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Abstract

Reservation-based scheduling delivergraportionof the CPU to jobs over geriodof time.
In this paper we argue that automatically determining and assigning this period is both possible
and useful in general purpose soft real-time environments such as personal computers and infor-
mation appliances. The goal of period adaptation is to select the period over which a job is guar-
anteed to receive its portion of the CPU dynamically and automatically. The choice of period
represents a trade-off between the amount of jitter observed by the job and the overall efficiency of
the system. Secondary effects of period include quantization error, job priority, changes in mem-
ory behavior, and battery life of portable devices. In addition to discussing these issues in detail,
we present the design and evaluation of a mechanism for period adaptation based on feedback
control. Together with an existing proportion allocation mechanism, this period adapter merges
the benefits of best-effort and reservation-based systems by providing the fine-grain control of res-
ervation-based scheduling without requiring applications to specify their own resource needs in
advance.

1 Introduction specifying a small period, a job gets an upper

CPU scheduling in conventional general_bound on how long it v_viII pause before receiv-
purpose operating systems performs poorly fof'd CPU at a possible expense of lower
applications that are sensitive to timing.throughput. The correct proportion and period
Abstractly, the problem is that the algorithmsfor @ job are analytically determined by human
developed for general purpose schedulingXPerts. Given the difficulty _of performing this
attempt to optimize throughput by scheduling?‘”aws's correctly, r.eservatlon-based schedul-
in large chunks, or time-slices, to amortize the"d has yet to be widely accepted for general
cost of context switching over a long interval. PUrPose systems. _
Unfortunately, this coarse scheduling can [N this paper we discuss a solution to these
result in unacceptably long pauses for jobsoroblems '_that automatically de_termlnes _ the
which require smooth play out such as video oic0Tect period based on observations of a job’s
audio players, software modems or radios, an@fogress, and adjusts the period over time as
signal processing applications such as speedPﬁeded- Together with a_mechanlsm that Qeter-
recognition. For example, a software audioMnes the correct allocation [16], this provides
device needs to sample at tens of kilohertz, ané1® Simplicity of priority-based scheduling
cannot afford to wait for 10 milliseconds while With the control and predictability of reserva-
another job runs. Real-time operating system&0On-based  scheduling. ~ Thus  traditional
address this problem by allowing jobs to SIDeC_embedded appllcatlons could be runin general
ify a period of time over which they wish to PUrpose environments, and applications from
receive their allocation, omproporton By 9eneral-purpose environments could be
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deployed in what traditionally has been anchanges in a job’s behavior, the mix of jobs
embedded system. running on the system, and the efficiency of
The key insight of our approach is that thethe system as a whole.
period of an application’s reservation does not This paper is organized as follows: Section
have to be chosen according to some inherert provides a background discussion, including
operating frequency of the application, buta description of our application model, and a
instead can be set by the system to limit thgustification for the need to dynamically set
application’s jitter. By reducing the period of a period. Section 3 describes the design of a
job’s reservation, the job will be subject to scheduler that automatically and dynamically
smaller pauses and hence will see a smootherssigns periods to jobs. Section 4 contains
allocation of the resource. Thus by adjustingsome implementation details. Section 5 pro-
the period, one can control burstiness causedides some evaluation of our system, Section 6
by scheduling. In the limit, one could schedulediscusses related work, and the paper con-
individual instructions from concurrently run- cludes with Section 7.
ning jobs to get the lowest possible jitter, and
hence the best possible approximation to con2 Background

