receiver

R1. The figures shows the protocol latency of the latency

flow as a function of packet receive time. The two hori-

zontal lines on the y axis show the 200 ms and the 500

ms latency threshold.

Figure 4 shows the protocol latency of the three

MIN BUF configurations. Note that in this figure, the

8



0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP

(a) TCP

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (1,0)

(b) MIN BUF(1,0)

These figures show the protocol latency of packets plotted as a function of packet receive time. The bandwidth limit for this
experiment is 30 Mbs and the round trip time is 100 ms. The horizontal lines on the figures show the 200 ms and 500 ms
latency threshold.

Figure 3: A comparison of the protocol latencies of TCP and MIN BUF(1,0) streams

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (1,0)

(a) MIN BUF(1,0)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (1,3)

(b) MIN BUF(1,3)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (2,0)

(c) MIN BUF(2,0)

These experiments were performed under the same conditions as described in Figure 3. Note that the maximum value of the
y axis is 500 ms, while it is 4500 ms in Figure 3.

Figure 4: A comparison of the protocol latencies of 3 MIN BUF configurations

maximum value of the y axis is 500 ms. These figures

show that the MIN BUF streams have significantly lower

protocol latency than a standard TCP stream. They

show that, as expected, the MIN BUF(1, 0) flow has

the lowest protocol latency while the MIN BUF(2, 0) has

the highest protocol latency among the MIN BUF flows.

Looking at the throughput profile of the latencies flows

(now shown here), we found that the protocol latency

of TCP and MIN BUF(2, 0) is highest when the flow

throughput is lowest. However, the protocol latency of

MIN BUF(1, 0) and MIN BUF(1, 3) flows is not affected

as much by their changing throughput. The reason is

that the TCP send buffer drains slowly when the band-

width available to the latency stream goes down. Since

TCP and MIN BUF(2, 0) flows allow the send buffer to

fill up more than the other two flows, these flows observe

higher protocol latencies. The send buffer does not signif-

icantly affect the protocol latency in MIN BUF(1, 0) and

9



MIN BUF(1, 3) flows. The latency spikes seen in these

flows are chiefly a result of TCP congestion control and

retransmission as discussed in Section 4.3.

The protocol latency distribution for this experiment

is shown in Figure 5. The experiment was performed

with 30Mbs and 12Mbs bandwidth limit and with 100 ms,

50ms and 25 ms RTT. Each experiment was performed

8 times and the results presented show the numbers ac-

cumulated over all the runs. The vertical lines show the

200 and 500 ms delay thresholds. The figures show that

in all cases a much larger percent of TCP packets lie

outside the delay thresholds as compared to MIN BUF

flows. Note that the x axis, which shows the protocol la-

tency in milliseconds, is on a log scale. The figures show

that, as expected, the percent of packets with large de-

lays increases with increasing RTT and decreasing band-

width. The percent of packets delivered within the 200

and 500 ms delay thresholds is summarized in Table 1.

This table also shows that the packets delivered within

the delay thresholds is very similar for MIN BUF(1, 0)

and MIN BUF(1, 3) flows.

The average (one way) protocol latency for each con-

figuration is shown in Table 2. Each experiment was per-

formed 8 times and these numbers are the mean of the 8

runs. The table shows that MIN BUF flows have much

lower average latency and the deviation across runs is also

much smaller.

4.2 Throughput Loss

We are interested in the throughput loss of MIN BUF

streams. We measured the throughput of each of the

flows as a ratio of the total number of bytes received to

the duration of the experiment. Table 3 shows the nor-

malized throughput of each flow, which is the ratio of

the throughput of the flow to the TCP flow. Again, these

numbers are the mean (and 95% confidence interval) over

8 runs.

