
TOOLS FOR LARGE-SCALE SOITWARE ENGINEERING

Robert G. Babb II
Oregon Graduate Center

Abstract

The goal of this project is the establishment of a support environment for pro
gramming via direct implementation of data flow diagrams. Programs are
viewed as being made up of data coupled systems of data-activated processing
elements. Processing elements are linked together by data paths to define pro
cessing subtasks and interaction patterns. System data flow diagrams are used
to graphically display data linkages. A coherent hierarchy of system· diagrams
defines how complex systems are composed from successively simpler systems.
The lowest level system actions are specified by more or less conventional pro
grams.
The system has three primary software tools: an interactive 'graphics-based
designer interface for data flow diagrams; a system design tracker that allows
simultaneous. multiperson design changes; and data flow diagram "compiler"
that creates data-activated program drivers.
As a result of this research we hope to greatly enhance our ability to design
large systems of programs via:
1) complete integration of software specification. prototyping. and production
2) a technique for formal verification of consistency between "as specified"

system requirements and "as built" system designs
3) cost effective re-use of program modules and system data flow patterns
4) a practical paradigm for the design of complex systems of cooperating

sequential processes.

1. Problems with Engineering Large-Scale Software

This research project is aimed at improving our abilities to develop large sys
tems by building a set of tools to integrate software specification, design, and
implementation. A variety of definitions for "large-scale" software have been
proposed[1]. At a minimum, systems developed and maintained by more than
one person usually exhibit problems such as those addressed by this proposal.

Recent research suggests that human abilities to design software systems can
be enhanced through use of graphic design notations[2] [3], although there
seems to be no advantage to the use of traditional detailed flowcharts for pro
gramming[4]. Hardware design engineers have relied heavily on the use of
graphic design notations such as block, circuit, and timing diagrams for some
time. However, the use of two dimensional program design notations by
software engineers is not yet common. While diagram notations have been used
in documenting requirements, their integrated use for software system
specification, design and implementation is a novel feature of this research.

The process of developing software today has little in common with the methods
used in traditional fields of engineering. As both Dijkstra[5] and Hoare[6] have
observed, programming resembles a craft, in which each new project is started
from scratch, with little or no re-use of previously engineered components. As
a result, most software in existence today does not have the basic qualities of a
well engineered product[7]:

• reliability
• maintainability
• predictability of development cost and schedule

In an attempt to overcome these problems, the establishment of the field of
"software engineering" was proposed at two conferences held a little over a
decade ago[8] [9]. Initial efforts in this area concentrated on improving
methods for "programming-in-the-small." In particular, the search for more
disciplined programming methods concentrated initially on the control struc
tures of imperative languages, leading to the development and widespread
acceptance of the techniques of "structured programming." Use of structured
programming techniques has enhanced our ability to construct reliable pro
grams, especially when coupled with proof of correctness considerations[10].

As early as 1975, however, it was recognized that designing large (systems of)
programs is a fundamentally different problem from those addressed by struc
tured programming and proof of correctness techniques[ll] [12]. We will use
the term system to refer to such large-scale programs. Numerous techniques
and tools have been proposed for describing and specifying requirements for
software systems[13]. Unfortunately, due primarily to the limited scope and ad
hoc nature of these methods, there is little coherence between current require
ments specification and software development techniques. The difficulties that
result include [14]:

1

• ambiguous, even self contradictory, requirements
specifications

• poor communication between users and developers
• lack of traceability between requirements and designs
• lack of up-ta-date "as built" system documentation

Many of these problems with "programming-in-the-large" are related to the lack
of visibility of evolving software designs and to the difficulty of communication
among system developers. Especially in large (Le. multiperson) projects, it is
usually impossible to obtain reliable, up-to-date information about the "as par
tially built" system design.
A more fundamental difficulty with most current approaches to system require
ments specification and design is that they tend to describe requirements infor
mally, rather than to define them formally. One exception is the so called
operational approach to requirements definition, in which a model of a desired
system is constructed that can be executed to simulate the interaction of the
eventual system with its environment[15] [16]. These techniques are also
related to the concept of rapid pro to typing for evolving software designs[17].

