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Abstract

Reservation-based scheduling delivers aproportionof the CPU to jobs over aperiodof time.
In this paper we argue that automatically determining and assigning this period is both possible
and useful in general purpose soft real-time environments such as personal computers and infor-
mation appliances. The goal of period adaptation is to select the period over which a job is guar-
anteed to receive its portion of the CPU dynamically and automatically. The choice of period
represents a trade-off between the amount of jitter observed by the job and the overall efficiency of
the system. Secondary effects of period include quantization error, job priority, changes in mem-
ory behavior, and battery life of portable devices. In addition to discussing these issues in detail,
we present the design and evaluation of a mechanism for period adaptation based on feedback
control. Together with an existing proportion allocation mechanism, this period adapter merges
the benefits of best-effort and reservation-based systems by providing the fine-grain control of res-
ervation-based scheduling without requiring applications to specify their own resource needs in
advance.
1  Introduction

CPU scheduling in conventional general
purpose operating systems performs poorly for
applications that are sensitive to timing.
Abstractly, the problem is that the algorithms
developed for general purpose scheduling
attempt to optimize throughput by scheduling
in large chunks, or time-slices, to amortize the
cost of context switching over a long interval.
Unfortunately, this coarse scheduling can
result in unacceptably long pauses for jobs
which require smooth play out such as video or
audio players, software modems or radios, and
signal processing applications such as speech
recognition. For example, a software audio
device needs to sample at tens of kilohertz, and
cannot afford to wait for 10 milliseconds while
another job runs. Real-time operating systems
address this problem by allowing jobs to spec-
ify a period of time over which they wish to
receive their allocation, orproportion. By

specifying a small period, a job gets an upp
bound on how long it will pause before receiv
ing CPU at a possible expense of lowe
throughput. The correct proportion and perio
for a job are analytically determined by huma
experts. Given the difficulty of performing this
analysis correctly, reservation-based sched
ing has yet to be widely accepted for gener
purpose systems.

In this paper we discuss a solution to thes
problems that automatically determines th
correct period based on observations of a job
progress, and adjusts the period over time
needed. Together with a mechanism that det
mines the correct allocation [16], this provide
the simplicity of priority-based scheduling
with the control and predictability of reserva
tion-based scheduling. Thus traditiona
embedded applications could be run in gene
purpose environments, and applications fro
general-purpose environments could b
1
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deployed in what traditionally has been an
embedded system.

The key insight of our approach is that the
period of an application’s reservation does not
have to be chosen according to some inherent
operating frequency of the application, but
instead can be set by the system to limit the
application’s jitter. By reducing the period of a
job’s reservation, the job will be subject to
smaller pauses and hence will see a smoother
allocation of the resource. Thus by adjusting
the period, one can control burstiness caused
by scheduling. In the limit, one could schedule
individual instructions from concurrently run-
ning jobs to get the lowest possible jitter, and
hence the best possible approximation to con-
tinuous execution.

Unfortunately, reducing a job’s period
introduces inefficiency and thus reduces sys-
tem throughput. There are three main sources
of this inefficiency. First, the system must
switch between jobs at least once per period,
so smaller periods mean more frequent context
switches. Second, the interval between timer
interrupts must be at least as small as the
smallest period in the system to ensure that the
scheduler can provide this short period. Thus
small periods imply more frequent timer inter-
rupts and hence higher overhead. Third,
smaller periods can adversely affect cache and
memory hit rates, since small periods can
cause more jobs to run per time interval and
result in a larger collective working set over
this interval. Thus, it is important that periods
are not made too small. Furthermore, the
impact of these three sources of inefficiency
can change over time (e.g., for variable bit-rate
jobs), making the correct selection of period a
difficult and error-prone task.

In order to select a reasonable value for
period in the face of dynamically varying
application needs, we utilize a feedback con-
troller that automatically sets the period for a
job based on the observed burstiness of the
job’s progress. The use of feedback control
allows our solution to respond to dynamic

changes in a job’s behavior, the mix of job
running on the system, and the efficiency o
the system as a whole.

