
Supporting Time-Sensitive Applications on General-Purpose Operating
Systems

Ashvin Goel, Luca Abeni, Jim Snow, Charles Krasic, Jonathan Walpole
Department of Computer Science and Engineering

Oregon Graduate Institute, Portland�
ashvin,luca,jsnow,krasic,walpole � @cse.ogi.edu

Abstract

General-purpose operating systems are increasingly be-
ing used for serving time-sensitive applications. Sup-
porting these applications requires low-latency response
from the kernel and from other system-level services.
This paper explores various operating systems tech-
niques needed to support time-sensitive applications and
describes the design of a time-sensitive, general-purpose
Linux system. We show that a high-precision timing fa-
cility together with a well-designed preemptible kernel
can be the basis for a low-latency response system and
such a system can have low overhead. We evaluate the
behavior of realistic time-sensitive user- and kernel-level
applications on our system and show that, in practice, it is
possible to properly support time-sensitive applications
in a general-purpose operating system without compro-
mising the performance of throughput-oriented applica-
tions.

1 Introduction

Multimedia applications, and soft real-time applications
in general, are driven by real-world demands and are
characterized by timing constraints that must be satisfied
for correct operation; for this reason, we call these appli-
cations time-sensitive. Time-sensitive applications may
require, for example, periodic execution with low jitter,
or response in a short period of time to external events
such as the arrival of network packets.

To support time-sensitive applications, a general-
purpose operating system must respect the application’s
timing constraints. For these constraints to be satisfied,

This work was partially supported by DARPA/ITO under the In-
formation Technology Expeditions, Ubiquitous Computing, Quorum,
and PCES programs and by Intel.

resources must be allocated to the application at the ap-
propriate times, hence resource allocation must be accu-
rate.

As we will show in Section 2, there are some impor-
tant requirements for achieving a correct resource allo-
cation; each of these requirements have been addressed
in the past with specific mechanisms, but unfortunately
general-purpose operating systems, such as Linux, often
do not support or integrate these mechanisms.

This paper focuses on three specific techniques that
can be integrated to satisfy the constraints of time-
sensitive applications. First, we present firm timers, an
efficient high-resolution timer mechanism.

Firm timers incorporate the benefits of periodic timers,
one-shot timers available on modern hardware [8] and
soft timers [5] and provide accurate timing with low over-
head. Second, we use a preemptible kernel design for
a responsive kernel. Finally, we use both priority and
reservation-based CPU scheduling mechanisms for sup-
porting various types of time-sensitive applications. We
have integrated these techniques in our extended version
of the Linux kernel, which we call Time-Sensitive Linux
(TSL).

Currently, general-purpose systems provide coarse-
grained resource allocation with the goal of maximiz-
ing system throughput. Such a policy conflicts with the
needs of time-sensitive applications which require more
precise allocation. Thus, recently several approaches
have been proposed to improve the timing response of
a general-purpose system such as Linux [17, 24]. These
approaches include improved kernel preemptibility and a
more generic scheduling framework. Since their focus is
hard real-time, they do not evaluate the performance of
non-real time applications.

In contrast TSL focuses on integrating an efficient sup-
port for time-sensitive applications in a general-purpose

1

OS without degrading the performance of traditional ap-
plications. One of the main contribution of this pa-
per is to show through experimental evaluation that us-
ing the above techniques it is possible to provide good
performance to time-sensitive applications as well as to
throughput-oriented applications.

The rest of the paper is organized as follows. Section 2
investigates the factors that contribute to poor temporal
response in general-purpose systems. Section 3 describes
the techniques that we have used to implement our time-
sensitive Linux system. Section 4 evaluates the behav-
ior of several timing-sensitive applications and presents
overheads of our time-sensitive Linux system. Finally, in
Section 5 we state our conclusions.

1.1 Related Work

The scheduling problem has been extensively studied by
the real-time community [11, 14, 20]. However, most of
the scheduling analysis is based on an abstract mathemat-
ical model that ignores practical systems issues such as
kernel non-preemptibility and interrupt processing over-
head. Recently, many different real-time algorithms have
been implemented in Linux and in other general pur-
pose kernels. For example, Linux/RK [17] implements
Resource Reservations in the Linux kernel, and RED
Linux [24] provides a generic scheduling framework for
implementing different real-time scheduling algorithms.
These kernels tackle the practical systems issues men-
tioned above with techniques similar to the techniques
presented in this paper. For example, RED Linux inserts
preemption points in the kernel, and Timesys Linux/RT
(based on RK technology) uses kernel preemptibility for
reducing kernel latency. Kernel preemptibility is also
used by MontaVista Linux [1]. However, while these ker-
nels work well for time-sensitive applications, their per-
formance overhead on throughput-oriented applications
is not clear.

A different approach for providing real-time perfor-
mance is used by other systems, such as RTLinux [6],
RTAI [13], and KURT[21], which decrease the unpre-
dictability of the system by running Linux as a back-
ground process over a small real-time executive. In this
case, real-time tasks are not Linux processes, but run on
the lower-level real-time executive, and the Linux kernel
runs as a non real-time task. This solution provides good
real-time performance, but does not provide it to Linux
applications. Linux processes are still non real-time,
and cannot support time-sensitive applications. Also, na-

tive real-time threads use a completely different, and less
evolved, ABI compared to the Linux one, and do not have
access to Linux device drivers.

An accurate timing mechanism is crucial for support-
ing time-sensitive applications. Thus most of the exist-
ing real-time kernels or real-time extensions to Linux
provide high resolution timers. The high resolution
timers concept was proposed by RT-Mach [19] and has
subsequently been used by several other systems such
as Rialto [9]. In a general-purpose operating system,
the overhead of such timers can affect the performance
of throughput-oriented applications. This overhead is
caused by the increased number of interrupts generated
by the timing mechanism and can be mitigated by the
soft-timer mechanism [5]. Thus, our firm-timer imple-
mentation uses soft timers.