The table shows that the MIN BUF(2, 0) flows receive

throughput close to standard TCP (within the confidence

range). MIN BUF(2, 0) flows have CWND new packets

that can be sent after a packet transmission. So even

if all current CWND packets in flight are acknowledged

almost simultaneously, TCP can send its entire next win-

dow of CWND packets immediately. Thus we expect that

MIN BUF(2,0) flows should behave similar to TCP flows.

The MIN BUF(1, 0) flows consistently receive the least

throughput, about 70 percent of TCP. This result is not

surprising because TCP has no new packets in the send

buffer that can be sent after each packet is transmitted.

TCP must ask the application to write the next packet

to the send buffer before it can proceed with the next

transmission. Thus, any scheduling or other system de-

lays would make the MIN BUF(1, 0) flow an application-

limited flow. TCP assumes that such flows need less

bandwidth and reduces the window and thus the trans-

mission rate of such flows.

Interestingly, the MIN BUF(1, 3) flows receive

throughput close to TCP, about 90 percent of TCP or

more. Three additional packets in the send buffer (in

addition to the CWND packets in flight) seem to reduce

the throughput loss due to the artificial application-flow

limitation introduced by MIN BUF(1, 0) flows.

For a latency sensitive, quality-adaptive application,

one metric for measuring the average flow quality could

be the product of the percent of packets that arrive within

a delay threshold and the normalized throughput of the

10



0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 100ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 50ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 25ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 100ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 50ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 25ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

The experiment was performed with a 30Mbs and 12Mbs bandwidth limit and with 100 ms, 50ms and 25 ms RTT. The
vertical lines show the 200 and 500 ms delay thresholds. The x axis, which shows the protocol latency in milliseconds, is on a
log scale.

Figure 5: Protocol Latency Distribution of standard TCP, MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) flows

RTT = 100 ms RTT = 50 ms RTT = 25 ms
Mbs Type D200 D500 D200 D500 D200 D500

30 std 0.73 0.91 0.72 0.92 0.84 0.94
30 m10 0.99 1.00 0.99 1.00 1.00 1.00
30 m13 0.98 1.00 0.99 0.99 0.99 1.00
30 m20 0.91 0.99 0.97 0.99 0.99 1.00
12 std 0.53 0.80 0.62 0.88 0.60 0.86
12 m10 0.98 1.00 0.99 1.00 0.99 1.00
12 m13 0.95 0.99 0.99 1.00 0.98 1.00
12 m20 0.86 0.99 0.97 0.99 0.98 0.99

The terms std, m10, m13 and m20 refer to standard TCP, MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
The terms D200 and D500 refer to a delay threshold of 200 and 500 ms.

Table 1: Percent of packets delivered within 200 and 500 ms thresholds for standard TCP, MIN BUF(1, 0),
MIN BUF(1, 3) and MIN BUF(2, 0) flows

flow. This relative metric is related to the number of

packets that arrive within the delay threshold across dif-

ferent flows. Thus a larger value of this metric could

imply better perceived quality. From the numbers pre-

sented above, MIN BUF(1,3) flows have the highest value

for this quality metric because both their delay threshold

numbers (shown in Table 1) and normalized throughput

numbers (shown in Table 3) are close to the best numbers

of other flows.

11



Mbs Type RTT = 100 ms RTT = 50 ms RTT = 25 ms
30 std 226.31±0.87 218.84±40.34 138.61±21.0
30 m10 62.91±0.96 37.09±0.80 19.71±0.89
30 m13 76.19±2.71 51.54±3.73 28.29±1.70
30 m20 152.14±9.13 89.74±5.32 48.21±2.19
12 std 369.22±50.32 260.27±23.15 296.25±47.49
12 m10 69.73±2.15 38.50±1.09 25.94±1.80
12 m13 91.42±6.81 49.17±2.03 39.08±3.39
12 m20 162.26±6.06 87.90±1.46 61.31±5.59

The terms std, m10, m13 and m20 refer to standard TCP, MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
All average latency numbers (together with 95% confidence intervals) are shown in milliseconds.