This paper is organized as follows: Sectio
2 provides a background discussion, includin
a description of our application model, and
justification for the need to dynamically se
period. Section 3 describes the design of
scheduler that automatically and dynamical
assigns periods to jobs. Section 4 contai
some implementation details. Section 5 pr
vides some evaluation of our system, Section
discusses related work, and the paper co
cludes with Section 7.

2  Background

Our work in automating the setting of pro
portion and period stems from our interest i
real-rate applications and progress bas
scheduling. Real-rate applications produce
consume data from real-world sources o
sinks, and thus have specific rate or throughp
requirements that are driven by real-worl
demands. We believe thatreal-rate describes
much of what is traditionally called “real-
time,” namely those applications with repea
ing deadlines that process streams of data. F
example, a video player is real-rate because
must produce 30 frames/second with low jitte
in order to achieve an acceptable presentati
quality. A real-rate application is successful
it can accommodate its real-world require
ments, but receives no benefit from runnin
faster than necessary. Hence the job of
resource manager is to allocate proportion a
period to allow the real-rate application to
keep up with its real-world source or sink.

In particular, we are interested in real-rat
applications that are structured as a pipelin
where each stage transforms the data on
input and passes the data to the next stage
the pipeline. For example, a video player ca
be structured as a pipeline with stages th
buffer incoming packets, convert the pack
data into frames, decode the frames, and d
play the decoded video. For our purposes, w
2
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assume that these applications have the follow-
ing characteristics:

• streaming: The application is structured as a
pipeline that processes a stream of data.

• asynchronous: The pipeline stages execute
asynchronously with respect to each other to
avoid a bottleneck at one stage from stalling
the entire pipeline.

• real-rate: The pipeline has a desired rate
which must be satisfied, although it may not
be known to the system or the application.

In addition to typical soft real-time applica-
tions such as video, one can characterize reac-
tive applications such as web or file servers as
real-rate, where the rate of incoming requests
is the real-world rate the server is trying to sat-
isfy.

The difficulty of resource management for
real-rate applications lies in the fact that
although an application’s real rate may be
known, the appropriate proportion and period
required for it to achieve that rate typically is
not known. For example, a video player’s rate
in frames/sec is known but the CPU allocation
required to achieve that frame rate is not
known. Determining the resource requirements
is difficult because the correct value depends
on many factors including the performance of
the platform on which the application is run-
ning, the competing workload, and the bit-rate
of the stream, which may vary over time.

Progress-based resource management
addresses this variability by using feedback
controllers to automatically and dynamically
assign resources to jobs based on perceived
need. The controllers unobtrusively monitor
job progress usingsymbiotic interfaces.A
symbiotic interface links application semantics
to system metrics such as progress. For real
rate applications, we provide a symbiotic inter-
face that provides buffering between pipeline
stages, and exposes thefill-level (amount used)
of the buffer to the system. The controller
monitors the fill-levels of the input and output
queues for each job, and uses this information
to estimate the progress of the job relative to

its desired rate. If a job’s input queue fill-leve
is rising, it indicates the job is falling behind
whereas a falling input fill-level indicates the
job is getting ahead. Our proportion allocato
uses these progress estimates to adjust the a
cation of a job based on need [16].

2.1  Determining Optimal Period
In this section we argue that each job has

optimal period, that the period can be differen
for different jobs, and that the optimal perio
setting for a given job may vary. The essenc
of our argument is that the period settin
affects two independent performance metri
inversely. On one hand, decreasing period low
ers the variance in the time to process a unit
work, and hence decreases (improves) jitte
On the other hand,increasingperiod reduces
the amount of overhead due to timer interrup
and context switching, and hence increas
(improves) efficiency and throughput.