Ongoing changes in computer architectures are making the the problems of
large-scale software engineering even worse. The desire for increased speed,
reliability, and distribution of information processing has led to employment of
pip eline d, parallel, and distributed system architectures, for which current
techniques of designing software will likely prove increasingly inadequate. The
desire to effectively utilize the processing power becoming available as a result
of VLSI design techniques [18J is also making the solution of the large-scale pro
gramming problem more urgent. Interestingly enough, VLSI designers are also
experiencing difficulties with increasing complexity of their designs and are
investigating the application of software engineering techniques to aid VLSI
design[19].

2. Systems of Data-Activated Programs

Programmers tend to put themselves into their programs, in tightly coupled
control of the processing steps. However, even many "small" programming
problems can be more easily solved in a loosely coupled system fashion. An
analogy may be useful. If the control flow in an ordinary program resembles a
person, a system runs more like a business organization. In businesses, paths
for information flow (channels) become established. After a memo arrives in a
person's in basket, the recipient will, at some future time, act on the informa
tion, perhaps by sending other memos. The net effect is that organizations con
duct business in a loosely coupled, data driven fashion. No one person needs to
know about and control everything that happens.
Similarly, in the proposed research, programs are viewed as being made up of
data coupled systems of data-activated processing elements. Processing ele
ments (p 's) are linked together by data paths (d's) for the purpose of

2

defining processing subtasks and interactions. System data flow diagrams are
used to graphically display and define linkages between p 's and d's. A
coherent hierarchy of system diagrams defines how complex systems are com
posed from successively simpler systems. Processing elements not specified by
system diagrams are specified by more or less conventional programs. The
actions of these programs can include:

decisions based on input data values
calculating output data values
reading (consuming) input data values
writing (producing) output data values

All global system control flow considerations are handled implicitly by appropri
ate specification of local data flow control actions (consuming and producing
data values).

A system can be in one of three states: suspended, executing, or terminated.
Systems can start execution only if data is present on all inputs, and all output
data paths are available for writing. Each time a system suspends, a check is
made for "data flow progress." If data flow progress was not made (at least one
input consumed, or one output produced), the system is terminated, and
blocked from further execution.

As an example of how design would proceed using our approach, we present a
system solution to the following text processing problem:

Excess blanks (i.e., all but one in a series of blanks) are to be
removed between the words in a file. The file contains a series of
fixed length data records, but "words" can be of any length, and can
extend across record boundaries. The resulting words are to be
packed into a series of fixed length output records. Assume for con
creteness that all input records are 80 characters long, and that all
output records are to be 60 characters long. .

The presentation is informal, with notations and semantics explained as part of
the discussion. The language C[20] as implemented on UNIxt is used for the
example.
Top level data flow diagrams are normally designed before lower level programs
are written, although design can proceed bottom-up as well. Backtracking is
frequently required when data flow or program design decisions are made at
lower levels that have impact on the upper level data path design.

At the top level, as shown in Fig. 1., the "program" pO (squeeze) has two input
and two output data paths. Unique system tags (e.g. "pO") are used for unambi
guous referencing of system processing elements. Normally, data paths also
have an associated tag (dl.d2). Outermost data paths. such as those shown
in Fig. 1. typically do not have tags because they are assumed to be under the
control of an underlying operating system. rather than of the data flow
scheduler." An asterisk next to a data path indicates that its capacity is not

1'1'M, Bell Telephone Laboratories, Inc.

ttUntagged data paths serve to document important side effects that are expected to occur as a result of

3

/*=~===~=====================~=~================ s,ueeze pO ==.;
__ l~ _____ .-_________ -_____________ .___ ____ _____ ____ (top] ol:Il

Fig. 1. Top-level system diagram for pO (squeeze).

:fixed (i.e., it behaves like a "file"). The dashed line through the circle indicates
that the contents of the squeezed word file are updated as a result of running
this system. It may seem odd that the primary output of this system is also
shown as an input. However, this reflects that in general (under UNIX) writing
to a file destroys any previously existing file of that name in the current direc
tory.