tinuous execution. Our work in automating the setting of pro-
Unfortunately, reducing a job’s period portion and period stems from our interest in
introduces inefficiency and thus reduces sysreal-rate applications and progress based
tem throughput. There are three main sourcescheduling. Real-rate applications produce or
of this inefficiency. First, the system mustconsume data from real-world sources or
switch between jobs at least once per periodsinks, and thus have specific rate or throughput
so smaller periods mean more frequent contextequirements that are driven by real-world
switches. Second, the interval between timegemands. We believe thagal-rate describes
interrupts must be at least as small as thenuch of what is traditionally called “real-
smallest period in the system to ensure that th@me,” namely those applications with repeat-
scheduler can provide this short period. Thusng deadlines that process streams of data. For
small periods imply more frequent timer inter- example, a video player is real-rate because it
rupts and hence higher overhead. Thirdmust produce 30 frames/second with low jitter
smaller periods can adversely affect cache angh order to achieve an acceptable presentation
memory hit rates, since small periods canquality. A real-rate application is successful if
cause more jobs to run per time interval andt can accommodate its real-world require-
result in a larger collective working set over ments, but receives no benefit from running
this interval. Thus, it is important that periods faster than necessary. Hence the job of a
are not made too small. Furthermore, theresource manager is to allocate proportion and
impact of these three sources of inefficiencyperiod to allow the real-rate application to
can change over time (e.g., for variable bit-ratq(eep up with its real-world source or sink.
jobs), making the correct selection of period a |n particular, we are interested in real-rate
difficult and error-prone task. applications that are structured as a pipeline,
In order to select a reasonable value foivhere each stage transforms the data on its
period in the face of dynamically varying input and passes the data to the next stage in
application needs, we utilize a feedback conthe pipeline. For example, a video player can
troller that automatically sets the period for ape structured as a pipeline with stages that
job based on the observed burstiness of thguffer incoming packets, convert the packet
job's progress. The use of feedback controlata into frames, decode the frames, and dis-
allows our solution to respond to dynamicplay the decoded video. For our purposes, we



assume that these applications have the followits desired rate. If a job’s input queue fill-level
ing characteristics: is rising, it indicates the job is falling behind,
* streaming The application is structured as a whereas a falling input fill-level indicates the
pipeline that processes a stream of data. job is getting ahead. Our proportion allocator
» asynchronousThe pipeline stages execute uses these progress estimates to adjust the allo-
asynchronously with respect to each other tocation of a job based on need [16].
avoid a bottleneck at one stage from stalling
the entire pipeline. 2.1 Determining Optimal Period
* real-rate The pipeline has a desired rate In this section we argue that each job has an
which must be satisfied, although it may not optimal period, that the period can be different
be known to the system or the application. for different jobs, and that the optimal period
In addition to typical soft real-time applica- setting for a given job may vary. The essence
tions such as video, one can characterize reaef our argument is that the period setting
tive applications such as web or file servers asaffects two independent performance metrics
real-rate, where the rate of incoming requesténversely. On one hand, decreasing period low-
is the real-world rate the server is trying to sat-ers the variance in the time to process a unit of
isfy. work, and hence decreases (improves) jitter.
The difficulty of resource management for On the other handncreasingperiod reduces
real-rate applications lies in the fact thatthe amount of overhead due to timer interrupts
although an application’s real rate may beand context switching, and hence increases
known, the appropriate proportion and period(improves) efficiency and throughput.
required for it to achieve that rate typically is  To demonstrate these effects, we ran a sim-
not known. For example, a video player’s rateple 2-stage pipeline with a variety of periods
in frames/sec is known but the CPU allocationand measured both the variance in processing
required to achieve that frame rate is nottime per packet and the time to process some
known. Determining the resource requirementsiumber of packets. Figure 1 shows the results
is difficult because the correct value dependsf this experiment, run on a Pentium-Pro
on many factors including the performance of333Mhz machine running a modified Linux
the platform on which the application is run- 2.0.35 kernel that supports rate-monotonic
ning, the competing workload, and the bit-ratescheduling [10]. On the left-hand graph, we
of the stream, which may vary over time. plot the standard deviation of processing time
Progress-based resource managemepier packet vs. the period assigned to the job.
addresses this variability by using feedbackOn the right-hand graph we plot the time to
controllers to automatically and dynamically process a fixed number of packets vs. the dif-
assign resources to jobs based on perceivefdrent periods. For these experiments, we used
need. The controllers unobtrusively monitorfixed proportions and a timer interrupt interval
job progress usingsymbiotic interfacesA  of 100 psec. The application simulates real
symbiotic interface links application semanticswork by looping for a fixed number of cycles
to system metrics such as progress. For redlefore producing a unit of data. We ran two
rate applications, we provide a symbiotic inter-sets of experiments, one using a work unit
face that provides buffering between pipelineequivalent to 30 msec of 100% CPU usage and
stages, and exposes ftiilelevel (amount used)
of the buffer to the system. The controller
monitors the fill-levels of the input and output 1. Thisisthe kernel used in our OSDI paper on
queues for each job, and uses this information proportion allocation. Source code for it is