Finally, the Nemesis operating system [10] is de-
signed for multimedia and other time-sensitive applica-
tions. However, its structure and API is very different
from the standard programming environment provided
by general-purpose operating systems such as Linux.
Our goal is to minimize changes to the programming en-
vironment to encourage the use of time-sensitive appli-
cations in a general-purpose environment.

2 Time-Sensitive Requirements

As said, to respect applications’ temporal constraints re-
sources must be allocated at the appropriate times, where
the appropriate times are determined by events of interest
to the application, such as readiness of a video frame for
display. Hence, we can view the timeline of the applica-
tion as a sequence of such events and the corresponding
application’s activations. For example, Figure 1 shows
an event and the corresponding activation. As the figure
shows, there is a latency between the event and the ac-
tivation. This latency has three components called timer
resolution latency, non-preemptible section latency and
scheduling latency as shown in the figure, which depicts
the execution sequence in a system after a wall-clock
time event. A time-sensitive system needs low total la-
tency.

There are three requirements for providing allocations
with low latency: 1) an accurate timing mechanism, 2) a
responsive kernel and 3) an appropriate CPU scheduling
algorithm. These requirements are described below.

Timing Mechanism: An accurate timing mechanism is
crucial for reducing latency as timer resolution is

2

Another application
scheduled

Interrupt
Handler

Section Latency
Non−Preemptible

Latency
Timer Resolution Scheduling

Latency

Wall−clock time
event

Time

Scheduler Application scheduledTimer Interrupt
(activation)

Figure 1: Execution sequence after wall-clock time expi-
ration event.

the most common source of latency in an operat-
ing system such as Linux [4]. Such a mechanism
can be implemented efficiently by using two tech-
niques, one-shot timers available on most common
modern hardware and soft timers [5]. These tech-
niques are complementary and can be combined
together. One-shot timers can provide high accu-
racy, but, unlike periodic timers, they require repro-
gramming at each activation. On an x86 machine,
one-shot timers can be generated using the on-chip
CPU Advanced Programmable Interrupt Controller
(APIC). This timer has very high resolution and can
be reprogrammed in a few CPU cycles.1

Soft timers check and run expired timers at strate-
gic points in the kernel thus reducing the number of
hardware generated timer interrupts and the num-
ber of user-kernel context switches. We call the
combination of these two mechanisms, firm timers.
In Section 4.3, we show that the overhead of firm
timers is not significant.

Responsive Kernel: An accurate timing mechanism is
not sufficient for reducing latency. For example,
even if a timer interrupt is generated by the hard-
ware at the correct time, the activation could oc-
cur much later because the kernel is unable to in-
terrupt its current activity. This problem occurs be-
cause either the interrupt might be disabled or the
kernel is in a non-preemptible section. In traditional
kernels, a thread entering the kernel becomes non-
preemptible and must either yield the CPU or exit
the kernel before an activation can occur. The so-
lution is to reduce the size of such non-preemptible
sections as described in Section 3.2.

CPU Scheduling Algorithm: The scheduling problem

1In contrast, reprogramming the standard programmable interval
timer (PIT) on an x86 is very expensive because it requires several
slow out instructions on the ISA bus.

for providing precise allocations has been exten-
sively studied in the literature but most of the work
relies on some strict assumptions such as full pre-
emptibility of tasks. A responsive kernel with an
accurate timing mechanism enables implementation
of such CPU scheduling strategies because it makes
the assumptions more realistic and improves the ac-
curacy of scheduling analysis. In this paper, we
use two different real-time scheduling algorithms:
a proportion-period scheduler and a priority-based
scheduler.

The proportion-period scheduler provides tempo-
ral protection to tasks. With proportion-period, we
model application behavior by identifying a char-
acteristic delay that the application can tolerate and
allocating a fixed proportion of the CPU within a
period equal to the delay to each task in the applica-
tion. Alternatively, we assign priorities to all tasks
in some application-specific order for use with the
priority scheduler.

While each of these requirements have been addressed
in the past, they have generally been applied to specific
problems in limited environments. When applied in iso-
lation in the context of a general-purpose system, they
fail to provide good time-sensitive performance. For ex-
ample, a high resolution timer mechanism is not use-
ful to user-level applications without a responsive kernel.
This probably explains why soft timers [5] did not export
their functionality to the user level through the standard
POSIX API. Conversely, a responsive kernel without ac-
curate timing has only a few applications. For example,
the low latency Linux kernel [16] provides low latency
only when an external interrupt source such as an audio
card is used.

Similarly, a scheduler that provides good theoretical
guarantees is not effective when the kernel is not respon-
sive or its timers are not accurate. Conversely, a respon-
sive kernel with an accurate timing mechanism is un-
able to handle a large class of time-sensitive applications
without an effective scheduler. Unfortunately, these so-
lutions have generally not been integrated: on one hand,
real-time research has developed good schedulers and an-
alyzed them from a mathematical point of view, and on
the other hand, there are real systems that provide a re-
sponsive kernel but provide simplistic schedulers that are
only designed to be fast and efficient [1]. Real-time oper-
ating systems integrate these solutions for time-sensitive
tasks but tend to ignore the performance overhead of their

3

solutions on throughput-oriented applications [17]. Our
goal is to support both types of applications well.

It is worth noting that latency due to system services,
such as the X11 server for graphical display [3] on a
Linux system, has the same components as kernel latency
described above. In fact, the simple scheduling model
presented above assumes that tasks are independent. In
a real application, tasks can be interdependent which can
cause priority inversion problems. For example, in Sec-
tion 4.2.1 we show that a multimedia player that uses the
X11 server for display can perform sub-optimally due to
priority inversion, even if the kernel allocates resources
correctly. The X11 server operates on client requests in
an event-driven manner and the handling of each event
is non-preemptible and generally in FIFO order. As a
result, time-sensitive clients expecting service from the
server observe latencies that depend on the time to ser-
vice previous client requests: the performance of time-
sensitive applications depends on not just kernel support
for such applications but also the design of other system
services. Thus in Section 3.3 we enhance the priority
scheduler with techniques that solve priority inversion.