Shown in Fig. 2 is a specification for pO (squeeze) as a system. All p 's are
defined as either programs or systems. Examples of program specifications are
shown in Figs. 3,4,6,7,9,10, and 11 below. The input and output data paths on
any p are constrained to match exactly the inputs and outputs as shown on the
corresponding context diagram. Context diagram tags are shown within square
brackets in the upper right corner of system diagrams. In this case, we are at
the [top] level of the design. The solid lines through p4 connecting data path d 1
with d2 and d3 with d4 indicate "read-only" access to shared datat . Note that
the squeezed word file is shown consistently as being updated both here and in
Fig. 1. Names written within quote marks below data paths correspond to data
names in the associated C program code.

nmning a system. Even though these side effects are not under "data flow control." they generally reflect the
purpose of the system!

tshared means that only one copy of the data is stored m the system. Implementation of access control
strategies to avoid read-read and read-write conflicts are not currently planned as part of the implementation
system. but are the responsibility of the system designer.

I*====:======================~================== s~ueeze pO ==*1
1* [top] -s}/

eW.,,-",

Fig 2. System specification for pO (squeeze).

An example of a program specification is shown in Fig. 3 for pi (open input word
file). The language used for this example is C, although any language appropri
ate to a particular implementation environment can be used for this style of
programming. Some parts of the program text, written in capital letters, are
macro calls that abbreviate standard data flow control actions
(BEGIN,END,SET,SUSPEND). The switch label sO on line 6 is part of a built-in
program state mechanism. Each program has available an initial state (sO) and

1 I*:~=========================== open input word file pi ==*/
2 _. i* .. ____ ~_____ ___ _ ... ________ . _ ___ ___ _ __ . (pOJ-It/
3 pUdU
4 stl·llct{ FILE *word_file) *d1i
5 BEG1N(p1)
6 sO: 1* open *1
7 if«d1-)word file = fopen<"record_file H

, Hr") == NULL)
___ .8 ____ printflUp L open error\n11j-L _________ . _______ . __ . ______ . ___ . ___ ----....

q else
10 SET{dl);
11 f~SPEND;
12 ENIJ{p 1)

Fig. 3. Program specification for pi (open input word file).

5

a number of additional states for use in saving local state information between
data driven invocations. Data definitions (e.g. Fig. 3, Line 4) are placed inside C
"struct" declarations with d -tag names, so that all references to data by pro
grams will be tied directly to data paths as shown on system data flow
diagrams. Read/write vs. read-only access priviledges are distinguished using
the pointer (e.g. Fig. 3, Line 7) and dot (e.g. Fig. 4, Line 7) structure referencing
mechanisms provided in C.

The BEGIN and Er..rn macros expand into calls to built-in scheduler functions
that implement tests for data driven program and system activation based on
the current "data state" of the system. Data paths (d's) can be in one of three
states: clear, set. or eof. When a program has finished computing the value on
an output data path. a SET command (e.g. Fig. 3, Line 10) makes the value avail
able "downstream." When a program is finished with an input data item, a
CLEAR command (e.g. Fig. 4, Line 8) makes the data path available for writing
"upstream." The program for p2 (open squeezed word file) is isomorphic to the
program for p1t.

Shown in Fig. 5 is a system specification for p4 (squeeze word file). The pro
gram p6 (read input word file record) is shown in Fig. 6. Here we see an exam
ple of ENDing a data path (Fig. 6., Line 14) to signal an "end of file" condition.
End of file conditions are also useful for non-file-related activities. Also, notice
the distinction between the two kinds of access to d5 (read/write) and d1
(read-only) on Line 8.
The program for p7 (write squeezed word file record) is shown in Fig. 7. Note
that p7 tests for the end of file condition using a built-in data flow predicate
function EOF on Line 7. . '

The programs p9 and p10 referenced on system p4 (Fig. 5) serve to initialize
cursors (d7, dB) used for extracting characters from input records and filling
output records.

1 I*:.=================~======== close input word file p3 ==./
2 1* [pO) ./
3 .. p3 Cd2) .. .' ." ___________ ._ .. - ' __ -' •. -_._." .. --.,,-.---- ,--. - ' ... --- .. -- .'" .--_
4 stl"lICt { FILE *word_fi Ie } d2i
5 EEGIN(p3)
6 sO: 1* close *1
7 fclose(d2.word_file)
8 CLEAR (d 2) i
9 ,"_. ~..;USPEND; _. _ .. _, _________ _ _... ______ -' .. -.. _ .-. ..--- - _. --..... - .-- ..