Table 2: Average latency of standard TCP, MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) flows

Mbs Type RTT = 100 ms RTT = 50 ms RTT = 25 ms

30 std 1.00 1.00 1.00
30 m10 0.66±0.11 0.71±0.08 0.76±0.10
30 m13 0.96±0.12 0.87±0.08 0.92±0.12
30 m20 1.02±0.18 1.13± 0.36 0.91±0.10

12 std 1.00 1.00 1.00
12 m10 0.67±0.09 0.76±0.05 0.89±0.11
12 m13 0.92±0.15 1.06±0.09 1.08±0.22
12 m20 1.13±0.16 1.08±0.14 1.12±0.17

The terms std, m10, m13 and m20 refer to standard TCP, MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
The normalized throughput (NT) is the ratio of throughput of each flow to the ratio of a standard TCP flow.

Table 3: The normalized throughput of a standard TCP flow and MIN BUF flows

4.3 Understanding Worst Case Behavior

Figure 4 shows that MIN BUF(1, 0) and MIN BUF(1, 3)

flows occasionally show protocol latency spikes even

though they have small send buffers. To understand the

cause of these spikes, we measured the delays experienced

by each packet on the sender side, in the network and on

the receiver side.

Figure 6 shows these delays for a small part of the ex-

periment when packets were lost and retransmitted. The

sender latency of each packet is the time from when an

application writes to the socket to TCP’s first transmis-

sion of the packet. The network delay is the time from

the first transmission of each packet to the first arrival

at the receiver. The receiver latency is the time from the

first arrival of each packet to an application read. Fig-

ure 6 shows that the latency spikes are primarily caused

by packet losses and retransmissions. In particular, the

protocol (or total) latency does not depend significantly

on the flow throughput (or the congestion window size).

For instance, the congestion window size at t=35.5 ms

and t=36.5 ms is 15 and 4, but the total latency at these

times is roughly the same.

Packet retransmissions initially cause the network de-

lay to increase, followed by an increase in the receiver la-

tency. The receiver latency increases because TCP deliv-

ers packets in order and a lost packet temporarily blocks

further packets from being released to the application.

In addition, the sender latency increases slightly because

TCP reduces its congestion window after a packet loss.

Thus packets that were already accepted into the send

buffer are delayed. Note that after a packet loss, in-

creases in latency at the network, receiver and the sender

12



0

50

100

150

200

250

35.4 35.6 35.8 36 36.2 36.4 36.6

La
te

nc
y 

in
 m

s

Packet Transmission Time (seconds)

Total Latency
Network Delay

0

50

100

150

200

250

35.4 35.6 35.8 36 36.2 36.4 36.6

La
te

nc
y 

in
 m

s

Packet Transmission Time (seconds)

Sender Latency
Receiver Latency

0

1

R
et

ra
ns

m
is

si
on

s

Packet (Re)transmissions

0

4

8

12

16

20

35.4 35.6 35.8 36 36.2 36.4 36.6

T
C

P
 W

in
do

w
 S

iz
e

Packet Transmission Time (seconds)

Cwnd

This experiment was performed with a MIN BUF(1, 0) flow.
The bandwidth limit is 30 Mbs and the RTT is 100 ms. All
figures are plotted as a function of the packet transmission
time. The figure on the top shows the total latency and the
network delay for each packet. The delay at the sender and
the receiver are shown in the middle figure. The figures at the
bottom show the times at which packets were transmitted (or
retransmitted) to the network interface and the TCP conges-
tion window. These figures show that the sender side latency
is small for MIN BUF(1, 0) flows and that spikes in total la-
tency occur primarily due to packet loss and retransmissions.

Figure 6: The packet delay on the sender side, the net-
work and the receiver side

are typically not additive (for any given packet) since

they are shifted in time. However, this time shifting im-

plies that the total latency stays high for several packets

after a packet is dropped. These findings motivated the

need to explore mechanisms that can reduce packet drop-

ping. One such mechanism that has been studied by the

networking community is explicit congestion notification

(ECN) [14, 35, 39].

