
Indexing in an Object-Oriented DBMS

Dsvid Maier
Jacob Stein

Technical Report C5/£.86-006
7 May 1986

Oregon Graduate Center
19600 5.W. von Neumann Drive
Beaverton, Oregon 97006-1999

presented at the Workshop on Object-Oriented Databases, September 1986.

Indexing in an Object-Oriented DBMS

David Maier
Servio Logic Development Corp.

and Oregon Graduate Center

Abstract

We describe indexing in the GemStone object-oriented database
server which supports a model of objects similar to that of
Smallt~lk-80. We begin with a brief description of the syste~'s
architecture and the role of indexing in GemStone. We then dl~
cuss the properties of object-oriented systems, and GemStone In
particular, that make indexing considerably different .than. In .a
more conventional data model. Various approaches to indexing In

an object-oriented model are presented. We describe both the
design and implementation of indexing in GemStone. Laslly, .we
describe related work and note performance results from the Initial
instrumentation of the system. .

1. Introduction
The GemStone database system is the result of a develop

ment project started three years ago as Servio. Out goal was to
merge object-oriented language concepts with those of database
systems. GemStone provides an object-oriented database
language called OPAL, which is used for data definition, data
manipulation and general computation.

Conventional record-oriented database systems, such as com
mercial relational systems, often reduce application development
time and improve data sharing among applications. However,
these DBMSs are subject to the limitations of a finite set of data
types and the need to normalize data [Ea, Silo In contrast,
object-oriented languages offer flexible abstract data-typing facili
ties, and the ability to encapsulate data and operations via the
message metaphor.

Our premise is that a combination of object-oriented language
capabilities with the storage management functions of a traditional
data management system will result in a system that offers further
reductions in application development efforts. The extensible
data-typing facility of the system facilitates storing information not
suited to normalized relations. In addition, we believe that an
object-oriented language can be complete enough to handle data
base design, database access, and application coding. The Gem
Stone data model and language take their syntax and semantics
from the Smalltalk-80 system [GR, Kr). Those readers not familiar
with the Smalltalk language are directed to Goldberg and Robson
[GR).

While the choice of Smalltalk as a starting point met some of
the GemStone design goals, such as providing an extensible data
model and a unified language for design, access and application
writing, SmaJltaik is by no means a database system. Smalltalk is
oriented towards a single user on a dedicated processor, with data
objects resident in main memory. We report elsewhere [CM,
MOP, MSOP) on some of the requirements for making GemStone
a multiuser disk-based system, such as concurrency, recovery,
authorization and storage mangement. This paper concentrates
on the particular challenges that the Smalltalk model and

Jacob Stein
Servio Logic Development Corp.

15025 SW. Koll Parkway, 1a
Beaverton, Oregon 97006

(503) 644-4242
CSNET: stein(goregon-grad

language present in providing associative access to objects. The
remainder of this section describes the use of indexing in rela
tional DBMSs, their analogs in the GemStone model, and the
architecture of the GemStone system.

1,1, Indexing in Relational Database systems
Many relational DBMSs provide expressive power through a

query language based on relational calculus [Ma). The calculus
allows the user to define the result of a query rather than tell the
system how to produce the result. These relational systems can
then select from a family of execution plans an efficient way to
compute the desired result. The choice of plan is often influenced
by the presence of auxiliary search structures such as indexes
and hash tables. Indexes ·are especially useful when the user
wishes to select a small subset of a relation's tuples based on the
value of a specific attribute. In this case, a good execution plan
will look up the desired attribute value in the index, then directly
retrieve only the desired tuples. The presence of these search
structures influences only the efficiency of producing the result,
not the result itself.

1.2. Indexing in GemStone
In GemStone, the basic problem is to efficiently select from a

collection those members meeting a selection criteria. We want
to find all objects that either contain a given object, or an object
equal to a given object, as the value of a particular instance vari
able. GemStone does not support direct navigation from an
object 0 to objects for which 0 is the value of an instance vari
able. References from one object to another are uni-directional.
Providing two-way links is problematical, as an object may be the
value of an instance variable in several objects. For example, the
same Department instance can fill the works In variable for
many Employee objects. All GemStone objects are indepen
dent: no object's existence is constrained to depend on the
existence of another object, nor can any object assume that it
makes a unique reference to any of its instance variables' values.

One difference between GemStone objects and relational
tuples is that objects are not flat. One should be able to index on
instance variables that are nested several levels deep in an object
to be indexed, such as the manager variable of the Depart
ment object that fills an Employee'S worksln variable, An
important feature of our model is that an object's identity remains
the same regardless of changes in its internal state, and objects
reference their components by identity, not value. Thus. the
manager of a Department object can change with no change
being apparent in an Employee object that references that
Department object. As we shall see in Section 4, this localiza
tion of change influences the complexity of index maintenance.

While objects may be viewed as "fancy tuples" that permit
allributes to have other tuples as values, it is misleading to equate
relations with GemStone classes. A relation serves both to pro
vide the scheme for its component tuples, and to collect all those
tuples. In GemStone, a class defines the structure of its

instances, but rarely keeps track of all those instances. Instead,
collection objects - Arrays. Bags. Sets - serve to group
those instances. An object may belong to more than one collec
tion. unlike relational, hierarchical or network models. where a
record belongs to a single relation, parent or se\. Such multiple
membership is allowed in the hybrid relational-network model of
Haynie [Ha).

1.3. GemStone Architecture
Figure 1 shows the major pieces of the GemStone system.

Stone and Gem correspond roughly to the object memory and the
virtual machine of the standard Smalltalk implementation [GR).
Stone provides secondary storage management. concurrency con
trol, authorization, transactions and recovery. Stone also
manages workspaces for active sessions. Stone uses unique sur
rogates called object-oriented pointers (OOPs) to refer to
objects. and an object table to map an OOP to a physical loca
tion. This layer of indirection means that objects can easily be
moved in secondary memory. While the object table can poten
tially have 231 entries, we expect that the portion for objects
currently in use by various sessions is small enough to fit in main
memory. Stone is built upon the underlying VMS file system.
The data model that Stone provides is somewhat simpler than the
full GemStone model, and only provides operators for structural
update and access. An object may be stored separately from the
objects it references, but the OOPs for the values of an object's
instance variables are grouped together. Others have considered
decomposed representations of objects [CFLR. Ch.,., CK).

VA I
I LAN

I NETWORI: SOFTW AlB I
I I

GEM GEM
PROCESS PROCESS

• • •

~ /
STON1i
PIlOCESS

I
I VMS FILB 110 I

1
......