In the next section, we present the components of TSL,
providing accurate timers, a responsive kernel, and time-
sensitive scheduling algorithms to support the require-
ments highlighted above.

3 Implementing Time-Sensitive Sys-
tems

We propose three techniques, firm timers, kernel pre-
emptibility and proportion-period CPU scheduling that
aim to reduce the total latency. We have integrated these
techniques in the 2.4.16 Linux kernel to implement TSL.

3.1 Firm Timers

Firm timers provide an accurate timing mechanism with
low overhead by combining three approaches for imple-
menting timers: one-shot timers, periodic timers and soft
timers. One-shot timers provide high accuracy while pe-
riodic timers and soft timers provide low overhead tim-
ing.

Periodic timers are normally implemented with pe-
riodic tick interrupts. For example, on x86 machines,
this interrupt is generated by the Programmable Interval
Timer (PIT), and on Linux, the period of the interrupt is
10 ms. As a result, the maximum timer resolution latency

is 10 ms. This latency can be reduced by reducing the
tick period but this solution increases system overhead
because more tick interrupts are generated. To reduce
the overhead of timers, we have to move from a periodic
timer interrupt model to a one-shot timer interrupt model
where interrupts are generated only when needed. The
following example explains the benefits of one-shot in-
terrupts. Consider two tasks with periods 5 and 7 ms.
With periodic interrupts, the tick period must be 1 ms to
eliminate timer resolution latency. Hence in 35 ms, there
would be 35 interrupts generated. With one-shot inter-
rupts, interrupts will be generated at 5 ms, 7 ms, 10 ms,
etc., and the total number of interrupts is 11. One-shot
timers have to be reprogrammed for the next timer event
at each activation (unlike periodic timers) but avoid the
flood of unwanted interrupts that are necessary to main-
tain good accuracy with a periodic timer and an aperiodic
interval.

One-shot timers improve timer accuracy but have their
own sources of overhead. These overheads occur due to
three reasons: 1) reprogramming at each activation, 2)
maintenance of timer data structures, and 3) increased
interrupts with fine-grained timing. The data structures
for one-shot timers are less efficient than for periodic
timers. For instance, periodic timers can be implemented
using calendar queues [7] which operate in ������� time,
while one-shot timers require priority heaps which re-
quire �	��
���
�������� time, where � is the number of active
timers. This difference exists because periodic timers
have a natural bucket width (in time) that is the tick pe-
riod of the timer interrupt. Calendar queues need this
bucket width and derive their efficiency by providing no
ordering to timers within a bucket. One-shot fine-grained
timers have no corresponding bucket width. Firm timers
are implemented using one-shot timers. Below, we de-
scribe the methods used by firm timers to reduce each
source of overhead.

Timer reprogramming: Fortunately, timer reprogram-
ming is inexpensive on modern hardware. For
example, our firm-timers implementation uses the
APIC one-shot timer present in modern x86 ma-
chines. The APIC is set by writing a value into a
register which is decremented at each memory bus
cycle until it reaches zero and generates an interrupt.
Given a 100 mhz memory bus, a one-shot timer
has a theoretical accuracy of 10 nanoseconds.2This

2In practice, the interrupt handler is much slower than 10 ns and
is the limiting factor for timer accuracy.

4

timer resides on-chip an can be reprogrammed in a
few cycles without noticeable performance penalty.

Data structures: Firm timers maintain a timer queue
for each processor. When the APIC timer expires,
the interrupt handler checks the timer queue and ex-
ecutes the callback function associated with each
expired timer in the queue. Expired timers are re-
moved while periodic timers are re-enqueued after
their expiration field is incremented by the value in
their period field. The APIC timer is then repro-
grammed to generate an interrupt at the next timer
event.

The firm timer expiration times are specified as CPU
clock cycle values. We use two performance opti-
mizations in the firm timers implementation. First,
the expiration time is specified as a 32 bit quantity
although the current time in CPU cycles is stored
in a 64 bit register in an x86 processor. The 32 bit
expiration value avoids expensive 64 bit time con-
versions from CPU cycles to memory cycles needed
for programming the APIC timer. This choice of a
(signed) 32 bit value limits the use of firm timers to
a maximum one second timeout on a modern two
Ghz processor due to time roll over. Fortunately,
one-shot timers are not needed for long timeouts.
Instead, and second, firm timers combine periodic
timers together with one-shot timers for long time-
outs. A firm timer for a long timeout uses a peri-
odic timer to wake up at the last period before the
timer expiration and then sets the one-shot APIC
timer. Hence, our firm timers approach only has ac-
tive one-shot timers within one tick period. Since
the number of such timers, � , is decreased, the data
structure implementation is more efficient.

Increased interrupts: The increased timer accuracy of
one-shot timers comes at the cost of increased over-
head because every timer interrupt leads to a user-
kernel context switch that can stall the CPU pipeline
and can result in cache pollution. To solve this prob-
lem, firm timers use soft timers [5]. The APIC timer
can be set to always overshoot by a fixed amount of
time called timer latency. Soft timers add checks for
expired timers at strategic points in the kernel such
as system call, interrupt, and exception return paths.
In some cases, an interrupt, system call, or excep-
tion may happen after a timer has expired but before
the APIC timer generates an interrupt. At this point,

the timer expiration is handled and the APIC timer
is reprogrammed for the next timer event. This ap-
proach avoids the extra user-kernel context switch
overhead of the timer interrupt at the cost of some
timer accuracy.

Soft timer checks are normally placed at kernel exit
points, which end critical sections in the kernel and
where the scheduler function can be invoked. A pre-
emptible kernel design, as described in Section 3.2,
reduces the granularity of critical sections in the ker-
nel and thus allows more frequent soft timer checks
and hence can provide better timing accuracy.