4.4 Protocol Latency with ECN

ECN enabled routers inform TCP senders of impend-

ing congestion by setting an ECN bit on certain pack-

ets. When an ECN enabled TCP sender receives such a

packet, it takes pro-active measures to reduce its sending

rate to avoid packet dropping in the router.

We ran the same set of experiments as described in

Section 4.1 to measure and compare the protocol latency

of ECN flows and MIN BUF (with ECN) flows. Figure

7 shows the bandwidth profile of the competing traffic.

Figures 8 and 9 show the comparative protocol latencies.

These figures are generated from experiments that are

similar to those shown in Figure 3 except we enabled ECN

at the end points and used DRED active queue manage-

ment at the intermediate router.

These figures show that the protocol latency spikes are

reduced in all cases when compared to Figure 4. A close

look at the raw data showed that ECN reduced packet

dropping and retransmissions and thus had fewer spikes.

Figure 10 shows the protocol latency distribution for ECN

and the MIN BUF configurations. Comparing this fig-

ure with Figure 5 shows that the MIN BUF flows have

smaller tails, i.e., they have a higher percent of packets

that arrive within the 200 and 500 ms thresholds. Inter-

13



0

1000

2000

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN

(a) ECN

0

1000

2000

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (1,0)

(b) MIN BUF(1,0) with ECN

These figures show the protocol latency as a function of packet receive time. The bandwidth limit for this experiment is 30
Mbs and the round trip time is 100 ms. The horizontal lines on the figures show the 200 ms and 500 ms latency threshold.

Figure 8: A comparison of the protocol latencies for ECN and MIN BUF(1, 0) streams

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (1,0)

(a) MIN BUF(1,0)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (1,3)

(b) MIN BUF(1,3)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (2,0)

(c) MIN BUF(2,0)

These experiments were performed under the same conditions as described in Figure 8. Note that the maximum value of the
y axis is 500 ms, while it is 2000 ms in Figure 8.

Figure 9: A comparison of the protocol latencies of 3 MIN BUF configurations

estingly, ECN flows have worse tails than TCP flows. We

believe this happens because the ECN flows in this ex-

periment achieve lower throughput than TCP flows and

thus the send buffer latency is higher for these flows.

ECN in these experiments showed several interesting

bandwidth related properties. First, the mouse band-

width was tuned to 50 percent of the bandwidth capacity

as shown in Figure 7, instead of 30 percent as shown in

Figure 2. The mice were able to achieve their bandwidth

share quickly and more accurately. With TCP, in some

configurations (lower bandwidth and smaller RTT), the

mice were not able to achieve 50 percent bandwidth share

even when the application starts very large numbers of

mice. This is because the elephants are very aggressive

and the mouse are unable to connect for long periods of

time. In addition, the ratio of mice to elephants needed to

achieve fair sharing between the mice and the elephants

is much smaller for ECN than with regular TCP flows.

14



0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 100ms RTT)

ECN
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 50ms RTT)

ECN
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 25ms RTT)

ECN
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 100ms RTT)

ECN
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 50ms RTT)

ECN
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 25ms RTT)

ECN
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

The experiment was performed with a 30Mbs and 12Mbs bandwidth limit and with 100 ms, 50ms and 25 ms RTT. The
vertical lines show the 200 and 500 ms delay thresholds. The x axis, which shows the protocol latency in milliseconds, is on a
log scale.

Figure 10: Protocol Latency Distribution of standard ECN, MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0)
flows

0

10000

20000

30000

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

K
b/

s)

Time (seconds)

Elephants
Mice
CBR

Figure 7: The bandwidth profile of the cross traffic (15
elephants, 80 mice consuming about 50% bandwidth and
10% CBR traffic)

Thus, elephants do not steal as much bandwidth from

mice and also have a smoother throughput profile (not

shown here). We believe that although ECN may loose

throughput compared to TCP for long lived flows, its re-

duced aggressiveness leads to fewer retransmissions and

thus it is desirable for low latency streaming.