MIA.
.IMi

.... "

Figure 1

Stone supports five basic storage formats for objects. self
identifying (e.g. Smalllnt., Character, Boolean)' byte (e.g.
String. DateTime, Float). named, indexed and non
sequenceable collections. The byte format is used for classes
whose instances may be considered atomic. The named format
supports access to the components of an object by unique identif
iers, instance variable names. The indexed format supports
access to the components of an object by number, as in instances
of class Array. This format supports insertions of components

into the middle of an object, and can grow to accomodate more
components. The non-sequenceable collection (NSC) format is
used for collection classes, such as Bag and Set, in which
instance variables are anonymous: members of such collections
are not identified by name or index, but a collection can be
queried for membership, and have members added, removed or
enumerated. Both the indexed and NSC format support dynamic
growth of objects, and are bounded in size only by the total
number of objects in the system and the physical limits of secon
dary storage. When objects in these formats grow large, their
representation switches from a contiguous one to a B-tree which
maintains the members by OOP for NSC's, and by offset for
indexed object. The byte format also supports dynamic growth in
a manner similar to that for the indexed format. Stone groups
objects into logical segments, which are the unit of conflict in
concurrency control, and the unit of ownership for authorization.

Gem sits atop Stone, and elaborates Stone's storage model
into the full GemStone model. Gem also adds the capabilities of
compiling OPAL methods into bytecodes and executing that code,
user authentication, and session control. (OPAL bytecodes are
similar to the bytecodes used in Smalltalk.) The Gem layer con
tains the virtual image: the collection of OPAL classes, methods
and objects that are supplied with every GemStone system.
OPAL, being a computationally complete language, can express
various associative searches on a collection, such as

aCollection select: aBlock
which retums a new collection consisting of all elements of
aCollection for which aBlock retums true. In Smalilalk
such a search is done by iterating through aCollection and
evaluating aBlock for each member.

2. The Problems and Solutions
In this section we elaborate on the problems the GemStone

model presents with respect to associative access and indexing.
We also present possible solutions to these problems. but leave
the details of the solutions actually selected to Sections 3 and 4.

2.1. language Issues
The two issues here are when to invoke auxiliary access

paths for associative searching, and whether indexes should be
keyed on an object's structure or its protocol.

How should we indicate or permit the use of indexes in the
OPAL language? One solution is to do nothing with the language,
and simply provide system classes in the virtual image for building
and using indexes. One drawback with this approach is having to
ensure that every application that modifies objects also performs
appropriate index maintenance. A second drawback is that hav
ing to explicitly deal with an index 10 support an associative
search means application code no longer has physical data
independence .

At the other extreme, we could go without modifications to the
language, and treat every OPAL expression as a candidate for
use of indexing structures in evaluation. OPAL is computationally
complete; it is not just a query language. Much of the code
operates on single objects, where an index either can't be applied,
or has 'no benefit. Indexes are helpful only for operations iterated
over members of a large collection. Identifying appropriate itera
tions for indexing, and determining the intent of the iteration at a
high enough level to permit code transformations is a challenging
problem in data flow analysis.

Some more moderate positions are to designate certain mes
sages as the only ones for which index use will be attempted, and
scan methods for occurrences of those messages, or to add a
data sublanguage to OPAL for expressing associative searches,
and tailoring the sub language to make use of indexes. Adding a
sublanguage complicates the language and its compiler. It also
introduces the danger of an "impedance mismatch": the sub-

language will be incompatible with the main language as regards
data structures or the processing paradigm [CFLR, MO, MP, RS].
If the sublanguage route is chosen. the question is, what kind of
sublanguage? It could be a declarative language - an analog to
relational calculus. We note that GemStone already has a
declarative flavor to it already. Messages to objects say what to
do; it is left up to the object which method to use - the determi
nation of how the message should be performed.

A calculus-like language could support associative searching,
extraction of subparts of objects and creation of new objects as
the answer to a query. One problem here is, of what class are
the resulting objects? Allowing a query to assemble new objects
arbitrarily would mean creating classes on the fly. Another prob
lem is whether variables in calculus queries range over classes or
collections. Allowing a variable to range over all instances of a
class means that a collection of those instances must be main
tained. The collection of all instances of a class is not necessarily
a semalically useful entity for querying. Usually it is collections of
a subset of all instances that are of interest. Also, how do we
deal with the situation where a user is only authorized to access
some of those instances? Having variables range over collections
introduces a problem with binding the query to the specific collec
tions. If the actual collections are not determined until run time,
little preprocessing of the query can take place.

A disadvantage to a full calculus sublanguage is that a query
must be translated before it can be processed. Being able to
interpret a query as regular OPAL code and evaluate it by brute
force is useful for avoiding the translation overhead on queries
involving small numbers of objects, and to have a "semantic
benchmark" for validating associative access routines. A more
restricted declarative language might support only selection,
avoiding the need to create new classes for the results of queries.
The selection conditions could be arbitrary blocks of OPAL code,
or have some restrictions. A problem with arbitrary blocks of code
is that such code can have side effects on the objects being
examined. Side effects make it hard to ensure that evaluating a
query with and without an index gives the same answer.

A sublanguage could be more procedural, but still encapsulate
iteration - an algebra for collections of objects. Some of the
required operations are already present in GemStone, mainly
Boolean operations on sets. We have the same problem with join
operations as we had with a full calculus language: having a class
for the result. While algebras have been proposed for non-tNF
relations, we have yet to see a workable algebra for complex
objects with identity. In particular, there are semantic difficulties
with shared instance variable values, cycles of objects and value
based versus identity-based comparisons.

The other major issue regarding languages is whether indexes
are based on the structure - the instance variables - of objects,
or the protocol - the responses to messages. For example, if
anEmp is an Employee object, we could access that employee's
last name with some kind of structural notation, such as

anEmp . name . last,
where name and last are instance variables, or we can use a
message notation

anEmp name last,
where name and last are unary messages. If indexes are
based on message notation, we must know which structural
changes in an object can influence the result of a message. so
that we know when to update the appropriate indexes. Also, a
method can change the state of an object, and we need
assurances that a message will yield the same answer twice in a
row if the structure of the object has not been explicitly changed.
The method for a mesage can be overridden in a subclass, which
presents problems in allowing kinds of' a class into a message-

, A object 0 is a kind 01 its class and its class's superclasses.