To demonstrate these effects, we ran a si
ple 2-stage pipeline with a variety of period
and measured both the variance in process
time per packet and the time to process som
number of packets. Figure 1 shows the resu
of this experiment, run on a Pentium-Pr
333Mhz machine running a modified Linux
2.0.35 kernel that supports rate-monoton
scheduling1 [10]. On the left-hand graph, we
plot the standard deviation of processing tim
per packet vs. the period assigned to the jo
On the right-hand graph we plot the time t
process a fixed number of packets vs. the d
ferent periods. For these experiments, we us
fixed proportions and a timer interrupt interva
of 100 µsec. The application simulates rea
work by looping for a fixed number of cycles
before producing a unit of data. We ran tw
sets of experiments, one using a work un
equivalent to 30 msec of 100% CPU usage a

1. This is the kernel used in our OSDI paper on
proportion allocation. Source code for it is
available at http://www.cse.ogi.edu/DISC/
projects/quasar/releases.
3
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the other using a 300 msec work unit. For the
experiments with the 30 msec work units, the
application processed 1865 units. The jobs
with the 300 msec work units processed 185
units.

Figure 1 demonstrates the trade-off inherent
in selecting period, since the slope for jitter vs.
period is positive while the slope for efficiency
vs. period is negative. In addition, Figure 1
shows that different jobs, in this case different
work times per packet, can have different
slopes. By implication, a job which sees vari-
able bit-rate may require dynamic period set-
tings.

Abstractly, one way to select an optimal
period setting is to define a cost function which
considers both jitter and efficiency, and then
find a period which corresponds to the lowest
cost. Graphically, this can be accomplished by
choosing a scaling for the Y axes of the two
graphs in Figure 1, and then overlaying the
resulting scaled graphs. The point or points at
which the curves intersect corresponds to the
optimal period. Since the curves in Figure 1
show different slopes for different work unit

execution times, the optimal period is likely to
be different for the two jobs.

Usually, a certain amount of jitter is consid
ered “tolerable.” Thus a typical cost function
will assign zero cost to jitter below the tolera
ble level and a rapidly increasing cost as jitte
rises above this threshold. There is also mon
tonically increasing cost for increasing over
head. Given such a combination of co
characteristics, the optimal period will be th
maximum (most efficient) that keeps jitter a
tolerable levels.

For real-rate jobs, one can define “tolerab
jitter” as that which never causes the job to fa
to deliver data to its real-world sink (or fail to
consume data from its real-world source
Assuming the job has sufficient proportion
such a failure will only occur if a stage of the
pipeline is forced to wait for a data item to b
produced or consumed by a neighboring pip
line stage. In particular, a long pause in th
stage feeding (or consuming from) the rea
world device will result in observable loss o
quality. For example, preventing the monitor
ing of a sensor in a target acquisition syste
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Figure 1: Effect of Period on Jitter and Run-time

The graph on the left shows the effect of period on the jitter, variance in processing time, for an applicatio
with regular processing time per work unit. The graph on the right shows the run-time to process a fixe
number of work units vs. period. Both graphs show the results for processing times of 30 msec and 30
4
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can result in missing the presence of an incom-
ing missile. Likewise, stalling the display stage
in a video pipeline will result in glitches in the
video presentation.

One complication of automatically assign-
ing period is that the level of efficiency or jitter
that is considered acceptable may change over
time. For example, a job may be satisfied with
a certain degree of inefficiency when the CPU
is under-loaded (few incoming missiles to
track) but would not be satisfied by the same
degree of inefficiency if the CPU was fully
loaded. Similarly, a video player pipeline may
tolerate large bursts if it has sufficient buffer-
ing, but the same pipeline may reduce its buff-
ering to limit end-to-end delays when used for
teleconferencing.

3  Design of a Period Controller

There are three components to our design: a
mechanism for estimating job burstiness, a
controller that uses these estimates to automat-
ically adjust period, and a proportion-period
scheduler. Figure 2 shows the high-level archi-
tecture of our design. The scheduler dispatches
jobs in order to ensure that they receive their
assigned proportion of the CPU during their
period. A separate proportion controller peri-
odically monitors the progress made by the
jobs, and adjusts each job’s proportion auto-

matically. We call this adjustmentactuationor
adaptation,since it involves tuning the sys-
tem’s behavior in the same sense that an au
matic cruise control controls the speed of a c
by adjusting its throttle.