. . . available at http://www.cse.ogi.edu/DISC/
to estimate the progress of the job relative to projects/quasarfreleases.
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The graph on the left shows the effect of period on the jitter, variance in processing time, for an application
with regular processing time per work unit. The graph on the right shows the run-time to process a fixed
number of work units vs. period. Both graphs show the results for processing times of 30 msec and 300

Figure 1: Effect of Period on Jitter and Run-time

the other using a 300 msec work unit. For theexecution times, the optimal period is likely to
experiments with the 30 msec work units, thebe different for the two jobs.
application processed 1865 units. The jobs Usually, a certain amount of jitter is consid-
with the 300 msec work units processed 18%red “tolerable.” Thus a typical cost function
units. will assign zero cost to jitter below the tolera-
Figure 1 demonstrates the trade-off inherenble level and a rapidly increasing cost as jitter
in selecting period, since the slope for jitter vs.rises above this threshold. There is also mono-
period is positive while the slope for efficiency tonically increasing cost for increasing over-
vs. period is negative. In addition, Figure 1head. Given such a combination of cost
shows that different jobs, in this case differentcharacteristics, the optimal period will be the
work times per packet, can have differentmaximum (most efficient) that keeps jitter at
slopes. By implication, a job which sees vari-tolerable levels.
able bit-rate may require dynamic period set- For real-rate jobs, one can define “tolerable
tings. jitter” as that which never causes the job to fail
Abstractly, one way to select an optimal to deliver data to its real-world sink (or fail to
period setting is to define a cost function whichconsume data from its real-world source).
considers both jitter and efficiency, and thenAssuming the job has sufficient proportion,
find a period which corresponds to the lowestsuch a failure will only occur if a stage of the
cost. Graphically, this can be accomplished bypipeline is forced to wait for a data item to be
choosing a scaling for the Y axes of the twoproduced or consumed by a neighboring pipe-
graphs in Figure 1, and then overlaying theline stage. In particular, a long pause in the
resulting scaled graphs. The point or points astage feeding (or consuming from) the real-
which the curves intersect corresponds to thevorld device will result in observable loss of
optimal period. Since the curves in Figure lquality. For example, preventing the monitor-
show different slopes for different work unit ing of a sensor in a target acquisition system
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This diagram shows the rough architecture of our scheduler. A feedback controller monitors the magnitude
of bursts of progress made by a job, and calculates new period for the job based on the results. Actuation
involves setting the period for the jobs. The scheduler is a standard proportion/period reservation-based
scheduler.