3

based index along with instances of the class. One problem of
other models for message-based indexing not present in Gem
Stone is attributes inherited through the "component-of' hierarchy
[Br+). For example, the absolute position of a machine part could

be computed from its relative position to the assembly that con
tains it, which makes an index on absolute position prohibitive to
maintain. OPAL methods may access an object's instance vari
ables, but may not directly access objects that contain it as the
value of ;:m instance variable.

Indexing based on structure has the advantage that it can be
supported at the Stone level, while message-based indexing
requires access to the execution model at the Gem level. Index
ing on structure vi.olates the privacy of objects, as it bypasses an
object's protocol. One could view an index on an object as being
part of the implementation of the object's class, and hence being
privy to the internal structure of the object. In our experience,
most user-defined classes include methods for accessing each
named instance variable anyway.

2.2. Index Structure
If we want to index objects on their internal structure, one

question is, how deep to index? Do we index only the immediate
instance variables of an object, or do we allow indexes on
instance variables of instance variables? With a one-level index,
we always have the object in hand when a change that can affect
its position in an index occurs. With a multilevel index, as
anEmp.worksIn.manager, we have the problem that an
object's position in an index can be invalidated by a change in a
subobject that is not manifested in the object itself. (A Depart
ment gets a new manager.)

If we do index on paths with multiple links (multiple instance
variables), we have the choice of a single index for the whole
path, or several indexes, one for each link. For
anEmp .worksIn.manager, we could have one index on
worksIn.manager mapping managers directly to the employees
they manage, or we can have one index on worksln mapping
departments to employees, and another on manager, mapping
managers to departments. With a single index on the entire path.
there are fewer indexes to maintain. and fewer consultations
needed for an associative lookup. However, not all the indexes
for link indexing will have as many entries as the index for the
entire path. One thousand Employees may reference only
twenty different Departments in their worksIn field.

Indexing by links means prefixes of a path are indexed as
well: indexing ability on anEmp. works In. manager implies abil
ity on anEmp. works In. Supporting a path index as multiple link
indexes also allows sharing between path indexes with a common
prefix, such as anEmp.worksIn.manager and
anEmp.worksIn.division.

Since GemStone associates types with objects rather than
identifiers. we can not tell a priori that an object supports a certain
path. or the class of the object at the end of the path. In a collec
tion of Employee objects, if we want to create an index on
anEmp . name. last we need to know that every object in the col
lection has such a path. That is, that the value of the name
instance variable is an object that contains a last variable.
Further, if the index is to be ordered, we need to know that the
last variables of elements hold comparable values, such as
Strings. We need typing on collection elements and instance
variables to support indexes, unless we want to deal with the
complication that not all collection elements will be indexed.

Additionally, we need to consider the following questions on
indexing strategy:

1. What do we use as types: classes, kinds or some sort of struc
tural or operational template? Classes as types are easiest to
check at the Stone level, since an object carries a reference to its
class. A kind (a class plus all of its subclasses) requires access
to the class hierarchy for checking, but seems more natural for
most applications.

2. Is nil a member of every type? What about nil values along
a path? Should they be disallowed? Should selection conditions
be given the semantics that the existence of the path is
presumed? That is, should both

anEmp.name.last ~ 'Ross'
and

anEmp . name .last -~ 'Ross' (not equal)
be false if anEmp. name is nil? We could interpret the value of

any path with nil along it as nil for the whole path (in which
case the second comparison above will succeed).

3. Should an index be based on identity of key objects or their
values? An identity index is immune to changes in the key
object"s state. However, an identity index on Strings will not
support range queries. On the other hand, if we build an index on
String objects sorted on their contents, we must detect the case
where some method changes the characters of one of those
Strings. An alternative to detecting changes is to disallow them
by constructing immutable subclasses of objects in which state
change is not allowed after creation.

4. If range indexes are allowed, what comparison operators are
allowed for the sort order? If the programmer supplies a method
for the comparison, how do we know it is transitive? Suppose we
type by kinds and the comparison method is overridden in a sub
class?

2.3. Indexing on Classes versus Collections
Another decision in designing associative access is what to

index, classes or collections? Several applications can use
instances of the same class, and store them in different collec
tions (like having several relations on the same scheme [Ha]).
Indexing on the class requires applications that do not use the
index to still bear index-related overhead for indexed instances
that they use. Further, a classwide index presents authorization
problems. No one user may have read access to the set of all
instances of the class. so no one is able to request that the index
be created. Also, indexing a collection allows the possibility that
instances of subclasses be included in a collection that is indexed.
Indexing on a class basis makes it easier to trace changes to the
state of an object that could cause the object to be positioned dif
ferently within an index. We can flag a class-defining object to
indicate which instance variables are indexed, and trap to index
maintenance routines in Stone.

As an object may participate in many collections, if we index
on a class basis, but pose queries against collections, there will

be a test for collection membership needed in addition to the the
index access. On the other hand, if we index by collections, and
use references from objects to indexes to support update, each
object must be able to reference a number of indexes, not just
one. Of course, even if indexing is on collections, it is possible to
have a particular class collect all of its instances. II we do index
on classes, there is a question of whether a class indexes all the
instances of its subclasses as well. or if each subclass must main
tain its own index. The latter course probably has unacceptable
overhead for a class with more than just a few subclasses.

There is middle ground. We can maintain a single index (per
instance variable) per class, but only add members of selected
collections to that index [Pul. With this hybrid scheme, a collec-

tion knows if it is indexed, and informs the appropriate class when
it adds or deletes elements. However, every instance of the class
still pays a penalty on update, as it must be checked for member
ship in one of the indexed collections.

3. Path Expressions and Typing in OPAL
In this section and the following one, we outline the actual

choices made on language design and indexing strategy in Gem
Stone. In order to facilitate associative access, both paths and
instance variable typing have been introduced into OPAL.

3.1. Path Expressions
A path expression (or simply a path) is a variable name fol

lowed by a sequence of zero or more instance variable names
called links. The variable name appearing in a path is called the
path prefix; the sequence of links, the path suffix. The value of
a path expression AL 1.L2 •. , • . Ln is defined as follows:

r. If n=O, then the value of the path expression is
the value of A

2. If n>O, then the value of the path expression is
the value of instance variable L" within the value
of AL1.L2,··· .Ln-\ if AL 1.L2.·•· .Ln- I is
defined and Ln is an instance variable in the
value of AL 1.L2· .. , .L" _ I' Otherwise, the
value of the pa'th expression is undefined.

A path suffix S is defined with respect to a path prefix P if the
value of P.S is defined.