The timer overshoot or latency value allows making
a tradeoff between accuracy and overhead. A small
value of timer latency provides high timer resolu-
tion while a large value decreases the timer over-
head. This latency value can be changed dynami-
cally. With a zero value, we obtain hard timers and
with a large value, we obtain soft timers. A choice
in between leads to a hybrid approach that is used by
our firm timers. This choice depends on the timing
accuracy needed by the application. Our current im-
plementation uses a single global latency value but
it is easy to extend this implementation so that each
timer can specify its desired latency.

We want to provide the benefits of the accurate timing
mechanism to standard user-level applications. These ap-
plications use the standard POSIX interface calls such
as nanosleep(), pause(), setitimer(), se-
lect() and poll(). We have modified the imple-
mentation of these system calls to use firm timers without
changing their interface. As a result, unmodified appli-
cations automatically get increased timer accuracy in our
system.

3.2 Kernel Responsiveness

A kernel is responsive when its non-preemptible sections,
which keep the scheduler from being invoked to sched-
ule a task, are small. For example, if the timer inter-
rupt in Figure 1 is disabled, the task can only enter the
ready queue when the interrupt is re-enabled. In addi-
tion, the task upon entering the ready queue may still not
be scheduled if another task is running in the kernel in a
non-preemptible section.

The length of non-preemptible sections in a kernel de-
pends on the strategy that the kernel uses to guarantee the

5

consistency of its internal structures and on the internal
organization of the kernel. Traditional general purpose
kernels allow at most one execution flow in the kernel at
any given time by disabling preemption when an execu-
tion flow enters the kernel, i.e., when an interrupt fires or
when a system call is invoked. Thus the non-preemptible
section latency is equal to the maximum length of a sys-
tem call plus the processing time of all the interrupts that
fire before returning to user mode. Unfortunately, this
value can be as large as 100 ms [4].

One approach that reduces non-preemptible section la-
tency is explicit insertion of preemption points at strate-
gic points inside the kernel so that a thread in the ker-
nel explicitly yields the CPU to some other thread af-
ter it has executed for some time. In this way, the size
of non-preemptible sections is reduced. The choice of
preemption points depends on system call paths and has
to be manually placed after careful auditing of system
code. This approach is used by some real-time versions
of Linux, such as RED Linux [17] and by Andrew Mor-
ton’s low-latency project [16]. Non-preemptible section
latency in such a kernel decreases to the maximum time
between two preemption points.

Another approach, used in most real-time systems, re-
moves the constraint of a single execution flow inside the
kernel. Thus it is not necessary to disable preemption
when an execution flow enters the kernel. To support
this level of kernel preemptibility, kernel data must be ex-
plicitly protected using mutexes or spinlocks. The Linux
preemptible kernel project [12] uses this approach and
disables kernel preemption only when a spinlock is held.
In a preemptible kernel, the non-preemptible section la-
tency is determined by the maximum amount of time for
which a spinlock is held inside the kernel.

Our previous evaluation [4] shows that these ap-
proaches work fairly well and should be incorporated in
the design of any time-sensitive kernel. Our experiments
with real applications in Section 4.2 show that a respon-
sive kernel complements an accurate timing mechanism
to help improve time-sensitive application performance.

3.3 CPU Scheduling

The CPU scheduling algorithm should ensure that time-
sensitive tasks obtain their correct allocation with low la-
tency. We use the proportion-period and priority models
as described Section 2 to schedule time-sensitive appli-
cations. The proportion-period model provides temporal
protection to applications and allows balancing the needs

of time-sensitive applications with non-real time applica-
tions but requires specification of proportion and period
scheduling parameters of each task. The priority model
has a simpler programming interface but assumes that the
timing needs of tasks are well-behaved.

3.3.1 Proportion-Period CPU Scheduling

For a single independent task, the simplest scheduling so-
lution is to assign the highest priority to the task. How-
ever, with this solution, a misbehaving task that does not
yield the CPU can starve all other tasks in the system.
A time-sensitive general purpose system should provide
temporal protection to tasks so that misbehaved tasks that
consume “too much” execution time do not affect the
schedule of other tasks. The temporal protection prop-
erty is similar to memory protection in standard operating
systems that provides memory isolation to each applica-
tion.

Our proportion-period allocation model automatically
provides temporal protection because each task is allo-
cated a fixed proportion every period. The period of a
task is related to some application-level delay require-
ment of the application, such as the period of a periodic
task, or it can be derived from the jitter requirements of
a time-sensitive task. The proportion is the amount of
CPU allocation required every period for correct task ex-
ecution. The proportion-period model can be effectively
implemented using well known results from real-time
scheduling research[15]. In this implementation, classi-
cal real-time scheduling techniques (EDF or RM priority
assignment) are used and a task is allowed to execute as
a real-time task for a time � equal to the product of its
proportion � and its period � and then blocking the task
(or scheduling it as a non real-time task) until its next pe-
riod. In this way, a task is reshaped so that it behaves like
a periodic real-time task with parameters ��������� and can
be properly scheduled by a classical real-time scheduler.
A similar technique is used in networks by traffic shapers
such as leaky buckets or token buckets.

We have implemented a proportion-period CPU sched-
uler in Linux to provide temporal protection to tasks.
This scheduler uses an EDF scheduling mechanism to
obtain full processor utilization. In addition, when two
tasks have the same deadline, the one with the small-
est remaining capacity is scheduled to reduce the average
finishing time.

6

3.3.2 Priority CPU Scheduling

In the priority model, real-time priorities are assigned to
time-sensitive tasks based on application needs [11]. One
key problem with the priority model is priority inversion
which occurs when an application is composed of mul-
tiple tasks that are interdependent. The classic priority
inversion problem occurs with three tasks. For example,
consider a simple example of a video application consist-
ing of a client and an X11 server. Let us assume that the
client has been assigned the highest priority because it
is time-sensitive. It displays graphics by requesting ser-
vices from the X11 server. When it needs to display a
video frame, it sends the frame to the server and then
blocks waiting for the display to complete. If the X11
server has a priority lower than the client’s priority, then
it can be preempted by another task with a medium prior-
ity. Hence the medium priority task is delaying the server
and thus delaying the high-priority client task.