Figure 2: Architectural Diagram of the Proportion/Period Allocation System

can result in missing the presence of an incommatically. We call this adjustmeiictuationor
ing missile. Likewise, stalling the display stageadaptation, since it involves tuning the sys-
in a video pipeline will result in glitches in the tem’s behavior in the same sense that an auto-
video presentation. matic cruise control controls the speed of a car
One complication of automatically assign- by adjusting its throttle.
ing period is that the level of efficiency or jitter ~ Our use of feedback is a key aspect of the
that is considered acceptable may change ovetesign. Feedback controllers dynamically and
time. For example, a job may be satisfied withautomatically adjust the behavior of a system
a certain degree of inefficiency when the CPUin response to changes in the system’s behav-
is under-loaded (few incoming missiles toior or in its environment. These changes can
track) but would not be satisfied by the sameresult from the introduction or removal of jobs
degree of inefficiency if the CPU was fully from the system, variation in the behavior of
loaded. Similarly, a video player pipeline mayjobs competing for system resources, or
tolerate large bursts if it has sufficient buffer- changes in the resource itself such as a laptop
ing, but the same pipeline may reduce its buffswitching to a lower clock rate to conserve
ering to limit end-to-end delays when used forpower. In addition, the controller can be

teleconferencing. designed to automatically compensate for
_ _ noise in its signal—due to errors in monitoring
3 Design of a Period Controller or errors in actuation. As a result, our approach

There are three components to our design: §an tolerate an occasional missed deadline by
mechanism for estimating job burstiness, dhe scheduler.
controller that uses these estimates to automat- Our system supports three application
ically adjust period, and a proportion-period classes:
scheduler. Figure 2 shows the high-level archi- * Real-time
tecture of our design. The scheduler dispatches ~ Real-time jobs submit a reservation
jobs in order to ensure that they receive their request (proportion, period) to the control-
assigned proportion of the CPU during their ler. The controller performs standard
period. A separate proportion controller peri- admission control, rejecting those reserva-
odically monitors the progress made by the tions which would cause the CPU to be

jobs, and adjusts each job’s proportion auto- oversubscribed. The controller then sub-
mits the reservation to the dispatcher. Since



the reservation is “fixed” the controller will 3.1 Monitoring Job Burstiness

not change the proportion or period for  The goal of our controller is to assign
these jobs. However, the controller mayperiod in order to maximize efficiency while
renegotiate the reservation with the appli-keeping jitter within tolerable levels. Achiev-
cation, either because it notices that theng this goal requires the controller to deter-
reservation is going unused or becausenine each application’s jitter tolerance. In
there is a more important job that needs thEkeeping with our philosophy of automating
resources held by the reservation. For congonfiguration, we would prefer a mechanism
venience we allow jobs to submit a partialthat can infer tolerance without explicit com-
reservation, |eaVing either the proportionmunication from the app"cation_

or period unspecified. In this case the con-  Tg this end, we extend the existing symbi-
troller automatically assigns the missingotic interface used to allocate proportion to

value as for real-rate jobs. also measure the magnitude of bursts—swings
in the buffer fill-level over a short interval.
* Real-rate Intuitively, a job can produce (or consume) a

Real-rate jobs request that the controllethyrst only when it is running. Hence schedules
determine their reservation by registering ahat grant a long block of CPU to a job can
progress metric. The controller monitorsresylt in large bursts. The size of this block is
this progress metric, calculates a periodimited by the job’s allocated proportion and
and/or proportion based on this informa-period. Although reducing the proportion will
tion, and submits the proportion and periodreduce the size of this block, it will also lower
to the dispatcher. For jobs that use oufhe job's rate of progress, preventing it from
bounded buffer symbiotic interface, the keeping up with its real rate. Hence the correct
registration is automatic and transparent tGesponse is to lower the job’s period. Note that

the application. lowering period will only remove burstiness
that is due to the schedule. Jobs that are inher-
* Best-effort: ently bursty, such as a job that produces N