5 Related Work

The feasibility of TCP-based stored media streaming has

been studied by several researchers. Generally, the trade-

off in these QoS adaptive approaches is short-term im-

provement in video quality versus long term smoothing

of quality. Rejaie [38] uses layered video and adds or

drops video stream layers to perform long-term coarse

grained adaptation, while using a TCP-friendly conges-

tion control mechanism to react to congestion on short-

time scales. Krasic [22] contends that new compression

practices and reduced storage costs make TCP a viable

and attractive basis for streaming stored content and uses

standard TCP, instead of a TCP-friendly scheme, for me-

15



dia streaming. Feng [12] and Krasic use priority-based

streaming, which allows a simpler and more flexible im-

plementation of QoS adaptation. We believe that similar

QoS adaptive approaches will be useful for low latency

streaming also.

The response time of control operations for media

streaming depends on several other factors such as disk

I/O and application latency. Dey [9] considers client la-

tency for restarting playback operations, i.e., the time it

takes to restart viewing video after data arrives at the

client. Chang [5] focuses on disk /IO and reduces ini-

tial startup latency with careful data placement and disk

scheduling. Similarly, Reddy [37] describes a video server

that schedules disk I/O based on urgent and non-urgent

requests. Urgent requests are used for restarting play-

back and stream surfing. These schemes complement our

work.

Popular interactive streaming applications include

Voice over IP (VoIP) products such as Microsoft Net-

Meeting [29]. NetMeeting provides reasonable voice qual-

ity over a best effort network but is implemented over

UDP because the delays introduced by TCP are con-

sidered unacceptable. This paper shows that MIN BUF

TCP should yield acceptable delays, especially for QoS

adaptive applications. For interactive applications, ITU

G.114 [19] recommends 150 ms as the upper limit for

one-way delay for most applications, 150 to 400 ms as

potentially tolerable, and above 400 ms as generally un-

acceptable delay. The one way delay tolerance for video

conferencing is in a similar range, 200 to 300 ms.

Our send-buffer adaptation approach is similar to the

buffer tuning work by Semke [40]. Semke tunes the send

buffer size to between 2∗CWND and 4∗CWND to im-

prove the throughput of a high bandwidth-delay connec-

tion that is otherwise limited by the send buffer size. The

4∗CWND value is chosen to limit small, periodic fluctu-

ations in buffer size. This paper shows that a connection

can achieve throughput close to TCP throughput by keep-

ing the send buffer size slightly larger than CWND and

also achieve significant reduction in protocol latency.

Many differentiated network services have been pro-

posed for low latency streaming. These schemes are com-

plementary to our work since, generally, a MIN BUF

TCP implementation can be used for the low delay flow.

Expedited Forwarding [21] aims to provide extremely low

loss and low queueing delay guarantees. Dovrolis [10] de-

scribes a proportional differentiation model that allows

tuning per-hop QoS ratios between classes to achieve dif-

ferentiation in queueing delays at intermediate routers.

Nandagopal [31] proposes a core stateless QoS architec-

ture which provides per-class per-hop average delay differ-

entiation and class adaptation to maintain desired end-to-

end average delay. Hurley [17] provides a low-delay alter-

native best-effort (ABE) service that trades high through-

put for low delay. The ABE service drops packets in the

network if the packets are delayed beyond their delay con-

straint. In this model, the client must recover from ran-

domly dropped packets. Further, unlike with TCP, the

server does not easily get back-pressure feedback infor-

mation from the network in order to make informed QoS

adaptation decisions.