Consider a variable anEmp whose value is an instance of
Emp loye e. The value of the path anErnp. name is defined if
name is an instance variable defined in . Employee. Its value
would be the value of anEmp'S name instance variable. The
value of anEmp . name. first is defined if the value of
anEmp. name is defined and first is an instance variable in the
value of anEmp. name, Its value would be the value of instance
variable first in the value of anEmp. name.

Path expressions may be used anywhere in OPAL that an
expression is allowed. The evaluation of a path expression is
relatively straightforward. and follows directly from the definition
above. It should be noted that determining whether an instance
variable is defined within an object requires accessing the object's
class, and a list of instance variable names on which string com
parisons must be made. Unary messages that return the value of
an instance variable are optimized in GemStone. Thus, While
path expressions can be used apart from associative access, such
use is fess efficient than the equivalent sequence of unary mes
sages.

In general. given two objects of the same class, A and A', we
can not infer that a path suffix is defined with respect to A' from
the fact that the suffix is defined with respect to A However, con
sider instances of Employee objects. If we knew that the class
of the value of instance variable name were the same in all
objects of class Employee, and that the path suffix
name. first is defined for any object of class Employee, then
we would know that the suffix is defined for all Employee
objects.

3.2. Typing
In OPAL. constraints on the values of named instance vari

ables may be specified when creating classes. For each named
instance variable defined in a class C, a class that constrains the
allowable values for the instance variable in instances of C may
be specified. The specified constraining class is known as the
instance variable's class-kind. In an object of class C, each
named instance variable, for which a class-kind is specified in C,

may only have a value that is either nil·or a kind of the class
kind specified for the instance variable in C. One may think of a
class-kind constraint being specified for every named instance
variable in every class, where the default class-kind constraint is
class Db j ect.

Consider class Employee discussed above. If instance vari
able name'S class-kind is PersonName, and instance variable
first is defined in PersonName, then in any Employee object
anEmp where anEmp.name is not nil, the path suffix
name. first is defined.

Class-kind constraints are inherited through the class hierar
chy. While class-kind constraints may not be removed in a
class's subclasses, they can be made more restrictive. For exam
ple, in ClassifiedEmployee, a subclass of Employee,
instance variable name's class-kind could be ClassifiedPer
sonName if ClassifiedPersonName were a subclass of Per
sonName. Within ClassifiedPersonName, instance variable
first's class-kind could be InvariantString since
InvariantString is a subclass of Object.

A path expression is constrained when the class-kinds of all
the links in the suffix can be inferred. The cfass-Kind of a con
strained path is the class kind of the last link in the path's suffix.
More formally, a path expression with no suffix is always con
strained. The class-kind of a path A is the class of object A. A
path ALt .L2.· .. . Ln is constrained if ALt .L2 • ••. . Ln - t is con
strained, and within the class-kind of ALt.Lz.· .. . Ln- I a con
strained instance variable Ln is defined. The class-kind of
ALt .L2 •.•• . Ln is the class-kind of Ln in the class-kind of
AL t .L2 ..•• . Ln- t . A path expression ALt.Lz Ln is partially
constrained if ALt.Lz.··· Ln- t 'is constrained. (There is no
class-kind for a partially constrained path that is not also con
strained.) A path suffix S is (partially) constrained with respect
to a path prefix P if P.S is a (partially) constrained path.

Note that if S is (partially) constrained with respect to P and
P' is an object of the same class as P, then S is (partially) con
strained with respect to P'. This observation allows us to say that
a path suffix is (partially) constrained with respect to a class C
if it is (partially) constrained with respect to any, and therefore all,
objects of class C. Furthermore, given the inheritance of instance
variable constraints, if a path is (partially) constrained with respect
to a class, then the path is (partially) constrained with respect to
all of the class's subclasses.

In summary, a constrained path always leads to an object that
is either nil or of a certain kind; a partially constrained path
always leads to an object, but we do not know what kind of object
it leads to.

Allowing nil to be the value of a constrained instance vari
able slightly complicates the notion of a path suffix being defined.
To overcome this complication, we introduce an object unde
fined and redefine the value of a path expression
AL t.L2 .•.. . Ln whose suffix is partially constrained with respect
to its prefix as follows:

1. If n '" 0, then the value of the path expression is
A.

2. If n>O, then if the value of AL 1.L2 •••. • Ln- I is
nil or undefined, the value of the path
expression is undefined. Otherwise, the path
expression's value is that of instance variable Ln
in the value of AL1·L2·• •• Ln- t .

That the above definition is well formed follows directly from
the fact that for any partially constrained path ALI.L2· ... Ln, if
the value of AL1.L2 • ••• Ln- I is neither nil nor undefined,

then Ln is an instance variable in the value of ALt.Lz· ... Ln- t ·
What distinguishes a path whose value is undefined from one
whose value is nil is that in the former case the path can not be
fully traversed, while in the latter, the path can be traversed, and
leads to the value nil.

Among Collection'S subclasses, class Bag and its subc
lasses are unordered, containing only anonymous instance vari
ables. These are the non-sequenceable collection classes
(NSCs) introduced in Section 2, which provide relatively fast
identity-based membership, union, intersection and difference
operations.

A class-kind constraint may be specified for an NSC class.
An NSC may only contain nil and objects that are a kind of the
class-kind specified in the NSC's class. One may view the class
kind constraint specified for an NSC class as a constraint on the
anonymous instance variable. The class-kind of an NSC object is
the class-kind specified in its class. If a path suffix is (partially)
constrained with respect to the class-kind of an NSC, then the suf~
fix is (partially) constrained with respect to both the NSC and
its class.

Consider class Employee discussed above. By creating a
subclass of Bag or Set whose class-kind is Employee, NSC's
can be created that contain only nil and objects whose class is
a kind of Employee.

Class-kind constraints for NSCs are inherited throughout the
class hierarchy. In the same manner as for named instance vari
ables, class-kind constraints can be made more restrictive in
subclasses of an NSC class. For example, given a class SetO
fEmployee whose class-kind is Employee, a subclass of SetO
fEmployee, say SetOfClassifiedEmployee, can be created
whose class-kind is ClassifiedEmployee, since Classi
fiedEmployee is a subclass of Employee. Note that if a path
suffix is (partially) constrained with respect to an NSC class C,
then the path suffix is also (partially) constrained with respect to
all subclasses of C.

4. Indexing in OPAL

4.1. Design Considerations
In OPAL, indexes index into NSC's, and are only allowed on

constrained and partially constrained paths. By so restricting
indexing, the access path that an index represents can be deter
mined at the time of index creation, using only class objects; there
is no need to recompute the access path represented by a con
strained or partially constrained path expression for each element
of an NSC.