Our use of feedback is a key aspect of th
design. Feedback controllers dynamically an
automatically adjust the behavior of a syste
in response to changes in the system’s beh
ior or in its environment. These changes ca
result from the introduction or removal of jobs
from the system, variation in the behavior o
jobs competing for system resources,
changes in the resource itself such as a lapt
switching to a lower clock rate to conserv
power. In addition, the controller can be
designed to automatically compensate f
noise in its signal—due to errors in monitorin
or errors in actuation. As a result, our approac
can tolerate an occasional missed deadline
the scheduler.

Our system supports three applicatio
classes:

• Real-time
Real-time jobs submit a reservatio

request (proportion, period) to the contro
ler. The controller performs standar
admission control, rejecting those reserv
tions which would cause the CPU to b
oversubscribed. The controller then sub
mits the reservation to the dispatcher. Sin

JobJob Job Job

Scheduler/DispatcherController

Monitor
Progress

Actuate
Allocate
Resources

This diagram shows the rough architecture of our scheduler. A feedback controller monitors the magnitu
of bursts of progress made by a job, and calculates new period for the job based on the results. Actuat
involves setting the period for the jobs. The scheduler is a standard proportion/period reservation-bas
scheduler.

Figure 2: Architectural Diagram of the Proportion/Period Allocation System
5
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the reservation is “fixed” the controller will
not change the proportion or period for
these jobs. However, the controller may
renegotiate the reservation with the appli-
cation, either because it notices that the
reservation is going unused or because
there is a more important job that needs the
resources held by the reservation. For con-
venience we allow jobs to submit a partial
reservation, leaving either the proportion
or period unspecified. In this case the con-
troller automatically assigns the missing
value as for real-rate jobs.

• Real-rate
Real-rate jobs request that the controller

determine their reservation by registering a
progress metric. The controller monitors
this progress metric, calculates a period
and/or proportion based on this informa-
tion, and submits the proportion and period
to the dispatcher. For jobs that use our
bounded buffer symbiotic interface, the
registration is automatic and transparent to
the application.

• Best-effort:
Best-effort jobs are those that have not

submitted a reservation or registered a
progress metric. There are two ways to
handle best-effort jobs. First, the system
can allocate any CPU remaining after all
real-time and real-rate jobs have been sat-
isfied. This policy assumes that best-effort
jobs are less important, as it may arbitrarily
starve best-effort jobs in favor of real-time
or real-rate. A better alternative is to have
the controller use open-loop control to
determine an allocation for these jobs. For
example, the controller could assume that
best-effort jobs have infinite tolerance for
jitter and assign a maximum period to
them.

3.1  Monitoring Job Burstiness
The goal of our controller is to assign

period in order to maximize efficiency while
keeping jitter within tolerable levels. Achiev-
ing this goal requires the controller to dete
mine each application’s jitter tolerance. I
keeping with our philosophy of automating
configuration, we would prefer a mechanism
that can infer tolerance without explicit com
munication from the application.

To this end, we extend the existing symb
otic interface used to allocate proportion t
also measure the magnitude of bursts—swin
in the buffer fill-level over a short interval.
Intuitively, a job can produce (or consume)
burst only when it is running. Hence schedule
that grant a long block of CPU to a job ca
result in large bursts. The size of this block
limited by the job’s allocated proportion and
period. Although reducing the proportion wil
reduce the size of this block, it will also lowe
the job’s rate of progress, preventing it from
keeping up with its real rate. Hence the corre
response is to lower the job’s period. Note th
lowering period will only remove burstiness
that is due to the schedule. Jobs that are inh
ently bursty, such as a job that produces
units of work at one point and N/2 at the nex
may not be made more smooth by changin
period.