Best-effort jobs are those that have nofynits of work at one point and N/2 at the next,
submitted a reservation or registered amay not be made more smooth by changing
progress metric. There are two ways tOperiod.
handle best-effort jobs. First, the system By measuring bursts in terms of buffering,
can allocate any CPU remaining after allye assume that jitter tolerance can be inferred
real-time and real-rate jobs have been satfrom the amount of buffering. Intuitively this
@sfied. This policy assumes that best-effortmakes sense, since buffering is typically
jobs are less important, as it may arbitrarilyjncreased in order to lower the impact of jitter.
starve best-effort jobs in favor of real-time |t jitter is higher than the amount that buffering
or real-rate. A better alternative is to havecan mask, the job will be forced to stall when it
the controller use open-loop control toryns out of buffers, potentially introducing a
determine an allocation for these jobs. Fomgticeable defect in the presentation. Hence
example, the controller could assume thathe amount of buffering puts an upper bound
best-effort jobs have infinite tolerance for on the acceptable burst size, and so indicates
jitter and assign a maximum period t0 gcceptable jitter. On the other hand, if the
them. actual jitter tolerance is smaller than the

amount of buffering, then some number of the
buffers will go unused and hence nothing is
gained by wasting the space. If we assume that



the algorithm used to allocate buffer space igo larger periods results in a number of advan-
intelligent and informed, then it is safe to infer tages. In addition to the increased efficiency
jitter tolerance from the amount of buffering. demonstrated by Figure 1, larger periods allow
To minimize our exposure to this assumption,the dispatcher to operate with lower quantiza-
we are examining automatic methods fortion error because the timer interval becomes a
determining buffer space based on qualitysmall fraction of the period (this is similar to

specifications. the notion of a smalle’d when calculating
_ _ integrals). Also, longer periods provide more
3.2 Calculating Period flexibility to the scheduler to determine a feasi-

The role of the controller is to monitor the ble schedule for the jobs.
burstiness of jobs by sampling their buffer fill-
levels, and to calculate and assign period t&-3 Proportion-Period Dispatcher
jobs based on these measurements. We choose The core of the architecture shown in Fig-
to monitor via samples because of the flexibil-ure 2 is a standard reservation-based scheduler
ity it provides us: we can arbitrarily trade accu-that uses proportion and period to specify allo-
racy for overhead of the controller by changingcation needs. We have implemented such as
the length of the time interval between sam-scheduler as an additional scheduling policy in
ples. In addition, we can employ standardthe Linux 2.0 operating system. Jobs can
feedback controller designs, since the field ofrequest to be scheduled by this dispatcher by
discrete-time control systems is well under-submitting a reservation, or by requesting that
stood [3]. the controller control their allocation and

To determine the burst size, the controllerperiod. In the former case, the controller per-
keeps a high- and low-water mark on the samforms admission control as in a standard real-
pled buffer fill-levels for each job. At the end time OS and the dispatcher ensures that the
of each period, the controller uses the differ-jobs receive their requested allocation. In the
ence between these levels as an indication déatter case, the controller assigns proportion
the job’s burst size for that period, and clearsand period to the jobs and determines for itself
them for the next period’s measurement. Itwhether the schedule is feasible. Best-effort
then calculates the job’s new period as a funcjobs use the standard Linux scheduling policy.
tion of the old period and the burst size. If the  For either real-rate or real-time jobs, the
burst size is larger than some threshold (bydispatcher implements the classic rate-mono-
default, 50% of the buffer size), the controller tonic algorithm. It creates a partial order of the
decreases the period by an amount relative tpbs based on their periods, and assigns a fixed
the burst size. If the burst is smaller than thepriority (“goodness” in Linux scheduler termi-
threshold, the controller increases the periodhology; see kernel/sched.c in the linux
by a constant amount. This use of linearsources) to the jobs such that jobs with shorter
increase in period to “feel out” the applica- periods get higher priorities and all jobs have
tion’s jitter tolerance is similar to TCP’s use of higher priorities than any other job in the sys-
linear increase in window size in its congestiontem. As a result, jobs with longer periods will
control protocol [7]. As a result of this algo- be interrupted by jobs with shorter periods.
rithm, the controller will settle on a value for Hence the system-wide overhead is largely
period that is the largest value that keeps jittedetermined by the job with the smallest period.
within bounds. There are two ways of integrating “best-