OPAL supports two kinds of indexes: identity and equality
indexes. Since the identity 01 an object is independent of its
class, identity indexes may be created on partially constrained
paths and support the operators = = (identical to) and -- (not
identical to). Equality indexes support the operators =, -=, <,
< =, > and > =. In order to support these operators, the struc
ture (class-kind) of indexed path values needs to be known. For
this reason, equality indexes may be created only on constrained
paths. Furthermore, in order to avoid the interpretive execution of
the operators supported by equality-indexes, the class-kind of
equality indexed paths is restricted to Boolean, Character,
DateTime, Float, Integer, String, Small Integer ,
and subclasses thereof. Note that undefined is equal and
identical to only undefined, and is not less than or greater than
any object.

The user needs to be aware that if he changes the meaning
of one of the supported operators for a subclass of one of the
above classes, equality indexes will not support the modified
meaning of the operator. However, we consider the likelihood of
such modifications low, and in any event, believe that the vast

majority of applications will use the default meanings of these
operators with respect to the class-kinds upon which equality
indexes may be built. Furthermore, the system administrator can,
if desired, protect the methods that implement these operators
from being overwritten.

Consider class Employee discussed above. In addition to
instance variable name, let address be an instance variable
defined. in Employee that is constrained to Address. Further,
in Address let state be an instance variable constrained to
String and let zip be an instance variable constrained to
Small Integer. In SetOfEmployee objects either identity or
equality indexes can be created on the suffixes name. first,
address. state and address. zip. Identity indexes can be
created on address, name, the empty path and any other path

that is partially constrained with respect to SetOfEmployee.

Even in the absence of indexes, OPAL takes advantage of
constrained and partially constrained paths in evaluating queries
against NSCs. By being able to apply the same access strategy
to each element of an NSC for a given path and being able to
evaluate the comparison operator without the use of message
sends, terms that use a constrained or partially constrained path
and an operator that the path supports can be evaluated effi
ciently.

. For Boolean. Character and SmallInteger class
kinds there is no distinction between equality and identity indexes.
The operators supported by equality indexes may be applied to
objects of these classes by applying the operator to the OOPs of
the objects directly. Therefore, when either an equality or an
identity index on a path whose class-kind is a kind of one of these
classes is created, an identity index is created on the path and is
used to support the equality operators. An identity index on a
path whose class-kind is Small Integer also supports equality
operators, whereas an identity index on a path whose class-kind
is Integer does not support equality operators. Additionally, an
equality index on a path whose class-kind is Small Integer has
a more efficient implementation that an equality index on a path
whose class-kind is Integer. .

4.2. Implementation
Indexes on paths are implemented by a sequence of index

components, one for each link in the path suffix. For an index into
a SetOfEmployees object on name .first, there would be an
index component from name values of elements of the SetO
fEmployee object to elements of the SetOfEmployee objects,
and a component from first values of name objects to name
objects that are values of elements of the SetOfEmployee
object. By our method of implementing indexes, creating either
a.n identity or equality index on a path suffix L1.L2 . ••• . L" impli
citly creates n-l identity indexes on L1.L2 . .•• .Lj • for 1$;<n.

In describing the implementation of indexes in OPAL, we shall
make use of the classes described in Figure 2. In this figure, a

Pascal-like notation is used for class definitions. In Address,
state is an instance variable whose class-kind is String.
Within objects, named instance variables are accessed by their
offsets within the objects. In the declarations of Figure 2, the
offset of a named instance variable corresponds to the order in
which it is declared. The offset of instance variable state in
Address objects is one; the offset of instance variable zip, two.
The offsets of instance variables inherited from a superclass are
the same as in the superclass.

All data structures used in implementing' indexes are stored in
object space, and so are managed by Stone. However, they are
objects thai are not directly accessible to the user. In this
manner, OPAL's concurrency control mechanism handles con
currency conflicts on index structures.

Class

Name:
first, last: String;

END;

Address:
state: string;
zip: smallinteger;

END:

Employee:
name: Name;
address: Address;

END;

EmployeeBag: BAG OF EmployeeClass:

F19ure2

Every NSC object has a named instance variable, NSCDict,
that is not accessible to the user. If there are no indexes into an
NSC, then the value of NSCDict is nil; otherwise, the value of
NSCDict is the OOP of an index dictionary. An index dictionary
contains the OOPs of one or more dictionary entries.

The structure of a dictionary entry is given in Figure 3. The
indexType field represents the kind of the index, either identity
or equality. The classKind field is significant only for equality
indexes, and stores the class-kind of the indexed path. The
length field stores the length of the path suffix. Currently,
indexes may be created on paths whose suffix contains at most
sixteen links. The fields offsetPath and indexCom
ponentPath are two parallel arrays. The offsetPath field
contains an offset representation of the path suffix. For example
the offset representation of the suffix address. state with
respect to EmployeeBag is (2.1). The indexComponent field
contains the OOP of the index component for each instance
variable in the path suffix.

The structure of an index component is given in Figure 3.
Currently, all index components are implemented using B' -trees.
The treaRoot field contains the OOP of the root of the B T -tree of
the component. Given the operators supported by identity
indexes, it would be preferable to use linear hashing for the
components of identity indexes. Unfortunately, this would disallow
the sharing of components between identity and equality indexes,
and prevent idenlity indexes on Boolean. Character and
~mallIntegers from supporting the operators of equality
mdexes.

The compKind field defines the ordering of keys in the
component's 8-tree. For all components but the last, the ordering
is defined on the OOPs of key values. For the last component of
an identity index, the ordering is also on the OOPs of key values.
For the last component of an equality index, the ordering of key
values is determined by the class-kind of the indexed path, and
may be a DateTime. Float. Integer or String ordering.

The field intoAnNSC is true if the component is the first of
an indexed path, and therefore, indexes directly into an NSC.

This field is used to determine if duplicate entries will be permitted
in the B-tree, and is discussed further below:

index
classKind kind length

offsetPath

indexComponentPath

dictionary entry

bTree comp intoAn numberOf
Root Kind NSC NextComps

offsetsOfNextComponents

next Components

index component

Figure 3

If the path suffixes of two or more indexes into an NSC have
a common prefix, then the indexes will share the index com
ponents on the common prefix. For example. if there were
address. state and address. zip indexes into an Employ
eeBag object. then both indexes would share the component from
Address objects to elements of the NSC object. Note that this
sharing would occur regardless of the kinds of the indexes. The
numberOfNextComps field stores the number of indexed paths
that share the component.