By measuring bursts in terms of buffering
we assume that jitter tolerance can be inferr
from the amount of buffering. Intuitively this
makes sense, since buffering is typical
increased in order to lower the impact of jitte
If jitter is higher than the amount that buffering
can mask, the job will be forced to stall when
runs out of buffers, potentially introducing a
noticeable defect in the presentation. Hen
the amount of buffering puts an upper boun
on the acceptable burst size, and so indica
acceptable jitter. On the other hand, if th
actual jitter tolerance is smaller than th
amount of buffering, then some number of th
buffers will go unused and hence nothing
gained by wasting the space. If we assume th
6
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the algorithm used to allocate buffer space is
intelligent and informed, then it is safe to infer
jitter tolerance from the amount of buffering.
To minimize our exposure to this assumption,
we are examining automatic methods for
determining buffer space based on quality
specifications.

3.2   Calculating Period
The role of the controller is to monitor the

burstiness of jobs by sampling their buffer fill-
levels, and to calculate and assign period to
jobs based on these measurements. We choose
to monitor via samples because of the flexibil-
ity it provides us: we can arbitrarily trade accu-
racy for overhead of the controller by changing
the length of the time interval between sam-
ples. In addition, we can employ standard
feedback controller designs, since the field of
discrete-time control systems is well under-
stood [3].

To determine the burst size, the controller
keeps a high- and low-water mark on the sam-
pled buffer fill-levels for each job. At the end
of each period, the controller uses the differ-
ence between these levels as an indication of
the job’s burst size for that period, and clears
them for the next period’s measurement. It
then calculates the job’s new period as a func-
tion of the old period and the burst size. If the
burst size is larger than some threshold (by
default, 50% of the buffer size), the controller
decreases the period by an amount relative to
the burst size. If the burst is smaller than the
threshold, the controller increases the period
by a constant amount. This use of linear
increase in period to “feel out” the applica-
tion’s jitter tolerance is similar to TCP’s use of
linear increase in window size in its congestion
control protocol [7]. As a result of this algo-
rithm, the controller will settle on a value for
period that is the largest value that keeps jitter
within bounds.

The constant upward pressure on the period
when jitter is tolerable is motivated by our goal
to find a maximal acceptable period. This push

to larger periods results in a number of adva
tages. In addition to the increased efficienc
demonstrated by Figure 1, larger periods allo
the dispatcher to operate with lower quantiz
tion error because the timer interval becomes
small fraction of the period (this is similar to
the notion of a smaller∆ when calculating
integrals). Also, longer periods provide mor
flexibility to the scheduler to determine a feas
ble schedule for the jobs.

3.3  Proportion-Period Dispatcher
The core of the architecture shown in Fig

ure 2 is a standard reservation-based schedu
that uses proportion and period to specify allo
cation needs. We have implemented such
scheduler as an additional scheduling policy
the Linux 2.0 operating system. Jobs ca
request to be scheduled by this dispatcher
submitting a reservation, or by requesting th
the controller control their allocation and
period. In the former case, the controller pe
forms admission control as in a standard rea
time OS and the dispatcher ensures that t
jobs receive their requested allocation. In th
latter case, the controller assigns proportio
and period to the jobs and determines for itse
whether the schedule is feasible. Best-effo
jobs use the standard Linux scheduling polic

For either real-rate or real-time jobs, th
dispatcher implements the classic rate-mon
tonic algorithm. It creates a partial order of th
jobs based on their periods, and assigns a fix
priority (“goodness” in Linux scheduler termi-
nology; see kernel/sched.c in the linu
sources) to the jobs such that jobs with short
periods get higher priorities and all jobs hav
higher priorities than any other job in the sys
tem. As a result, jobs with longer periods wil
be interrupted by jobs with shorter periods
Hence the system-wide overhead is large
determined by the job with the smallest period