10 END(p3)

Fig. 4. Program specification for p3 (close input word file).

twe hope to ldentify and parameterize many such common programrrrlng tasks as a side-effect of the use
of thls set of software tools.

8

I*====::=======~===~=~===============~ 1* squeeze word file

1
2
3
4
5
6
7
8
9

Fig. 5. System specification for p4 (squeeze word file).

I*:~===~================ read input word file record
1*
p6(d1. d2, dS)
st'·I,.ICt { FILE *word_file } dL d2L>~
stl·UC t { char
EEG·fN(p6)

word_ree (80) } *dSi

sO: 1* read *1
if(fgets(dS-)word_rec,8L d1. word_file != NULL)
{ if(strlen(dS-)word_rec) != 80)

p4 ==*/
(pOJ ./

p6 ==..'.tl
(p4J *1

. 10 ___ ~~
11

___ ~ .. ~ .printfL'~p6;._errDr in.input record length\nHL.~~._ .
else

12
13
14
1S
16

SET(dS); }
else 1* end of file *1
{ CLEAR (d 1) ; SET (d 2) ; END(d5) i }

::...uSPENDi
ENI) (p6);

Fig. 6. Program specification for p6 (read input word file record).

7

1 I*~r===:============ write s~ueezed word file record p7 ==*1
.. _2....--' ~_ _ .. ___ ._. __ . ____ . ___ ._. ___ ' ___ " -.. _ .. - - ... --_. -- .. - . 1.p 4] ~ i .

3 p7(d3,d4,d6)
4 stl'llct < FILE *s~ueezed_file } d3, d4i
5 str·t1ct < char s~ueezed_rec[bO] } db;
6 BEGIN(p7)
7 ~O: 1* write *1

__8 ____ .__ if (£OF (d 6)) ... -
9 (CLEAR(d3); CLEAR(db); SET(d4); }

10 else 1* record *1
11 (fputs(db. s~ueezed_rec, d3. s~ueezed_file); CLEAR(d6); }
12 SUSPEND;
13 ENf)<p7) i

Fig. 7. Program specification for p7 (write squeezed word file record).

Shown in Fig. 8 is a system specification for p8 (remove excess blanks). The
program pll (characterize input record) breaks up input records (d5) into
characters (d9) with the aid of the input cursor (d7). The resulting stream of
characters is filtered by p12 (de-blank) to remove all but one of series of
blanks. The resulting stream of processed characters (d1D) is assembled by
p13 (assemble squeezed records) into squeezed records (d6) with the aid of the
output cursor (d8). The corresponding C code for p 11-p 13 is shown in Figs. 9-

I*=~=~:~===~==~==~~================= remove excess blanks p8 ==*/
1* [p4J *1

• c.c. •

,. L " ,.;r-_ Co.

Fig. 8. System specification for p8 (remove excess blanks).

8

11. In Fig. 9, we see our first example of a two state program. The NEXT com
mauds on Lines 12 and 19 are used to set the state in which the program will
"wake up" at its next data-driven activation. A REITERATE command (Line 12)
causes immediate execution of the code for a new state during the current
activation.

Shown in Fig. 10 is the heart of the squeeze program. The two states are used
to remember how many blanks have been seen. This sort of state information
can also be stored in a explicit variable, (e.g., d7 and d8 in Fig. 8). However,
when the number of states is small, it often seems clearer to use the built-in
finite state mechanism. The program specification for p13 (assemble squeezed
records), shown in Fig. 11., completes the example system specification.

Note that the since activations of pll, p12, and p13 are data-driven, they can
run asynchronously (in parallel). This program is more difficult to design
sequentially because of the artificial sequencing imposed by the von Neumann
approach to programming.
A more formal discussion of notation and execution semantics is given in [21].

1 I*C"=======~============== characterize input record p11 ==*1
2 1* (p8) -It.!
3 p1j(dS,d7,d9)
4 stnlct { char word_recraO) } dSi
5 stl'\.q:t { int in_c } *d7; .-,.-----.-.---¥--- ---.-~.~----.- ~ --.---.-.-~- .. -.--, .. -~- .. ,-.. "~.--
6 st"uct { char cc } *d9i
7 BEG~JN(p11)

8 so: 1* new record or eof *1
9 if{EOF(dS»

10 { CLEAR(dS); CLEAR(d7); END(d9)i }
'. 11. _ . . e 1 s e .'