The parallel arrays nextComponents and offsetsOf
NextComponents store the oHset for, and OOP aI, the index
component for the next link in each indexed path that shares the
component. We shall refer to the elements of the nextCom
ponents field as next-components.

Objects in GemStone may be tagged with a dependency list.
For every index component in which an object is a value in the
component's B-tree. the object's dependency list will contain a
pair of values consisting of the OOP of an index component and
an offset. The pair indicates that if the value at the specified
offset is updated then an update must be made to the correspond
ing index component. We sayan index component is dependent
on the value of the object at the given offset. Additionally. objects
that appear as key values of the last component of an equality
indexed path whose class·kind has a byte storage format (i.e.
Character, DateTime, Float, Integer, SmallInteger
String, and subclasses thereof) will have a dependency list con
sisting of the OOPs of index components that must be updated if
the value of the string is modified.

4.3. Index Maintenance
Below. we consider the operations of index creation, index

removal. NSC insertion. NSC deletion, and object modification.
For each operation, we shall consider examples based upon
indexing into an EmployeeBag object.

4.3,1. Index Creation
Figure 4 shows the dictionary structure for an EmployeeBag

object with no extant indexes after an equality index on
name .last has been created. The NSC's dictionary contains a
single entry. The corresponding dictionary entry indicates that it is
an equality index on a path suffix of length two and cfass-kind
String. The first ofisetPath entry of offset 1 indicates that
key values for the first component of the indexed path may be
found at offset 1 in objects belonging to the NSC. The second
entry indicates that key values for the second component may be
found at offset 2 within key values 01 the first component.

equality Index on name.last

EQ I String I 2

1 j2 Inll I
I I "I nil I ...

* "-
0 oop I T 11 ",>
2 nil /
\

nil j
\0 String I FlO

nil

nil

Figure 4

The first indexComponentPath entry is the OOP of an
index component that uses OOP ordering in its B-tree, is into an
NSC, and has one next-component. The first offsetsOf
NextComponents entry indicates that key values for the first and
only next-component are located at offset 2 within key values of
the current component. The first nextComponents entry is the
OOP of the first next-component. The second index component
uses String ordering in its B-tree. is not into an NSC, and has
no next-components.

The first index component's B·tree will have an entry for every
element of the indexed NSC other than nil. (The effect of not
having index entries for nil are discussed in Section 4.4.) Dupli
cate key. value-entries will be present for every Employee object

that is present more than once in the NSC. This duplication
allows us to use the index for a lookup without refering to the
indexed NSC in order to determine the number of occurrences in
the NSC of objects in the result of the lookup. The dependency
lists for non-nil elements of the NSC will have entries indicating
that the index component must be updated if the value at offset 1
is modified. Nil never has a dependency list as it has no
instance variables and does not have a byte implementation.

The B·tree of the second index component will contain exactly
one entry for each unique (by identity). non·nil name value of an
element of the NSC. The dependency lists for each non-nil
name value of an element of the NSC will have an entry indicating
that the index component must be updated if the value at offset 2
is modified. Additionally. those strings that are keys in the S-tree

will have dependency list entries indicating that the index must be
modified when the string is.

The dictionary structure after an equality index on
address. state has been added is shown in Figure 5. The dic
tionary structure alter an equality index on address. zip has
been added in shown in Figure 6. Soth 01 these indexes share
the component that indexes Irom address values to elements 01
the NSC. The creation 01 the index on address. zip does not
require updating the S-tree 01 this component. The component
now has two next-components. An insertion into the S-tree 01 the
new component is made for each unique, non-nil key value in the
first component. Note that the new index component is imple
mented as an identity index.

+ equality index on address.state

EQ I String 2

1 \2 nil \ .. _ ... "

I 1,,- nil \

+ "'-

0 oop 1 T 11
2 nil j

nil I \ 0 String 1 FlO
nil nil

nil . nil

+ equality index on address.zip

o
r----+-2_ -t----------J J

\. 'OJ String I Flo

.'j

4.3.2. Index Removal
Consider removing the index on address. state from the

dictionary structure of Figure 6. Since the first component 01 the
index is used by another indexed path. only the second com
ponent should be deleted. In deleting the component, the entry
that relers to the component must be removed from the depen
dency list of every object that appears as a value in the
component's S-tree. Since the component is an equality com
ponent of class~kind String. the dependency list entry that
refers to the component must be removed from every object that
appears as a key value in the components's S-tree. The first
component needs to be modified to indicate that it has only one

Figure 5

Figure 6

next-component. The resulting dictionary structure is shown in
Figure 7.

4.3.3. NSC Insertion
If an object other than nil is inserted into an NSC, the index

dictionary and each of the dictionary's entries is examined. For
each unique first element of an indexComponentPath, an
insertion is made into the component. This operation involves an
insertion into the component's 8-tree, and an insertion into the
dependency list of the object added to the NSC.

When an insertion whose key value is non-nil is made into
an index component, its 8-tree is checked for the presence of the
key value. If the key value is not found. then insertions are also
made into the next-components.

Consider the insertion of an object whose name value is
nil, whose address. zip value is 11598, and whose
address _ state value is nil, into an NSC with the dictionary
structure of Figure 6_ An insertion will be made into the first com
ponent of the index on name. first. The insertion will not pro
pagate into the second component since the path suffix
name. first is undefined with respect to the inserted object.

An insertion will be made into the first component that is
shared by the remaining two indexed paths. If this is the first
insertion into the component's 8-tree for an employee with this
address, then the insertion will propagate to both next
components.

4.3.4. NSC Deletion
If an object other than nil is deleted from an NSC, then the

index dictionary and each of its elements is examined. For each
unique first element of an indexComponentPath, a deletion is
made from the component. When the deletion of the last
occurrence of a key value is made. deletions propagate to the
component's next-components.

Consider the deletion of the object inserted above. A deletion
will be performed on the first component of the indexed path
name. first. The deletion will not propagate to the next
component since the key value deleted was nil_ A deletion will
be made from the first component shared by the remaining two
paths. II the deletion leaves no other entries with the same key

- equality Index on address.state

2

String I Flo

"" .
nil

value as the one deleted (if no remaining employees have the
identical address), then the deletion is propagated to the two
next-components for State and Zip.