There are two ways of integrating “best
effort” jobs with our scheduler. The simple
alternative is to allocate any remaining CPU t
be shared by the best-effort jobs. This happe
7
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automatically in our system for jobs that do not
submit reservations or request to be controlled
by our controller, since they will run at normal
Linux priorities and hence will automatically
receive the CPU only when all real-time and
real-rate jobs block. A better alternative is to
treat all non-real-time jobs as real-rate. This
means that either these jobs are extended to
provide a progress metric, or the controller
peremptory assigns a proportion and period to
these jobs. We prefer making all jobs real-rate
because it provides more flexibility to the
scheduler to allocate resources. For example,
we have extended our controller to incorporate
an importance metric, which influences the
likelihood that a job will receive its required
resources in time of overload. Further, we
believe that many existing jobs can be treated
as real-rate jobs with only small modifications.
For example, one can infer the progress of a
web server by exposing the amount of buffer-
ing in its input sockets to the controller.

3.4  Feasibility of Schedules
One drawback of our approach is the ques-

tion of possibility that the controller’s choice
of proportion and period for a job could result
in an infeasible schedule. Unfortunately, soft-
real-time systems have sufficient noise that
theoretic schedulability may not mean schedu-
lability in practice. For example, if a job
blocks on some event (full buffer, user input,
etc.), the scheduler cannot guarantee that it
will receive its allocation within its period. In
addition, the blocked job may disturb other
jobs as well. The problem arises because the
dispatcher can only preempt jobs on timer
interrupts. Consider the case when a job
becomes runnable at the beginning of a time
slice yet has only a portion of a time slice left
in its allocation because it blocked earlier in its
period. The controller can either deny the job
and thus give it less than its reservation, or let
it run and potentially give it more than its share
and thus potentially short another job.

Due to these inherent inaccuracies in di
patching, we rely on on-line monitoring by the
controller to detect scheduling problems rath
than schedulability analysis. The controlle
will detect when a job is making inadequat
progress, for any reason, and will adjust pro
portion accordingly. If the problem is due to
lack of a feasible schedule, the period contro
ler could also respond by increasing the perio
of one or more of the jobs. Although we hav
implemented monitoring to detect missed allo
cations, we have not extended the period co
troller to consider this case.

4  Implementation Details

We have implemented the three compo
nents described in Section 3 in the context
the Linux 2.0 kernel (2.0.35, RedHat 5.2 distr
bution). All of the code is available unde
GNU public license on our Web page.2 Pipe-
line stages communicate via a symbiotic inte
face called smart queuesthat provide a
bounded buffer to the application, and expo
the buffer fill-level to the scheduler.

We have implemented the controller usin
the SWiFT software feedback toolkit [4]
SWiFT embodies an approach to buildin
adaptive system software that is based on co
trol theory. With SWiFT, the controller is a cir-
cuit that calculates a function based on i
inputs (in this case the progress monitors), a
uses the function’s output for actuation.

For reasons of rapid prototyping, we imple
mented our controller as a user-level program
This has clear implications on overhead: i
order to capture application behavior accu
rately, the controller must run several time
during the smallest period of any job in th
system, since it must run to sample the fill-lev
els. We plan to address this overhead by mo
ing the controller into the Linux kernel. This
will substantially reduce the cost of monitoring
as well as the cost of interacting with the dis

2. http://www.cse.ogi.edu/DISC/projects/qua-
sar/quasar.html#software
8
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patcher. In addition, we are exploring lower
overhead methods for monitoring. For exam-
ple, we could record the time and fill-level for
the current job’s input and output queues every
time the OS switches context, and then recre-
ate the signal when the controller runs. This
would allow the controller to run less fre-
quently but still be able to accurately capture
the application’s behavior. Currently the con-
troller runs every 10 msec.

In order to separate concerns of proportion
and period, the feedback controller that speci-
fies proportions does so in terms of percentage
of available CPU rather than absolute execu-
tion time. Thus the period controller can
change the period without influencing the pro-
portion controller. The dispatcher converts
these percentages into allocations of machine-
cycles, and then uses an on-chip cycle counter
to track the number of cycles expended by a
job. However, the dispatcher can only reliably
enforce preemption during timer-interrupt han-
dling. Thus, the accuracy of dispatch is limited
by the length of the timer interval. Currently
this interval is defined at kernel compile time,
although we plan to be able to change it at run-
time. Doing so would allow us to dynamically
tune the resources devoted to serving timer
interrupts based on the requirements of the
current mix of jobs.