Active queue management and explicit congestion no-

tification (ECN) [35] have been proposed for improving

the packet loss rates of TCP flows. Salim [39] shows ECN

has increasing throughput advantage with increasing con-

gestion levels and ECN flows have hardly any retransmis-

16



sions. Feng [11] shows that adaptive active queue man-

agement algorithms (Adaptive RED) and more conser-

vative end-host mechanisms can significantly reduce loss

rates across congested links. Bagal [3] also shows low

packet losses with ECN and, in addition, shows that ex-

plicit TCP rate control reduces variance in throughput.

These mechanisms should help reduce spikes in protocol

latency.

Claffy [7] presents the results of a measurement study of

the T1 NSFNET backbone and delay statistics. In 1992,

the one way median delays between end points ranges

from 20 to 80 ms with a peak at 45 ms. Newer data

in 2001 [16] shows that the median RTT for East-coast

to East-coast or West-coast to West-coast is 25-50 ms

and East-coast to West-coast is about 100 ms. We use

these median results in our experiments. US to Europe

median RTT is currently 200 ms. While the 200 ms me-

dian RTT makes interactive applications challenging, re-

sponsive control operations for streaming media should

be possible.

6 Future Work

For low latency streaming, packets should not only have

low protocol latency but also low variation in interarrival

times (low jitter). A quality-adaptive application sees

bursty arrivals as either bursty quality, or if it buffers the

bursts then as higher end-to-end latency. Packet interar-

rival times depend on packet sending times and protocol

latency. A MIN BUF flow reduces protocol latency but

does not directly attempt to change the time at which

packets are transmitted by TCP. In TCP, the packet send-

ing time is determined by the arrival of acknowledgments

which open the window so more packets can be sent. If

acknowledgments arrive regularly, then packets can be

sent regularly. However, if acknowledgment arrivals are

bursty [41], TCP sends packets in bursts. The solution for

improving TCP’s bursty packet transmission (and thus

interarrival) behavior is to either pace the application

sending rate or pace the TCP sending rate [2, 23, 1, 25].

The results in this paper are based on experiments con-

ducted over an experimental network test-bed. While

simulating our experiments under more exhaustive con-

ditions using a network simulator, such as ns, would be

useful, the task is not trivial because ns does not simu-

late the send buffer. Thus a simulator for the send buffer

would have to be implemented. In addition, we are in-

terested in observing whether scheduling and other tim-

ing effects change the latency or throughput behavior of

MIN BUF streams. Simulating such effects is beyond the

scope of ns.

We have explored adapting the send buffer using three

different sizes for MIN BUF(A, B) flows. These different

configurations, with increasing buffer sizes, have increas-

ing latency and throughput. Another approach for adapt-

ing the send buffer is to auto-tune the values of A and B

so that the send buffer contributes a certain amount of

delay while providing the best possible throughput. This

approach works if the application can specify a delay tol-

erance for the send buffer.

We are currently implementing a streaming media

server that will allow channel surfing as well as basic con-

trol operations such as fast forward, stop, rewind, etc.

We plan to compare the latency of these operations using

standard TCP versus MIN BUF flows. We are also inte-

grating a real-time MPEG encoder into the media server,

which will allow us to investigate some of the challenges

17



raised by low latency streaming.

7 Conclusions

The dominance of the TCP protocol on the Internet and

its success in maintaining Internet stability has led to

several TCP-based stored media-streaming approaches.

These approaches use a combination of client-side buffer-

ing and QoS adaptation to overcome various problems

that were considered inherent with TCP-based media

streaming.

The success of TCP-based streaming led us to explore

the limits to which TCP can be used for low-latency me-

dia streaming. Low latency streaming allows responsive

streaming control operations and sufficiently low latency

streaming would make interactive applications feasible.

We examined adapting the TCP send buffer size based on

TCP’s congestion window to reduce protocol latency or

application perceived network latency. Our results show

that this simple idea reduces protocol latency and sig-

nificantly improves the number of packets that can be

delivered within 200 ms and 500 ms thresholds.

References

[1] Amit Aggarwal, Stefan Savage, and Thomas Anderson.

Understanding the Performance of TCP Pacing. In IN-

FOCOM, pages 1157–1165, 2000.