4.3.5. Object Modification
When the value of an object at a given offset is modified, then

a deletion followed by an insertion is made for each index com
ponent that is dependent upon the value of the object stored at
that offset. When the component is not the first component of an
indexComponentPath (when intoAnNSC is false). the dele
tion of single entry followed by the insertion of a single entry for
each dependent component will do. (Note that an index com
ponent can't be a first component for one path and non-first for
another.) II the dependent component references an NSC. then
every occurrence of the object. old value pair in the component's
8-tree must be deleted. If n occurrences are deleted then n
occurrences of the object. new value pair are inserted. The pro
pagation of these insertions and deletions is handled in the same
manner as described for NSC insertion and deletion.

When a byte object with a non-nil dependency list is modified
each index component on its dependency list is modified. Each
entry in a dependent component's 8-tree with a key value identi
cal to the byte object is deleted from the 8-tree. After the modifi
cation, each of the deleted entries is reinserted.

4.4. Indexed Lookups
Identity indexes directly support identity (= =) lookups. Equal

ity indexes and identity indexes on Boolean. Character and
Small Integer, directly support =, >, >=, <, <= and range
lookups. The only differences between evaluating these lookups
is in the initial access to the last index component of an indexed
path. The evaluation of an indexed lookup begins with a 8-tree
lookup in the last index component of the indexed path's index
component path. If the indexed path is of length one, then the

lookup is complete. Otherwise, the following sequence is
repeated n -1 times for an indexed path of length n. Sort the
result of the previous 8-tree lookup by OOP. Using the sorted list
of OOPs, perform a lookup on the 8-tree of the previous index
component for the preceding link in the path.

I[oop [T 1

2 nlll .. ·· "'

nlll·· ..

~1~loopl Flo

""

nil

Figure 7

Consider the evaluation of the term Aname. first =
'Jones', where A is an Employee8ag object with an equality
index on name. first. Using the B-tree from the second com
ponent of the indexed path, all those names with a first value
of 'Jones' are found. These name values are then sorted by
OOP By performing an incremental search of the B-tree of the first
component, using the sorted list of name values as lookup keys,
the elements of A whose name values have a first value of
'Jones' are found.

By not having index entries for nil elements of an NSC, and
not propagating entries for nil key values to next-components.
indexed lookup never return elements of the NSC for which a path
is undefined. (Actually, we do insert index entries for nil NSC
elements when the path is of zero length.) Thus. to find those ele
ments of an NSC for which a path is undefined. one forms an
NSC containing the values present in the first index component of
the path and performs a set difference of it from the indexed NSC.
The values present in the in the first index component are exactly
those for which the path is defined.

4.5. The Query Language
We have chosen to provide associative access through a lim

ited calculus sublanguage. However. we have been careful in
constructing the language so that associative queries can be

. viewed procedurally as OPAL code. We support selection on col
lections with NSC implementations - subclasses of Set and
Bag. Selection conditions are conjunctions of comparisons, where
the comparisons are between path expressions and other path
expressions or literals. While simple conjunctive selections might
seem limited. we note that about the same support for associative
access is supplied at the logical level in Cypress [Cal and in the
internal representation of Adaplex queries [CFLRJ, although those
systems, as some others [ZW]. select from classes rather than
collections. In an object-oriented model, there is no need for
many of the jOins used in relational systems, as these joins often
serve to recompose entities that were decomposed for data nor
malization. Entities are not decomposed in the first place in an
object-oriented model; most joins are replaced by path-tracing,
which we support.

An associative query is a variation on a select expression:

Emps select: .
{anEmp I anEmp.worksln.deptName = 'Marketing'

b.

anEmp.salary > anEmp.worksln.manager.salary}

We have extended all of OPAL to allow path expressions. The
meaning of the above query is the same as for the corresponding
OPAL expression with a regular block.

Emps select.:
(anEmp I anEmp.worksln_deptName = 'Marketing'

b.

anEmp.salary > anEmp.worksln.manager.salary]

Thus there is little impedance mismatch between OPAL and its
query sublanguage.

5. Related Work
Experimental extensions of System/R to support complex

design objects have dealt with the problem of indexing [HL, LP.
PKLM). There. complex objects are built of a root tuple. plus a
tree of component tuples. The resulting object model differs in a
fundamental aspect from ours in that the component tuples are
dependent on the root tuple. Those component tuples are
removed when the root tuple is removed. and they are not shared
with other complex objects. (Later versions of the work allow

/0

external references to component tuples. but do not enforce
referential integrity [Da] for such references.) The notion of depen
dent component objects shows up in other models [Gr. BB. Ni.
We).

Each complex object is composed from tuples of several rela
tions; these relations can be indexed on values actually stored in
the tuple. In the hierarchy of component tuples, each tuple has a
reference to its parent tuple. and may have references to other
component tuples in the same Object. or to roots of other objects.
Further, each root tuple maintains an index to its component
tuples at all levels. to aid in traversing from parent to child tuple.
and for moving or copying the entire object. The techniques for
indexing complex objects in System,R were not directly applicable
to our problem. since component objects in GemStone can be
arbitrarily shared and are not dependent.

Adaplex [Ch -'-, CFLR] provides a model similar to GemStone.
but again with a significant difference. Entities (objects) may
belong to multiple types (classes). unlike GemStone where every
object is an instance of a single class. Other models share this
multiple multiple-membership property with Adaplex [Zd84. Zd85.
DKL]. Since an entity can acquire mappings (attributes) from all
the various types it belongs to. the Adaplex designers have
chosed to decompose the storage representation of an entity into
a logical record for each type to which the entity belongs. (The
logical records for an entity can be clustered on physical storage.)
Each connected component of the type hierarchy has an entity
dictionary - much like our object table - which maps entity iden
tifiers to logical records. The collection of logical records for a
given type can be indexed. but on data values only (not entities)
and hence not on the substructure of entities. Adaplex allows
declarations that two mappings invert each other (such as
manages and manager between Employee and Department)
to support access from an entity to all other entities containing the
first entity as the value for a particular mapping. Note that the
individual link indexes in GemStone in essence maintain such an
inverse' mapping for all objects in a collection, although the
inverse mapping is not named.

We also note that Adaplex tightly couples its procedural data
language with the host language at the expression level. but
preprocesses the host language to extract data accesses and
encapsulate them in non-procedural "envelopes". In Cypress
[Cal. entities are maintained separately from information about

entities (relationships). Entities in a domain (class) are indexed by
identity. and relationships can also be indexed. Further. a linked
list can be maintained for an entity and all relationship records in
which it appears.

An extension to Ingres allows a programmer to add new data
types and index support for them [SBG). However. Ingres treats
instances of those types as un interpreted sequences of bits. so
instances of such types can not reference other database entities
directly. A successor to Ingres. Postgres [SRI. makes some pro
vision for objects. but does so through storing QUEL and C pro
cedures as attribute values. Since complex objects are something
the application designer implements on top of Postgres. its hard
for the system to give any direct support to indexing complex
objects.