The constant upward pressure on the perio@ffort” jobs with our scheduler. The simpler
when jitter is tolerable is motivated by our goal alternative is to allocate any remaining CPU to
to find a maximal acceptable period. This pustbe shared by the best-effort jobs. This happens



automatically in our system for jobs that do not Due to these inherent inaccuracies in dis-
submit reservations or request to be controlleghatching, we rely on on-line monitoring by the
by our controller, since they will run at normal controller to detect scheduling problems rather
Linux priorities and hence will automatically than schedulability analysis. The controller
receive the CPU only when all real-time andwill detect when a job is making inadequate
real-rate jobs block. A better alternative is toprogress, for any reason, and will adjust pro-
treat all non-real-time jobs as real-rate. Thisportion accordingly. If the problem is due to
means that either these jobs are extended tack of a feasible schedule, the period control-
provide a progress metric, or the controllerler could also respond by increasing the period
peremptory assigns a proportion and period t@f one or more of the jobs. Although we have
these jobs. We prefer making all jobs real-ratamplemented monitoring to detect missed allo-
because it provides more flexibility to the cations, we have not extended the period con-
scheduler to allocate resources. For examplédroller to consider this case.

we have extended our controller to incorporate

an importance metric, which influences the 4 Implementation Details

likelihood that a job will receive its required  \We have implemented the three compo-
resources in time of overload. Further, wenents described in Section 3 in the context of
believe that many existing jobs can be treatedhe Linux 2.0 kernel (2.0.35, RedHat 5.2 distri-
as real-rate jobs with only small modifications.pution). All of the code is available under
For example, one can infer the progress of aGNU public license on our Web pag’g:_)ipe_
web server by exposing the amount of buffer-ine stages communicate via a symbiotic inter-

ing in its input sockets to the controller. face called smart queuesthat provide a
o bounded buffer to the application, and expose
3.4 Feasibility of Schedules the buffer fill-level to the scheduler.

One drawback of our approach is the ques- We have implemented the controller using
tion of possibility that the controller’s choice the SWIFT software feedback toolkit [4].
of proportion and period for a job could result SWiFT embodies an approach to building
in an infeasible schedule. Unfortunately, soft-adaptive system software that is based on con-
real-time systems have sufficient noise thatrol theory. With SWIFT, the controller is a cir-
theoretic schedulability may not mean schedueuit that calculates a function based on its
lability in practice. For example, if a job inputs (in this case the progress monitors), and
blocks on some event (full buffer, user input, uses the function’s output for actuation.
etc.), the scheduler cannot guarantee that it For reasons of rapid prototyping, we imple-
will receive its allocation within its period. In. mented our controller as a user-level program.
addition, the blocked job may disturb otherThis has clear implications on overhead: in
jobs as well. The problem arises because therder to capture application behavior accu-
dispatcher can only preempt jobs on timerrately, the controller must run several times
interrupts. Consider the case when a jolduring the smallest period of any job in the
becomes runnable at the beginning of a time&ystem, since it must run to sample the fill-lev-
slice yet has only a portion of a time slice left els. We plan to address this overhead by mov-
in its allocation because it blocked earlier in itsing the controller into the Linux kernel. This
period. The controller can either deny the jobwill substantially reduce the cost of monitoring
and thus give it less than its reservation, or letas well as the cost of interacting with the dis-
it run and potentially give it more than its share
and thus potentially short another job.