12 { NEXT(sl); REITERATE; }
13 ~iUSPENDj
14 s1: 1* in record *1
15 d9-:'cc = d5. Ulord_recrd7-:>in_cc)i
16 SET (d9);
17. ____ ._ .. _- ifL (d7-:;·in_cc-t+) .:.= 80> ._ -
18 { 1* get new record *1
19 _ . CLEAR(d5); CLEAR(d7); NEXT(sO); }
20 ~.,uSPEND;
21 ENLdp 11)j

Fig. 9. Program specification for p11 (characterize input record).

9

_1 /*=:===================~=~================= .de-blank p12 ==~/
2 1* (p8J ~/

---3----P 1.2.(d9J d 10) ____ -.. _. ...-.----__ .-- - .. _ -_ _. --__ . ____ ..
4 s tT· u c t { c h arc c } d 9 i

.5 .. stl'lIct { char pc } *dl0i
6 BE(·dN(p12)
7 ~Q:/* no blanks *1
8 if(EOF(d9»

___ . __ 9 _. _______ { ... CLEAR (d 9); END (d i 0) L.J .
10 else 1* character *1
11 { d10-)pc = d9. CCi 1* copy character */
12 if (d 9. c c == I ')

13 NEXT(s!);
14 CLEAR(d9); SET(dl0); }

. __ 15 ... ___ . SUSPEND;
16 sl: 1* one blank *1
17 if(EOF(d9»
18 { NEXT(sO); REITERATE; }
19 else 1* character *j
20 if(d9.cc ==' ')

.. 21 .. _1* eat excess blank *1_ .. __ .. _____ ._. __ ... _._ ___ .. ___ . __ _ .. _
22 CLEAR(d9);
23 else
24 NEXT(sO)j REITERATE;
25 :=;USPENDi
26 EN f) (p 7) ;

Fig. 10. Program specification for p12 (de-blank).

10

________ •• ______ • ___ • ___ ._ ••• ' _ ... _ __ • ____ ___ .. ___ • ',' __ ,,0 ____ .,

1 I*:~=====================~ assemble s~ueezed records p13 ==./
2 1* CpSl '*/
3 p7(d6,d8,d10)
4 strl1ct {char sq,ueezed_rec[60l } *d6i
5 struct { int out_c } *dB;

__ .iL--.StJ:J.II:.t J _char.oPc ,.J _ . .d 10j._._. ______________ ,_. _____ ~_ ______ . __ . ____ ...
7 BEGIN(p13)
8 sO: 1* assemble *1
9 if(EOF(d10»

10 1* pad last record *1
11 { NEXT(sl); REITERATE}
12. ____ . __ .else IIft- copy character to output. *1.
13 { d6-;·sq,ueezed_recCd8-)-out_c] = diO. pc
14 if{ (dB-)out_c++))= 60)
15 { SET(d6)i CLEAR(d8); } }
16 SUSPEND;
17 sl: 1* pad last record *1
18 if((d8-)out_c)) 0)
19 while ((dB-)out_c) <: 60)
20 d6-)sque e z ed_rec [d8-)out_c++ J = I I j

21 SET(d6); NEXT(s2)i
22 ~;USPENDj

23 52: 1* after last record *1
._.,.24 ____ . __ .. ___ CLEAR(d8}; CLEAR(diO}i END(d6}; .NEXTtsQL .. ____ .. ________ ___ .

25 :;;USPENOi
26 END(p 13);

Fig. 11. Program specification for p13 (assemble squeezed records).

3. Experience with the Data Activated Programs

A data driven solution is presented in[21] to the Telegram Problem[22] (a more
elaborate version of "squeeze") to illustrate the techniques of data driven pro
gramming. The solution to the Telegram problem was first implemented in
COBOL using a general purpose macro processor (m4) on UNIX. The input to
the macro system consisted of macro calls that specify data definitions, p - d
connections (the system wirelist) and program actions. The output of the
macro system was standard COBOL code that included system drivers and
tables to simulate data driven execution.