6_ Conclusion

tndexing as described in Sections 3 and 4 has been imple
mented in GemStone. Initial instrumentation shows a 300-fold
improvement in performance when using indexed access to select
a single element from a collection of 10,000 elements using the
associative query
Emps select:

{anEmp I anEmp.address.st.reet.name =
'99936 AlBA}.

This improvement is relative to the corresponding selection block
Emps select:

[anEmp I anEmp.address.street.name =
• 99936 AlBA] .

We are in the process of performing benchmarks using the
Wisconsin benchmark [BOT].

7. Acknowledgements
The authors would like to thank all those at Servio Logic who

have contributed to the GemStone project. We would also like to
thank Allen Otis and Alan Purdy lor comments on previous drafts
01 this paper.

8. Bibliography and Trademarks·

. [BB) Batory, D., and A. Buckman, Molecular objects, abstract
data types and data models: a Iramework, Proc. Confer
ence on Very Large Databases, 1984.

[BOT] Bitton, D., D.J. Dewitt, and C. Turbyfill, Benchmark data
base systems a systematic approach, Computer Science,
Technical Report #526, University of Wisconsin
Madison, 1983.

[Br+) Brodie, M., B. Blaustein, U. Dayal, F. Maniola, and A.
Rosenthal, CAD-CAM database management, Database
Engineering 7:2. June 1984.

[Cal Catell, R.G.G., Design and implementation of a
relationship-entity-datum model. Xerox CSL 83-4. May
1983.

[Ch+] Chan. A., A. Danberg. S. Fox, W.-T. K. Lin, A. Nori, and
D. Ries. Storage and access structures to support a
semantic data model, Proc. Conference on Very Large
Databases, September 1982.

[CFLR) Chan, A., A.A. Fox. W.-T. K. Lin, and D. Ries. Design of
an ADA compatible local database manager (LDM). TR
CCA 81-09, Computer Corporation of America,
November 1981.

[CI<] . Copeland, G.. and S.N. Koshalian, A decomposition
storage mOdel. Proc. ACMISIGMOD International
Conference on the Management of Data. 1985.

[CM) Copeland, G .• and D. Maier, Making Smalltalk a data
base system, Proc. ACM/SIGMOD International Confer
ence on the Management of Data. 1984.

[Da) Date, C.J., An Introduction to Database Systems,
Volume 2, Addison-Wesley, 1983.

[OK)

[Ea)

[GR)

Dolk, D.R., and B.R. Konsynski, Knowledge representa
tion lor model management systems. IEEE Transactions
on Software Engineering, 10:6, November 1984.

Eastman, C.M., System facilities for CAD databases,
Proc. IEEE 17th Design Automation Conference. June
1980.

Goldberg, A., and D. Robson, Sma/ltalk-80: The
Language and Its Implementation, Addison-Wesley,
1983.

\ \

[Gr) Gray, M., Databases for computer-aided design, In New
Applications of Databases, G.Garadarin, E. Gelenbe
eds., Academic Press, 1984.

[Ha] Haynie. M.N., The relational/network hybrid data model
for design automation databases, Proc. IEEE 18th
Design Automation Conference, 1981.

[HL) Haskin, R.L., and R.A. Lorie, On extending the functions
of a relational database system, Proc. ACMISIGMOD
International Conference on the Management of Data,
1982.

[JSW) Johnson. H.R.. J.E. Schweitzer. and E.R. Warkentire, A
DBMS facility for handling structural engineering entities.
Engineering Design Application Proceedings lrom SIG
MOD Database Week. May 1983 .

[Kr) Krasner. G.. Smalltalk-BO: Bits of History, Words of
Advice, Addison-Wesley, 1983.

[LP) Lorie, R., and W. Plouffe, Complex objects and their use
in design transactions, Engineering Design Application
Proceedings from SIGMOD Database Week, May 1983.

[Ma] Maier, D., The Theory of Relational Databases, Com
puter Science Press, Rockville, Maryland, 1983.

[MOP) Maier, D., A. Otis, and A. Purdy, Object-oriented data
base development at Servio Logic, Database Engineer
ing8:4, December 1985.

[MP) Maier, D., and D. Price, Data model requirements for
engineering applications, Proc. International Workshop
on Expert Database Systems, 1984.

[MSOP) Maier, D., J. Stein, A. Otis, and A. Purdy, Development
of an ojbect-oriented DBMS, To appear: ACM Confer
ence On Object Oriented Programming Systems,
Languages, and Applications, Portland, Oregon, Sep
tember 1986.

[Mo) Morgenstern, M., Active Databases as a paradign for
enhanced computing environments, Proc. Conference
on Very Large Databases,1983.

[Ni) Nierstrasz, O.M., An object-oriented system, In Office
Automation: Concepts and Tools, D.C. Tsichritzis, ed.,
Springer-Verlag, 1985.

[PKLM) Plouffe, w., W. Kim, R. Lorie, and D. Mc Nabb, A data
base system for engineering design. Database
Engineering, 7:2, June 1984.

[Pu) Purdy, A .• personal communication.

[RS]

lSi)

Rowe, l.A., and K.A. Shoens, Data abstraction, views
and updates in RIGEL. Proc. ACMISIGMOD Interna
tional Conference on the Management of Data, 1979.

T.W. Sidle, Weaknesses of commercial data base

management systems in engineering applications, Proc.
IEEE 17th Design Automation Conference, June 1980.

[SBG) Stonebraker, M., B. Rubenstein, and A. Guttman, Appli
cations of abstract data types and abstract indices to
CAD data bases, Engineering Design Application
Proceedings from SIGMOD Database Week, May 1983.

[SR) Stonebraker, M., and L. Rowe, The design of
POSTGRES, Berkely TR ERL 85/95, November 1985.

[We) Weisner, S.P., An object-oriented protocol for managing
data, Database Engineering, 8:4, December 1985.

[Zd84) Zdonik, S.B., Object management systems concepts,
Proc. ACM S/GOA Conference on Office Information
Systems, 1984.

[ZW) Zdonik, Z.B., and P. Wegner, Towards object-oriented
database environments, Brown Univeristy TR, 1985.

Trademarks

Smalltalk-80 is a trademark of Xerox Corporation
VAX and VMS are trademarks of Digital Equipment
Corp.
GemStone is a trademark of Servio Logic Developlment
Corp.