2. http://www.cse.ogi.edu/DISC/projects/qua-
sar/quasar.html#software



patcher. In addition, we are exploring lower cation that changes its behavior over time to
overhead methods for monitoring. For exame-llustrate how the controller can dynamically
ple, we could record the time and fill-level for adapt and find the proper new period. The plat-
the current job’s input and output queues everyjorm for this experiment is a 333Mhz Pentium
time the OS switches context, and then recrerunning a modified Linux 2.0.35 kernel.
ate the signal when the controller runs. This
would allow the controller to run less fre- 5.1 The Need for Period Adaptation
quently but still be able to accurately capture To demonstrate the need for period adapta-
the application’s behavior. Currently the con-tion, we ran our synthetic application under the
troller runs every 10 msec. control of our scheduler and on the default
In order to separate concerns of proportiorLinux scheduler as a point of comparison. Fig-
and period, the feedback controller that speciure 3 shows the results with our scheduler and
fies proportions does so in terms of percentag€igure 4 shows the results with the default
of available CPU rather than absolute executinux scheduler. The key observations are that
tion time. Thus the period controller can using period provides much better predictabil-
change the period without influencing the pro-ity, and that our controller picks a reasonable
portion controller. The dispatcher convertsperiod given the amount of buffering. As one
these percentages into allocations of machinepoint of comparison, in this experiment the
cycles, and then uses an on-chip cycle countegipplication required over 30 buffers to avoid
to track the number of cycles expended by astalling under Linux, but only 20 under our
job. However, the dispatcher can only reliablyscheduler. In addition, our controller provides
enforce preemption during timer-interrupt han-much more predictable results than does
dling. Thus, the accuracy of dispatch is limitedLinux. To be fair, our controller imposes some
by the length of the timer interval. Currently overhead. We feel that this overhead, although
this interval is defined at kernel compile time, high in the prototype, is an acceptable trade off
although we plan to be able to change it at runfor more predictable performance.
time. Doing so would allow us to dynamically ~ The left-hand graph in Figure 3 shows the
tune the resources devoted to serving timebuffer fill-levels over time for our 2-stage pipe-
interrupts based on the requirements of théine synthetic application using an execution
current mix of jobs. time of 3 msec per work unit. Note that the
We can also improve the accuracy of dis-burst size is only half of the total buffer size,
patch for a job by increasing the job’s period,corresponding to our use of 50% as the con-
since the percentage of the period representegbller’s threshold for determining acceptable
by a timer interval grows smaller for larger jitter. By decreasing the amount of buffering,

periods. we could lower the jitter seen by this applica-
_ tion, since the controller sets period relative to
5 Evaluation the amount of buffering.

The crux of our argument is that a feedback The right-hand graph in Figure 3 shows the
controller can automatically and dynamically period assigned by the controller to the pro-
determine a reasonable setting of period wittducer and consumer of the queue. Both jobs
acceptable overhead. In this section we demstart with an initial period of 100 msec, and the
onstrate the veracity of this claim by examin-controller increases each period slowly until
ing the effect of period on a synthetic the jobs’ bursts exceed the threshold. At that
application, and showing our controller point, the period oscillates as the controller
chooses a reasonable setting of period autdries to keep the burst size at but not above the
matically. We also show the results of an appli-acceptable level.
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This graph shows the bufter fill-level over time for the This graph shows the period assigned by the control-

2-stage synthetic application running under our periodler to the two stages. Since they share one queue they
controller. The burst sizes are kept to 50% of the receive nearly identical period assignment. The oscil-
buffer size by the controller, and can be made smallerlation shows the controller continually probing for
by decreasing the amount of buffering. the proper period settings.

Figure 3: Burst Size and Period Settings for Period Control

100 value. The period settings could diverge
slightly, however, if there were a significant
phase shift between the jobs’ periods or if
there were other queues in the pipeline.