The same solution has since been implemented in Pascal and C on two other
computer systems. Although the details of each implementation were quite
different, each operated identically in a stronger sense than is usually the case
for program transportation: the run time state transitions and (abstract) pro
gram data flow actions for the three implementations can be shown to be iso
morphic.

The techniques have also been applied to the problem of speeding up FORTRAN
code execution on vector processor supercomputers, including the CRAY-1 and

11

CYBER205[23] [24] [25]. The speedups achieved were made possible because of
the aid system data flow diagrams give in visualizing and gathering groups of
floating point numbers for processing by an "inner loop" p that can effectively
utilize pipelined floating point arithmetic units. The speedups obtained were an
order of magnitude better than those obtainable by use of other techniques.
including automatic "vectorizing" programs[26]. optimizing compilers. and
even hand coded assembler!

4. The Proposed Software Engineering Support Environment

Shown in Fig. 12 is a system diagram of the inter-relationships between the
three software tools proposed for this project. The tools are described in more
detail below.

4.1. System Designer Interface'

An interactive graphics-based system designer interface for display and
updating of data flow diagrams. with automatic consistency checking
across levels, One of the primary difficulties with this approach to system
design is the manual generation and cross-checking of the system data flow
diagrams.

Fig. 12. Proposed software engineering support tools.

12

4.2. Design Update Coordinator

A tool to manage simultaneous change requests by different designers to an
evolving system design. The tool coordinates shared access to a central
system design data base, by allowing changes to a p only when no associ
ated d is "checked out." A similar rule is used to decide whether to allow a
person to change a d.This tool will use the "advisory lock" facility available
on Berkeley UNIX 4.1c to interlock parallel accesses to the the system
archive files.

4.3. DFD Compiler

A tool to automatically transform system data flow diagrams into the
corresponding data-activated data flow drivers. This task has up until now
been performed manually, but is quite tedious and error prone. A prelim
inary version of this tool exists. The tool can also activate the C compiler
and link/loader.

5. Significance of the Proposed Research

A great deal of human effort is now being expended in the production of
software, and the amount is increasing. It is becoming apparent that tradi
tional methods for programming are running up against a complexity barrier,
and that other models for programming and "systemming" should be investi
gated. From past experience with prototype data-activated data flow diagram
systems, we can make several observations about the potential of this
approach. First, the approach is largely compatible with eXisting coding
methods. Up to a certain level, programming can be done in slightly extended
versions of familiar programming languages. Second, a Significant degree of
intellectual leverage seems to be inherent in two dimensional notations for sys
tem level design. Third, existing production systems can be transformed
"whole" for execution under the data-activated paradigm relatively easily. More
detailed data flow modelling of existing code (such as was done for the vector
supercomputer experiments) is possible and seems useful, although the
difficulty of doing this depends a great deal on how well-written the original
code was, and to what level of detail the data flow modelling is carried.

5.1. Objectives

The research proposed here has four long term objectives:
1) an integrated software engineering facuity- to allow integration of the

specification, prototyping, coding, and testing of very large software sys
tems.

2) requirements/design coherence- to create an environment for construct
ing and modifying large-scale systems of programs that allows a model of
system requirements to become, via coherent, gradual refinement, an
implemented system.

13

3) cost-effective re--use of software parts and subassemblies- to create the
software equivalent of plug-in hardware modules: an inventory of reliable,
compatible, software templates, and an environment in which they can be
easily adapted, instantiated, and interconnected.

4) data driven parallel processing - to develop practical methods for the
design of reliable systems of cooperating sequential processes[27].

5.2. Related Work

Given below is a summary of ideas related to the current proposal, along with
some comments on the relationships:

Information hiding[28] is supported by the proposed system because data
paths can be separated into completely independent "universes" linked
together by modules which have access only to the information that they
need.
Data abstractions[29] can be provided as a natural result of hierarchical
refinement in detail of problem solutions.
Object-orientedprogramming and message passing systems[30] somewhat
resemble the proposed techniques but are much less restricted. For exam
ple, in Smalltalk[31] an object can send a message to any other object at
any time. In our model, the possible communication paths are pre
determined when a system is designed, and the possible times for commun
ication are restricted at run-time by data flow interactions.
Unix Pipes[32] are an example of a data driven implementation of corou
tines[33]. The current proposal can be viewed as an extension of the idea
of pipes and co-routines to more complex (hierarchical, multiple
input/output) networks.
Data Flow IJiagrams used by DeMarco[34] and others in Structured
Analysis resemble our notation. The primary difference is that traditional
data flow diagrams have no direct implementation model. Mter system
requirements have been defined, the data flow diagrams must be
transformed into control-oriented designs for implementation[35].
Data Flow Programming and Machine Architectures[36] share many biases
about programming with the proposed research. The major difference is
that data flow architectures and languages take a very fine grained view of
system execution, typically at the level of an arithmetic operator and two
operands. We tend to deal with much larger "chunks," corresponding to 5-
50 higher-level programming language statements.

6. Development Plan

We intend to develop the tools in the order presented below. While the tools
could be developed in parallel (once their exact data interfaces have been
defined), we plan to use the DFD compiler tool and the methods proposed
herein to help design and build the other two tools. We intend to implement the
tools initially in C under UNIX. Past experience with transporting data flow

14

schedulers indicates that it will not be difficult to translate the tools for use on
other systems. and/or to change the target implementation language.

The time estimates given reflect our current estimate of the relative difficulty
of producing the tools. The DFD Compiler and Archive Coordinator will require
only our current aGC VAX/UNIX system for development support. The System
Designer Interface will require an interactive graphics system. It is proposed to
fund a SUN Workstation with a Bitpad as part of this research for implementa
tion of this tool. The SUN is suitable because it provides a high-performance
bit-mapped graphics display. can transfer files from/to the VAX. and runs the
same operating system (Berkeley Unix 4.1c).

6.1. DFD Compiler

Development time: 5 months

6.2. Archive Coordinator

Development time: 4 months

6.3. System Designer Interface

Development time: 3 months

7. References

[1] L. A. Belady and M. M. Lehman. The Oi.aracteristics of Large Sys
tems, IBM Tech. Rep. No. RC 6785 (#28969) Sept. 13, 1977.

[2] M. Fitter and T. R. G. Green, "When do diagrams make good comput
er languages?" Int. J. Man-Machine Studies, vol. 11, 1979. pp. 235-
261.

[3] S. B. Sheppard, E. Kruesi, and B. Curtis, "The effects of symbology
and spatial arrangement on the comprehension of software
specifications," in ?roc. 5th Int. ConJ. on Software Engineering,
March 1981. pp. 207-214.

[4] B. Shneiderman, R. Mayer. D. McKay and P. Heller, "Experimental in
vestigations of the utility of detailed flowcharts in programming."
Comm. of the ACM, vol. 20, no. 6. June 1977. pp. 373-381.

15

[5J E. W. Dijkstra. "Programming: From craft to scientific discipline". in
Proc. Int. Computing Symposium 1977. Liege, Belgium (ed. by E.
Morlet and D. Ribbens). Amsterdam: North-Holland, April 1977.
pp.23-30.

[6J C. A. R. Hoare, "Software engineering: A keynote address", in Proc.
3rd Int. ConJ. on Software Engineeri:ng, Atlanta, GA, May 1978,
pp. 1-4.

[7J R. G. Babb II and L. L. Tripp, "An engineering framework for software
standards," in 1980 Proc. Annual Reliability and Maintainability
Symposium, Jan. 1980.

[8J P. Naur and B. Randell (eds.), Software Engineering, Report on a
conference sponsored by the NATO Science Committee,
Garmisch, Germany, Oct. 1968

[9J J. N. Buxton and B. Randell, Software Engineering Techniques, (also
sponsored by the NATO Science Committee), Rome, Italy, Oct. 1969.

[10J R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Programming
Theory and Practice. Reading, MA: Addison-Wesley, 1979.

[l1J F. DeRemer and H. H. Kron, "Programming-in-the-Iarge versus
programming-in-the-small," IEEE Trans. Software Engineering,
vol. SE-2, no. 2, June 1976, pp. 80-86.

[12J M. A. Jackson, Principles of Program Design. London: Academic
Press, 1975.

[13J P. Freeman and A. I. Wasserman, Tutorial: Software Design Tech
niques. Los Alamitos, CA: IEEE Computer Society. 3rd. ed.,
May 1980.