We can also improve the accuracy of dis-
patch for a job by increasing the job’s period,
since the percentage of the period represented
by a timer interval grows smaller for larger
periods.

5  Evaluation

The crux of our argument is that a feedback
controller can automatically and dynamically
determine a reasonable setting of period with
acceptable overhead. In this section we dem-
onstrate the veracity of this claim by examin-
ing the effect of period on a synthetic
application, and showing our controller
chooses a reasonable setting of period auto-
matically. We also show the results of an appli-

cation that changes its behavior over time
illustrate how the controller can dynamically
adapt and find the proper new period. The pla
form for this experiment is a 333Mhz Pentium
running a modified Linux 2.0.35 kernel.

5.1  The Need for Period Adaptation
To demonstrate the need for period adapt

tion, we ran our synthetic application under th
control of our scheduler and on the defau
Linux scheduler as a point of comparison. Fig
ure 3 shows the results with our scheduler a
Figure 4 shows the results with the defau
Linux scheduler. The key observations are th
using period provides much better predictab
ity, and that our controller picks a reasonab
period given the amount of buffering. As on
point of comparison, in this experiment th
application required over 30 buffers to avoi
stalling under Linux, but only 20 under ou
scheduler. In addition, our controller provide
much more predictable results than doe
Linux. To be fair, our controller imposes som
overhead. We feel that this overhead, althou
high in the prototype, is an acceptable trade o
for more predictable performance.

The left-hand graph in Figure 3 shows th
buffer fill-levels over time for our 2-stage pipe
line synthetic application using an executio
time of 3 msec per work unit. Note that th
burst size is only half of the total buffer size
corresponding to our use of 50% as the co
troller’s threshold for determining acceptabl
jitter. By decreasing the amount of buffering
we could lower the jitter seen by this applica
tion, since the controller sets period relative
the amount of buffering.

The right-hand graph in Figure 3 shows th
period assigned by the controller to the pro
ducer and consumer of the queue. Both jo
start with an initial period of 100 msec, and th
controller increases each period slowly unt
the jobs’ bursts exceed the threshold. At th
point, the period oscillates as the controlle
tries to keep the burst size at but not above t
acceptable level.
9
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Since the work rates of the producer and
consumer are the same, and the only informa-
tion available to the controller is the fill-level
of the single queue, the controller sets the peri-
ods of the producer and consumer to the same

value. The period settings could diverg
slightly, however, if there were a significan
phase shift between the jobs’ periods or
there were other queues in the pipeline.

The minimum value on the Y axis, 25 msec
is the smallest assignable period in our syste
This is a limitation of our user-level controller
which must run at least twice per period i
order to capture burst size.

Figure 4 shows the buffer fill-level for the
same application run under the default Linu
scheduler. Linux uses a simple but fluid sche
uling algorithm that approximates the standa
multiple-priority scheduling algorithm. When
the dispatcher runs, it selects the job with th
most accumulated credits, or goodness. Jo
accumulate credits over time, but lose the
when they run. When a job loses all of its cred
its it must wait until no other job on the run
queue has credits to spend. Since the defa
allocation of credits equates to 200 msec of ru
time, running out of credits may result in a
considerable pause. In addition, CPU-boun
jobs tend to run out of credits before I/O jobs
and hence tend to be preempted frequently

Figure 3: Burst Size and Period Settings for Period Control

This graph shows the buffer fill-level over time for the
2-stage synthetic application running under our period
controller. The burst sizes are kept to 50% of the
buffer size by the controller, and can be made smaller
by decreasing the amount of buffering.