We use a variant of the priority ceiling protocol [20]
called the highest locking priority (HLP) protocol to cope
with priority inversion. The HLP protocol works as fol-
lows: when a task acquires a resource, it automatically
gets the highest priority of any task that can acquire this
resource. In the example above, the display is the shared
resource and thus the X11 server gets the highest priority
among all time-sensitive clients accessing it. Hence, the
X11 server gets the priority of the client task and is not
preempted by the medium priority task.

The HLP protocol is very general and works with
across multiple servers. Interestingly, this protocol han-
dles the FIFO ordering problem in server queues men-
tioned in Section 3. Since servers have the highest prior-
ity among all their potential clients, they are able to serve
each request immediately after it is enqueued and thus
the queue size is never more than one and the queuing
strategy is not relevant. After servicing the request, the
next highest-priority client is scheduled and the latency
caused by the server is minimized.

4 Evaluation

This section describes the results of experiments we per-
formed to evaluate the behavior of time-sensitive appli-
cations running on this system and the overheads of this
system. Our experiments focus on evaluating the behav-
ior of realistic time-sensitive applications running on a
loaded general-purpose environment, and were run on a

1.5 Ghz Pentium-4 Intel processor with 512 MB of mem-
ory.

4.1 Micro Benchmarks

Before evaluating the impact of the latency reduction
techniques used in TSL on a real application, we per-
formed some micro-benchmarks for evaluating the ker-
nel latency as defined in Section 2.

As previously shown, the kernel latency is composed
by the timer resolution latency, the non-preemptible la-
tency, and the scheduling latency. We evaluated the first
two components in isolation by running a time-sensitive
process that requires to sleep for a specified amount of
time (using the nanosleep() system call) and mea-
sures the time that it actually sleeps. In a first set of
experiments, we evaluated the timer resolution latency,
showing that it is ������� in standard Linux, and that firm
timers can reduce it to few microseconds.

After that, we evaluated the non-preemptible latency
when a number of different system loads are ran in back-
ground. The first interesting result was that on standard
Linux the worst case non-preemptible latency (occurring
when the kernel is copying large amounts of data be-
tween kernel and user space) can arrive to ��� ����� , but
that in most common cases the non-preemptible latency
is less than ������� , and it is hidden by the timer reso-
lution latency. However, when firm timers are used the
non-preemptible latency becomes more visible, and it is
possible to see that it is easy to obtain latencies bigger
than !"��� . Using appropriate kernel preemptibility tech-
niques, the latency can be greatly reduced, and TSL pro-
vides a maximum kernel latency of less than �#��� on our
test machine.

The full details of the experiments and more results
are presented in our previous paper [4], that we briefly
summarized here for the reader’s convenience.

4.2 Latency of Real Applications

After evaluating the kernel latency in isolation through
micro-benchmarks, we performed experiments on two
real applications, mplayer and the proportion-period
scheduler which is a kernel-level application. We choose
audio/video synchronization skew as the latency metric
for mplayer. The latency metric for the proportion-period
scheduler is maximum error in the allocation and period
boundary.

7

4.2.1 Mplayer

Mplayer [2] is an audio/video player that can handle sev-
eral different media formats. Mplayer synchronizes au-
dio and video streams by using timestamps that are asso-
ciated with the audio and video frames. The audio card is
used as a timing source, i.e., audio samples are put in the
audio card buffer, and when a video frame is decoded,
its timestamp is compared with the timestamp of the cur-
rently played audio sample. If the video timestamp is
smaller than the audio timestamp then the program is late
(i.e., a video deadline has been missed) and the video is
immediately displayed. Otherwise, the system sleeps un-
til the video and audio timestamps are equal and then
displays the video.

On a responsive kernel and with sufficient avail-
able CPU capacity, audio/video synchronization can be
achieved by simply sleeping for the correct amount of
time. Thus, mplayer uses the Linux nanosleep() call
for synchronization. Unfortunately, if the kernel is unre-
sponsive, mplayer will not be able to sleep for the correct
amount of time leading to poor audio/video synchroniza-
tion and high jitter in the inter-frame display times. Syn-
chronization skew and display jitter are correlated and
thus this paper presents results only for audio/video syn-
chronization skew.

We compare the audio/video skew of mplayer on stan-
dard Linux and on our time-sensitive Linux under three
competing loads: 1) non-kernel CPU load, 2) kernel CPU
load, and 3) file system load. For non-kernel load, a user-
level CPU stress test is run in the background. For ker-
nel CPU load, a large memory buffer is copied to a file,
where the kernel uses CPU to move the data from the
user to the kernel space. Standard Linux does this activ-
ity in a non-preemptible section. This load spends 90%
of its execution time in kernel mode. For the file system
load, a large directory is copied recursively and the file
system is flushed multiple times to create heavy file sys-
tem activity. In each of these tests, mplayer is run for 90
seconds at real-time priority.

Non-kernel CPU load Figure 2 shows the audio/video
skew in mplayer on a Linux and a time-sensitive Linux
kernel when a CPU stress test is the competing load. This
competing load runs an infinite loop consuming as much
CPU as possible. Figure 2(a) shows that for standard
Linux the maximum skew is large and close to 50 ms
when the X11 server is run at a non-real time priority.
For most data points, the skew lies between -5 ms to

5 ms because of Linux’s 10 ms timer resolution. Fig-
ure 2(b) shows that the skew for time-sensitive Linux,
when X11 is run at a non-real time priority, is still large
(up to $!"���) but does not show oscillations between -
5 ms and 5 ms. Finally, Figure 2(c) shows that the skew
for time-sensitive Linux improves considerably and is
less than 250 us when the X11 server runs at real-time
priority. The real-time priority value of X11 is the same
as the priority assigned to mplayer.

These figures show that time-sensitive Linux works
well on a non-kernel CPU load as long as the HLP proto-
col, described in Section 3.3.2, is used to assign priorities
to time-sensitive tasks and to server tasks with the shared
resources. Linux with the X11 server at real-time prior-
ity still has a skew between -5 ms to 5 ms because of the
timer resolution.