[14] R. G. Babb II, "Coherent realization of system requirements," in
Proc. Int. Symposium on CuTTent Issues of Requirements Engineer
ing Environments, (ed. byY. Ohno) , Sept. 1982, pp. 103-105.

[15J P. Zave, "An operational approach to requirements specification for
embedded systems," IEEE Trans. on Software Engineering,
vol. SE-8, no. 3, May 1982, pp. 250-269.

[16J J. R. Cameron. "Two pairs of examples in the Jackson approach to
system development." in Proc. 15th Hawaii Int. Conf. on System
Sciences, Jan. 1982, vol. 1., pp. 304-313.

16

[17] M. V. Zelkowitz and M. Branstad (chairpersons) ACM SIGSOFT 2nd
SoftwaTe Engineering Symposium: Workshop on Rapid Prototyp
ing, Columbia, MD, April 1982.

[18] C. Mead and L. Conway, Introdu.ction to VLSI Systems. Reading, MA:
Addison-Wesley, 1980.

[19J J. Rader (ed.), Proc. of the First Workshop on the Engineering of
VLSI and of Software, July 1983.

[20] B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

[21] R. G. Babb II, "Data-driven implementation of data flow diagrams," in
Proc. 6th Int. ConJ. on SoJtware Engineering, Tokyo, Japan,
Sept. 1982, pp. 309-318.

[22J P. Henderson and R. Snowdon, "An experiment in structured pro
gramming," BIT, vol. 12, 1972, pp. 38-53.

[23J R. G. Babb II and J. M. Hardy, "Applications of Program/System
design techniques to the CRAY-l," paper presented at the 1980 ACM
Mountain Region Conference, Denver, Nov. 15, 1980.

[24J J. M. Hardy and R. G. Babb II, "Speedup of FORTRAN subprograms
ROTATE and ALAG3D on the CRAY-l using Program/System
methods," Final Report for Optical Systems Branch, Air Force
Weapons Laboratory, Contract F2965079, D0028-5019, Summers En
gineering, Inc., October 1980.

[25] J. M. Hardy and R. G. Babb II, "A Program/System solution to the
EOS (Equation of State) Problem," Final Report for Lawrence Liver
more National Laboratory under University P.O. 3196401, Summers
Engineering, Inc., May 1981.

[26J D. J. Kuck, R. H. Kuhn, B. Leasure and M. Wolfe, "The structure of an
advanced vectorizer for pipelined processors," in Proc. COMPSAC-BO,
Oct. 1980, pp. 709-715.

[27] C. A. R. Hoare, "Communicating Sequential Processes," Comm. of the
ACM, vol. 21, no. 8, Aug. 1978, pp. 666-677.

[28] D. L Parnas, "On the criteria to be used in decomposing systems·
into modules," Comm. oj the ACM, vol. 15, no. 12, Dec. 1972,
pp. 1053-1058.

17

[29J B. Liskov and S. Zilles, "An introduction to formal specifications of
data abstractions," in Current Trends in Programming Methodology,
vol. 1: SoJtware Specification and Design. Englewood Cliffs, NJ:
Prentice-Hall. 1977.

[30] T. Rentsch, "Object Oriented Programming," SIGPLAN Notices,
vol. 17, no. 9, Sept. 1982, pp. 51-57.

[31] Special Issue of BYTE on Smalltalk. Aug. 1981.

[32J B. W. Kernighan and J. R. Mashey, ''The uNIX'fM programming environ
ment," SoJtware-Practice and Experience, vol. 9., no. 1, Jan. 1979,
pp. 1-15.

[33] M. E. Conway, ''Design of a separable transition-diagram compiler,"
Comm. oj the ACM, vol. ?, no. 7, pp. 396-408, July 1963.

[34J T. DeMarco, Stru.ciured Analysis and System Spec'ifi,cation. New
York, NY: Yourdon, 1978.

[35J E. Yourdon and 1. 1. Constantine, Stru.ctured Design: Fundamentals
oj a Discipline oj Computer Program and Systems Design. (2nd
ed.) New York, NY: Yourdon Press, 1978.

[36J T. Agerwala and Arvind (eds.), Special Issue qf Computer on Data
Flow Systems, vol. 15, no. 2, Feb. 1982.

18