[2] Mohit Aron and Peter Druschel. TCP: Improving Startup

Dynamics by Adaptive Timers and Congestion Control.

Technical Report TR98-318, Rice University Computer

Science, 1998.

[3] P. Bagal, S. Kalyanaraman, and B. Packer. Comparative

study of RED, ECN and TCP Rate Control. Technical

report, Dept of ECSE, RPI, 1999.

[4] B. Braden, D. Clark, and et. al. J. Crowcroft. Recommen-

dations on queue management and congestion avoidance

in the internet. Internet RFC 2309, April 1998.

[5] Edward Y. Chang and Hector Garcia-Molina. BubbleUp:

Low Latency Fast-Scan for Media Servers. In ACM Mul-

timedia, pages 87–98, 1997.

[6] Kimberly C. Claffy, George C. Polyzos, and Hans-Wener

Braun. Measurement Considerations for Assessing Uni-

directional Latencies. Internetworking, 4(3), September

1993.

[7] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner

Braun. Traffic Characteristics of the T1 NSFNET Back-

bone. In INFOCOM, pages 885–892, 1993.

[8] David D. Clark and David L. Tennenhouse. Architec-

tural Considerations for a New Generation of Protocols.

In SIGCOMM Symposium on Communications Architec-

tures and Protocols, pages 200–208, Philadelphia, PA,

1990.

[9] Jayanta K. Dey, Subhabrata Sen, James F. Kurose, Don-

ald F. Towsley, and James D. Salehi. Playback Restart

in Interactive Streaming Video Applications. In Interna-

tional Conference on Multimedia Computing and Systems

(ICMCS), pages 458–465, 1997.

[10] Constantinos Dovrolis, Dimitrios Stiliadis, and

Parameswaran Ramanathan. Proportional Differ-

entiated Services: Delay Differentiation and Packet

Scheduling. In SIGCOMM, pages 109–120, 1999.

[11] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, and

Kang S. Shin. Techniques for Eliminating Packet Loss

in Congested TCP/IP Networks. Technical Report CSE-

TR-349-97, U. Michigan, Nov 1997.

[12] Wu-Chi Feng, Ming Liu, Brijesh Krishnaswami, and

Arvind Prabhudev. A Priority-Based Technique for

the Best-Effort Delivery of Stored Video. In Proc. of

18



SPIE Multimedia Computing and Networking Conference

(MMCN), January 1999.

[13] S. Floyd and V. Jacobson. Random early detection gate-

ways for congestion avoidance. IEEE/ACM Transactions

on Networking, 1(4):397–413, August 1993.

[14] Sally Floyd. TCP and Explicit Congestion Notifica-

tion. ACM Computer Communication Review, 24(5):10–

23, 1994.

[15] M. Gaynor. Proactive Packet Dropping Methods for TCP

Gateways. http://www.eecs.harvard.edu/~gaynor/

final.ps, October 1996.

[16] Bradley Huffaker, Marina Fomenkov, David Moore, and

kc claffy. Macroscopic Analyses of the Infrastructure:

Measurement and Visualization of Internet Connectivity

and Performance. In A workshop on Passive and Active

Measurements, Amsterdam, April 2001.

[17] P. Hurley and J. Y. Le Boudec. A Proposal for an Asym-

metric Best-Effort Service. In Proceedings of IEEE/IFIP

IWQoS 1999, pages 132–134, May 1999.

[18] Gianluca Iannaccone, Martin May, and Christophe Diot.

Aggregate Traffic Performance with Active Queue Man-

agement and Drop from Tail. ACM Computer Commu-

nication Review, 31(3), July 2001.

[19] International Telecommunication Union (ITU). Trans-

mission Systems and Media, General Recommendation

on the Transmission Quality for an Entire Interna-

tional Telephone Connection; One-Way Transmission

Time. Geneva, Switzerland, March 1993. Recommenda-

tion G.114, Telecommunication Standardization Sector of

ITU.