As a result of this experiment, the rest of the exper-
iments in this section are run with mplayer and X11 at
real-time priority to avoid any user-level priority inver-
sion effects.

Kernel CPU Load The second experiment compares
the audio/video skew in mplayer between Linux and
time-sensitive Linux when the background load copies a
large 8 MB memory buffer to a file with a single write
system call. Figure 3(a) shows the audio/video skew is
as large as 90 ms for Linux. In this case, the kernel
moves the data from the user to the kernel space in a non-
preemptible section. Figure 3(b) shows that the maxi-
mum skew is less than 400 us for time-sensitive Linux.
This improvement occurs as a result of improved ker-
nel preemptibility for large write calls in time-sensitive
Linux.

File System Load The third experiment compares the
audio/video skew in mplayer between Linux and time-
sensitive Linux when the background load repeatedly
copies a compiled Linux kernel sources directory recur-
sively and then flushes the file system. This directory has
13000 files and 180 MB of data and is stored on the Linux
ext2 file system. The kernel uses DMA for transferring
disk data. Figure 4(a) shows that the skew under Linux
can be as high as 120 ms while Figure 4(b) shows that
skew is less than 200 us under time-sensitive Linux. This
result shows that time-sensitive Linux can provide low
latencies even under heavy file-system and disk load.

8

-10000

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(a) Linux, X server non-real time

0

5000

10000

15000

20000

25000

30000

35000

40000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(b) Time-sensitive Linux, X server
non-real time

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(c) Time-sensitive Linux, X server
real-time

Figure 2: Audio/Video Skew on Linux and time-sensitive Linux. Background load is a CPU stress test that run an
empty loop. Note that the three figures have different scales, and that the maximum skew in Figure (c) is much
smaller than the maximum skew in the other two cases.

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

Firm Timers

(a) Linux

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

Firm Timers

(b) Time-sensitive Linux

Figure 3: Audio/Video Skew on Linux and time-sensitive Linux. Background load copies a 8 MB buffer from user
level to a file with a single write call. Note that the two figures have different scales, and that the maximum skew
in Figure (b) is much smaller than in Figure (a)

4.2.2 Proportion-Period Scheduler

Our original motivation for implementing a time-
sensitive Linux system was to accurately implement a
proportion-period scheduler. This scheduler is used
to provide a reservation mechanism for a higher-level
feedback-based real-rate scheduler[22]. The real-rate
scheduler uses an application-specific progress rate met-
ric in time-sensitive tasks to automatically assign correct
allocations to such tasks. For example, the progress of a
producer or consumer of a bounded buffer can be inferred

by measuring the fill-level of the bounded buffer. If the
buffer is full, the consumer is falling behind and needs
more resources while the producer needs to be slowed
down.

The feedback allocation accuracy depends (among
other factors) on the accuracy of actuating proportions.
There are three sources of inaccuracy in our proportion-
period scheduler implementation on Standard Linux: 1)
the period boundaries are quantized to multiples of the
timer resolution or 10 ms, 2) the policing of proportions
is also limited to the same value because timers have to

9

-20000

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(a) Linux

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(b) Time-sensitive Linux

Figure 4: Audio/Video Skew on Linux and time-sensitive Linux. Background load repeatedly copies a compiled
Linux kernel sources directory recursively and then flushes the file system. Note that the two figures have different
scales, and that the maximum skew in Figure (b) is much smaller than in Figure (a).

be used to implement policing, and 3) heavy loads cause
long non-preemptible paths and thus large jitter in period
boundaries and proportion policing. These inaccuracies
introduce noise in the system that can cause large alloca-
tion fluctuations even when the input progress signal can
be captured perfectly and the controller is well-tuned.

Our time-sensitive Linux’s proportion-period sched-
uler uses firm-timers for implementing period boundaries
and proportion policing. To evaluate the accuracy of this
scheduler, we ran two processes with proportions of 40%
and 20% and periods of 8192 us and 512 us respectively.3

These processes were run first on an unloaded system to
verify the correctness of the scheduler. Then, we eval-
uated the scheduler behavior when the same processes
were run with competing file system load (described in
Section 4.2.1). In this experiment each process runs a
tight loop that repeatedly invokes the gettimeofday sys-
tem call to measure the current time and stores this value
in an array. The scheduler behavior is inferred at the user-
level by simply measuring the time difference between
successive elements of the array. A similar technique is
used by Hourglass [18].

Table 1 shows the maximum deviation in the propor-
tion allocated and the period boundary for each of the two

3The current proportion-period scheduler allows task periods that
are multiples of 512 us. While this period alignment restriction is
not needed for a proportion-period scheduler, it simplifies feedback-
based adjustment of task proportions.

processes. This table shows that the proportion-period
scheduler allocates resources with a very low deviation
of less than % !"&�� on a lightly loaded system. Under high
file system load the results show larger deviations. These
deviations occur because execution time is “stolen” by
the kernel interrupt handling code which runs at a higher
priority than user-level processes in Linux.

One way to improve the proportion-period scheduling
performance in the presence of heavy file system load is
to defer certain parts of interrupt processing after real-
time processes. We are currently investigating this solu-
tion.

An alternative method for evaluating the scheduler be-
havior is to use a kernel tracer, such as LTT[23], that can
register the occurrence of certain key events in the ker-
nel. These events can be analyzed later after program
execution. Kernel tracers are often used in real-time sys-
tems for verifying the temporal correctness of the ker-
nel and of time-sensitive applications. We ported LTT
to time-sensitive Linux, and Figure 5 shows a sample
session analyzing the schedule generated in the previous
experiments. The trace visualizer application shows the
schedule, visualizing processes execution (an executing
process is shown in black): the two proportion-period
processes, marked as “unnamed child” by the trace vi-
sualizer and characterized by PIDs 2493 and 2492, are
easily recognizable, because they use most of the CPU

10

No Load File System Load
Max Proportion Max Period Max Proportion Max Period

Deviation Deviation Deviation Deviation
Task 1

Proportion: 40%, 3276.8 us 0.3% (' 25us) 5us 6% (' 490us) 534us
Period: 8192 us

Task 2
Proportion: 20%, 102.4 us 0.7% (' 3us) 10us 4% (' 20us) 97us

Period: 512 us

Table 1: Deviation in proportion and period for two processes running on the proportion-period scheduler on time-
sensitive Linux.