The minimum value on the Y axis, 25 msec,
is the smallest assignable period in our system.
This is a limitation of our user-level controller,
which must run at least twice per period in

order to capture burst size.
Figure 4 shows the buffer fill-level for the
20 same application run under the default Linux
scheduler. Linux uses a simple but fluid sched-

‘ il ||| uling algorithm that approximates the standard
0 0 10000 20000 30000 40000 50000 multiple-priority scheduling algorithm. When

Time (msecs) the dispatcher runs, it selects the job with the
This graph shows the buffer fill-level over time for the 2- most accumU|ate_d Credltsf or goodness. Jobs
stage synthetic application with no competing load. ThedCCumulate credits over time, but lose them
bursts (solid black) are the work that can be accomwhen they run. When a job loses all of its cred-
plished in 200 msec, the default time slice under Linux.its it must wait until no other job on the run

Figure 4: Burst Size under Linux Scheduler duéue has credits to spend. Since the default
allocation of credits equates to 200 msec of run
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ods of the producer and consumer to the same
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- Consumer period dynamically tune its period accordingly. To
‘Ml — Producerperiod  dlemonstrate this ability, we modified the syn-
thetic application used above to change the
execution time per work unit every 30 seconds,
toggling between 1.5 and 3 msec per work
unit. The controller, not told of these changes
directly, detects the application’s behavior has
changed based on its progress monitoring, and
adjusts the period accordingly. Note that the
upward adaptation is much slower than down-
ward. This results from our use of exponential
1 1 1 1 1 | decrease and linear increase of period. We
0 50000 100000 150000 chose this policy to weight presentation quality
Time (msecs) .. . . . .
over efficiency. Aggressively increasing period
This graph shows the period assigned to a syn- ~ can introduce jitter which will directly affect
thetic application over time. The application presentation, while our less aggressive

switches between 1.5 and 3 msec per-Work unit approach Only temporarlly wastes resources.
every 30 seconds. These mode switches are

denoted by vertical lines. The controller auto-
matically detects these changes and adjusts the 6 Related \_Nork _ ) )
jobs’ periods automatically. The key idea of this work is that period can

be dynamically and automatically determined
on-line. Most existing work has either focused
the presence of 1/0 bound jobs. As a result, iton off-line algorithms for determining optimal
is difficult to predict the performance of a job assignment of proportion or period, or on
on Linux without knowing detailed informa- jmplementations of dispatchers that will deter-
tion on the behavior of all other jobs in the sys-mine schedules on-line, given a set of reserva-
tem. So despite the efficiency of Linux, thistions specified as (proportion, period). Our
unpredictable behavior makes it unsuited forwork leverages both sets of existing work,
real-rate environments. using a low-level dispatcher to provide fine-
For the numbers in Figure 4, we ran thegrain control over schedules and using feed-

application on an otherwise unloaded systenback control to approximate the off-line algo-
in order to minimize external interference onrithms.

the results. (Note that we did not need to take Recently, Seto et al. at Carnegie Mellon

this precaution when using our scheduler; thishave studied algorithms for determining an
is one of the advantages of working with reseroptimal period assignment to jobs for both
vations.) The presence of other CPU-boundate-monotonic [15] and earliest deadline first
jobs would increase pauses between the runscheduling [14]. Their algorithms perform a
ning of the producer and consumer. 1/O boundsearch through the possible periods for a set of
jobs would cause smaller burst sizes, as thegoncurrent jobs, and their results indicate both
tend to have high goodness and thus will prethe difficulty of finding an optimal period in

150000+

100000

Period set by controller (usecs)

50000+

Figure 5: Dynamic Period Adaptation

empt our application’s jobs. general, and the cost of determining optimal
_ ) period on-line in terms of computation. Our
5.2 Dynamic Adaptation approach is to use a much lower overhead

An important aspect of our approach is thatalgorithm that does not guarantee optimality.
our use of feedback control allows the schedBy using feedback, our controller will quickly

uler to detect changes in a job’s behavior andgettle on a reasonable period assignment in the

11



common case. We hope to analyze its stabilityquality, fine-grain resource allocation with a

and responsiveness more formally to determinimum of configuration from application

mine its behavior under more extreme load. programmers or users. The work described
There exists a large body of work which hasherein is a necessary part of that future.

attempted to provide real-time scheduling sup-
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