[20] V. Jacobson. Congestion Avoidance and Control. In

ACM SIGCOMM, pages 314–329, Stanford, CA, August

1988.

[21] V. Jacobson, K. Nichols, and K. Poduri. An Expedited

Forwarding PHB. Internet RFC 2598, June 1999.

[22] Charles Krasic, Kang Li, and Jonathan Walpole. The

case for streaming multimedia with tcp. In 8th Interna-

tional Workshop on Interactive Distributed Multimedia

Systems (iDMS 2001), pages 213–218, Sep 2001. Lan-

caster, UK.

[23] Joanna Kulik, Robert Coulter, Dennis Rockwell, and

Craig Partridge. A Simulation Study of Paced TCP.

Technical Report BBN-TM-1218, BBN Technologies, Au-

gust 1999.

[24] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP

Selective Acknowledgment Options. Internet RFC 2018,

October 1996.

[25] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and

Kevin Lahey. Rate-Halving Algorithm for TCP Con-

gestion Control, June 1999. Work in Progress,

Internet Draft. http://www.psc.edu/networking/ftp/

papers/draft-ratehalving.txt.

[26] Matthew Mathis and Jamshid Mahdavi. Forward Ac-

knowledgment: Refining TCP Congestion Control. In

ACM SIGCOMM, 1996.

[27] J. McCann, S. Deering, and J. Mogul. Path MTU Dis-

covery for IP version 6. Internet RFC 1981, August 1996.

[28] Microsoft Inc. Windows Media Player. http://www.

microsoft.com/windows/windowsmedia.

[29] Microsoft Inc. Windows NetMeeting. http://www.

microsoft.com/netmeeting.

[30] A. Mukherjee. On the Dynamics and Significance of

Low Frequency Components of Internet Load. Internet-

working: Research and Experience, 5:163–205, December

1994.

[31] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and

V. Bharghavan. Relative Delay Differentation and Delay

Class Adaptation in Core-Stateless Networks. In IEEE

Infocom 2000, March 2000.

19



[32] NIST. The NIST Network Emulation Tool. http://www.

antd.nist.gov/itg/nistnet.

[33] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel.

Flash: An Efficient and Portable Web Server. In Proceed-

ings of the 1999 USENIX Technical Conference, pages

199–212, Monterey, CA, June 1999.

[34] V. Paxson. End-to-End Internet Packet Dynamics. In

ACM SIGCOMM, pages 139–152, September 1997.

[35] K. Ramakrishnan, S. Floyd, and D. Black. The Addition

of Explicit Congestion Notification (ECN) to IP. Internet

RFC 3168, September 2001.

[36] Real Networks. RealPlayer Streaming Media Player.

http://www.real.com.

[37] N. Reddy. Improving Latency in Interactive Video Server.

In Proc. of SPIE Multimedia Computing and Networking

Conference (MMCN), pages 108–112, February 1997.

[38] Reza Rejaie, Mark Handley, and Deborah Estrin. Qual-

ity Adaptation for Congestion Controlled Video Playback

over the Internet. In ACM SIGCOMM, pages 189–200,

1999.

[39] J. Hadi Salim and U. Almed. Performance Evaluation of

Explicit Congestion Notification (ECN) in IP Networks.

Internet RFC 2884, July 2000.

[40] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis.

Automatic TCP Buffer Tuning. In ACM SIGCOMM,

pages 315–323, 1998.

[41] Scott Shenker Lixia Zhang and David Clark. Obser-

vations on the Dynamics of a Congestion Control Al-

gorithm: The Effects of Two-Way Traffic. ACM SIG-

COMM, 1991.

[42] Y. Zhang, N.G. Duffield, V. Paxson, and S. Shenker. On

the Constancy of Internet Path Properties. In ACM SIG-

COMM Internet Measurement Workshop, San Francisco,

November 2001.

20