Figure 5: Linux kernel tracer (LTT) helps to visualize the schedule generated by two proportion-period processes.

time. Also note that their execution is regular, and co-
incides with the one expected for two processes with
proportion-periods ��()�+*,�.-/�10 %)� and �2%��/�.!/�1%)� . All the
non time-sensitive processes can execute when processes
2492 and 2493 exhausted their proportions: for example,
a small execution of the lyx editor is visible after the first
period of process 2493.

4.3 System Overhead

High resolution timers in a general purpose OS can po-
tentially have high overheads. To mitigate this overhead,
our firm timers implementation combines hard and soft
timers. In this section, we present experiments to high-
light the advantages of firm timers as compared to pure
hard timers and show that the firm-timer overhead is ac-
ceptable.

In all these experiments, we measure the performance

11

26

27

28

29

30

31

32

33

hard firm 0 firm 50 firm 100 firm 500 soft

F
in

is
hi

ng
 T

im
es

povray with 1000 ms period timer

1000

Figure 7: Comparison between Hard and Firm timers
with different accuracy.

of a throughput-oriented application when one or more
time-sensitive processes are run in the background to
stress the firm timers mechanism. For the throughput
application, we selected povray, a ray-tracing appli-
cation and used it to render a standard benchmark image
called skyvase.

Figure 6 shows the performance overhead of firm
timers as compared to standard Linux timers when multi-
ple periodic time-sensitive processes are running simul-
taneously. We conducted experiments with 20 and 50
timers running with 10 ms and 100 ms period. The
overhead is defined as the ratio of the time needed by
povray to render the image in time-sensitive Linux and
the time needed to render the same image in standard
Linux. The figures show the overhead for time-sensitive
Linux with pure hard timers, firm timers with accuracy
500 us, and pure soft timers. These figures show that
pure soft timers do not have any overhead as compared
to standard Linux timers (except when 50 time-sensitive
processes with period 10 ms are run), hard timers have a
slightly greater overhead and firm timers, in this case, do
not provide much improvement.

We also performed the same experiment but with pe-
riodic processes running at higher frequencies. Figure
7 shows the time needed to render the image when 20
periodic processes are run with a period of 1 ms. We do
not compare these results with Linux because Linux does
not support 1 ms timer accuracy. The benefit of the firm
timers mechanism for improving throughput becomes
obvious when the process periods are made shorter.4

4Note that the low execution time with pure soft timers is because

The previous experiments show that pure hard timers
have lower overhead in some cases and firm timers have
lower overhead in other cases. This result can be ex-
plained by the fact that there is a cost associated with
checking whether a soft timer has expired. Thus, the soft
timers mechanism is effective in reducing overhead when
enough of these checks result in the firing of a soft timer.
Otherwise the firm-timer overhead as compared to pure
hard timers will be higher.

More formally, the previous behavior can be explained
as follows. Let � be the total number of timers that must
fire in a given interval of time, 3 the number of hard
timers that fire, 4 be the number of soft timers that fire
(hence, �65 38794) and : be the number of checks for
soft timers expirations. Let :<; be the cost for firing a
hard timer, :>= be the cost of firing a soft timer, and :<? be
the cost of checking if some soft timer has expired. The
total cost of firing firm timers is : ? :@79:A; 3B79: = 4 . If
pure hard timers are used then the cost is :C; � . Hence,
firm timers reduce the system overhead if

:A?.:D7D:A; 387D:E=F4HG@:A; �JI

:A?.:KG@:A; �L�NM 3 �OM :E=P4 I
:A?.:KG � :A; M :E= � 4 I
4RQ :TS@: ? Q � :A; M : = �

Thus when the ratio of the number of the soft timers
that fire to the number of soft timer checks is suffi-
ciently large (i.e., it is larger than :C?.Q � :A; M :E= �), then
firm timers are effective in reducing the high-resolution
timers overhead. In our experiments, we measured :U; 5
-"&�� , :E= 5 �#&V� , and :A? 5 �/WX�1!/��Y YZ&V� , hence the
firm timers mechanism becomes effective when 4[Q :\S
�/WX�1!/��Y Y Q �2-	MJ���U5]�/W^�)%/�1_ - % , that is to say when more
than %`WX��* of the soft timer checks result in a soft timer
to be fired.

Note that the number of checks : depends on the
amount of interrupts and system calls that happen in the
machine, whereas the amount of soft timers that fire 4
depends on how the checks and the timers’ deadlines are
distributed in time. The original work on soft timers [5]
studied these distributions for a number of workloads.
Their results show that for many workloads the distribu-
tions are such that checks often occur close to deadlines
(thus increasing 4RQ :), although how close is very work-
load dependent. Firm timers have the benefit of assuring

not all timers fired at the correct times. Thus this value should not be
considered in the comparison.

12

0.9

0.95

1

1.05

1.1

No timers 20 timers, 100 ms 50 timers, 100 ms 20 timers, 10 ms 50 timers, 10 ms

N
or

m
al

iz
ed

 F
in

is
hi

ng
 T

im
e

povray with hard timers

hard

(a) Hard Timers

0.9

0.95

1

1.05

1.1

No timers 20 timers, 100 ms 50 timers, 100 ms 20 timers, 10 ms 50 timers, 10 ms

N
or

m
al

iz
ed

 F
in

is
hi

ng
 T

im
e

povray with firm500 timers

firm500

(b) Firm Timers (accuracy a.bFbPc d)

0.9

0.95

1

1.05

1.1

No timers 20 timers, 100 ms 50 timers, 100 ms 20 timers, 10 ms 50 timers, 10 ms

N
or

m
al

iz
ed

 F
in

is
hi

ng
 T

im
e

povray with soft timers

soft

(c) Soft Timers

Figure 6: Overhead of firm timers in time-sensitive Linux as compared to standard Linux.

response even for workloads with poor distributions, yet
retaining the performance benefits of soft timers when
the workload permits.

5 Conclusions

This paper describes the design and implementation of
a time-sensitive Linux system that can support applica-
tions requiring fine-grained resource allocation and low-
latency response. The three key techniques that we
have investigated in the context of our time-sensitive
Linux system are firm timers for accurate timing, ker-
nel preemptibility for improving kernel responsiveness
and proportion-period scheduling for providing precise
allocations to tasks. Our experiments show that integrat-
ing these techniques helps provide allocations to time-
sensitive tasks with a variation of less than 400 us even
under heavy CPU, disk and file system load. We show
that the overhead of time-sensitive Linux on throughput-
oriented applications is low and thus such a system
can be used effectively for time-sensitive and general-
purpose applications.

Although the first results presented in this paper are
promising, TSL still need further investigation, since
there are open issues related, for example, to interrupt
service, to network latencies, and to firm timers perfor-
mance. For firm timers in particular, we interested in
investigating whether real workloads commonly lead to
the 4RQ :eSgf condition under which firm timers are ef-
fective.

References

[1] Montavista software - powering the embedded rev-
olution. http://www.mvista.com/.

[2] Mplayer - movie player for linux. http://www.
mplayerhq.hu.

[3] The X window system. www.x.org.

[4] Luca Abeni, Ashvin Goel, Charles Krasic, Jim
Snow, and Jonathan Walpole. A Measurement-
Based Analysis of the Real-Time Performance of
the Linux Kernel. In submission to the Real Time
Technology and Applications Symposium (RTAS),
March 2002.

[5] Mohin Aron and Peter Druschel. Soft Timers: Effi-
cient Microsecond Software Timer Support for Net-
work Processing. ACM Transactions on Computer
Systems, August 2000.

[6] Michael Barabanov and Victor Yodaiken. Real-
time linux. Linux Journal, March 1996.

[7] Randy Brown. Calendar queues: A fast 0(1) prior-
ity queue implementation for the simulation event
set problem. CACM, 31(10):1220–1227, October
1988.

[8] Intel Corporation, editor. Pentium Pro Family De-
veloper’s Manual, chapter 7.4.15. Intel, December
1995.

[9] Michael B. Jones, Joseph S. Barrera III, Alessandro
Forin, Paul J. Leach, Daniela Rosu, and Marcel-
Catalin Rosu. An overview of the rialto real-time

13

architecture. In In Proceedings of the Seventh ACM
SIGOPS European Workshop, Connemara, Ireland,
September 1996.

[10] Ian M. Leslie, Derek McAuley, Richard Black,
Timothy Roscoe, Paul T. Barham, David Evers,
Robin Fairbairns, and Eoin Hyden. The design and
implementation of an operating system to support
distributed multimedia applications. IEEE Journal
of Selected Areas in Communications, 14(7):1280–
1297, 1996.

[11] C. L. Liu and J. Layland. Scheduling algorithm for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46–61, Jan 1973.

[12] Robert Love. The Linux Kernel Preemption
Project. http://kpreempt.sourceforge.
net.

[13] P. Mantegazza, E. Bianchi, L. Dozio, and S. Pa-
pacharalambous. RTAI: Real time application in-
terface. Linux Journal, 72, 2000.

[14] C. W. Mercer, S. Savage, and H. Tokuda. Pro-
cessor Capacity Reserves: Operating System Sup-
port for Multimedia Applications. In Proceedings
of the IEEE International Conference on Multime-
dia Computing and Systems, May 1994. To appear.
(This is a condensed version of tech report CMU-
CS-93-157.).

[15] Clifford W. Mercer and Hideyuki Tokuda. Pre-
emptibility in real-time operating systems. In In
Proceedings of the 13th IEEE Real-Time Systems
Symposium, December 1992.

[16] Andrew Morton. Linux scheduling latency.
http://www.zip.com.au/˜akpm/linux/
schedlat.html.

[17] Shui Oikawa and Raj Rajkumar. Linux/RK: A
portable resource kernel in Linux. In Proceedings
of the IEEE Real-Time Systems Symposium Work-
In-Progress, Madrid, December 1998.

[18] John Regehr. Inferring scheduling behavior with
hourglass. In Proceedings of the Freenix Track of
the 2002 USENIX Annual Technical Conference,
Monterey, CA, June 2002.

[19] S. Savage and H. Tokuda. Rt-mach timers: Export-
ing time to the user. In In Proceedings of USENIX
3rd Mach Symposium, April 1993.

[20] Lui Sha, Raghunathan Rajkumar, and John
Lehoczky. Priority inheritance protocols: An ap-
proach to real-time synchronization. IEEE Trans-
actions on Computers, 39(9):1175–1184, Septem-
ber 1990.

[21] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and
D. Niehaus. A firm real-time system imple-
mentation using commercial off-the-shelf hardware
and free software. In Proceedings of the IEEE
Real-Time Technology and Applications Sympo-
sium, 1998.

[22] David Steere, Ashvin Goel, Joshua Gruenberg, Dy-
lan McNamee, Calton Pu, and Jonathan Walpole.
A Feedback-driven Proportion Allocator for Real-
Rate Scheduling. In Proceedings of the Third
USENIX Symposium on Operating Systems Design
and Implementation. USENIX, February 1999.

[23] Karim Yaghmour and Michel R. Dagenais. Mea-
suring and characterizing system behavior using
kernel-level event logging. In USENIX Annual
Conference, San Diego, CA, June 2000.

[24] Yu-Chung and Kwei-Jay Lin. Enhancing the Real-
Time Capability of the Linux Kernel. In Proceed-
ings of the IEEE Real Time Computing Systems and
Applications, Hiroshima, Japan, October 1998.

14