This graph shows the period assigned by the control-
ler to the two stages. Since they share one queue the
receive nearly identical period assignment. The oscil-
lation shows the controller continually probing for
the proper period settings.
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Figure 4: Burst Size under Linux Scheduler

This graph shows the buffer fill-level over time for the 2-
stage synthetic application with no competing load. The
bursts (solid black) are the work that can be accom-
plished in 200 msec, the default time slice under Linux.
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the
the presence of I/O bound jobs. As a result, it
is difficult to predict the performance of a job
on Linux without knowing detailed informa-
tion on the behavior of all other jobs in the sys-
tem. So despite the efficiency of Linux, this
unpredictable behavior makes it unsuited for
real-rate environments.

For the numbers in Figure 4, we ran the
application on an otherwise unloaded system
in order to minimize external interference on
the results. (Note that we did not need to take
this precaution when using our scheduler; this
is one of the advantages of working with reser-
vations.) The presence of other CPU-bound
jobs would increase pauses between the run-
ning of the producer and consumer. I/O bound
jobs would cause smaller burst sizes, as they
tend to have high goodness and thus will pre-
empt our application’s jobs.

5.2   Dynamic Adaptation
An important aspect of our approach is that

our use of feedback control allows the sched-
uler to detect changes in a job’s behavior and

dynamically tune its period accordingly. To
demonstrate this ability, we modified the syn
thetic application used above to change th
execution time per work unit every 30 second
toggling between 1.5 and 3 msec per wo
unit. The controller, not told of these change
directly, detects the application’s behavior ha
changed based on its progress monitoring, a
adjusts the period accordingly. Note that th
upward adaptation is much slower than dow
ward. This results from our use of exponenti
decrease and linear increase of period. W
chose this policy to weight presentation qualit
over efficiency. Aggressively increasing perio
can introduce jitter which will directly affect
presentation, while our less aggressiv
approach only temporarily wastes resources

6  Related Work

The key idea of this work is that period ca
be dynamically and automatically determine
on-line. Most existing work has either focuse
on off-line algorithms for determining optima
assignment of proportion or period, or o
implementations of dispatchers that will dete
mine schedules on-line, given a set of reserv
tions specified as (proportion, period). Ou
work leverages both sets of existing work
using a low-level dispatcher to provide fine
grain control over schedules and using fee
back control to approximate the off-line algo
rithms.

Recently, Seto et al. at Carnegie Mello
have studied algorithms for determining a
optimal period assignment to jobs for bot
rate-monotonic [15] and earliest deadline fir
scheduling [14]. Their algorithms perform a
search through the possible periods for a set
concurrent jobs, and their results indicate bo
the difficulty of finding an optimal period in
general, and the cost of determining optim
period on-line in terms of computation. Ou
approach is to use a much lower overhea
algorithm that does not guarantee optimalit
By using feedback, our controller will quickly
settle on a reasonable period assignment in
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Figure 5: Dynamic Period Adaptation

This graph shows the period assigned to a syn-
thetic application over time. The application
switches between 1.5 and 3 msec per work unit
every 30 seconds. These mode switches are
denoted by vertical lines. The controller auto-
matically detects these changes and adjusts the
jobs’ periods automatically.
11
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common case. We hope to analyze its stability
and responsiveness more formally to deter-
mine its behavior under more extreme load.

There exists a large body of work which has
attempted to provide real-time scheduling sup-
port in operating systems, Jones et al. [9] pro-
vide a nice summary. The typical approach,
taken by Linux, Solaris, and NT, provides
“real-time” priorities, which are fixed and
higher than regular priorities but suffer from
the lack of control as seen in Figure 4. More
relevant to this work are efforts to schedule
based on proportion and/or period
[9][12][17][18]. To date, all such approaches
require human experts to supply accurate spec-
ifications of proportion and/or period, and
focus on the best way to satisfy these specifi-
cations. None of them try to infer the correct
proportion and period.

In addition, several systems use hybrid
approaches to merge the benefits of reservation
and priority scheduling. Typically these
approaches use a heuristic that gives a static
[2][6] or biased [5] partition of the CPU to
either real-time jobs or non-real-time jobs.
More flexible and dynamic solutions have
been proposed [1][8][12] but to date they focus
on the allocation of proportion and not on
dynamically setting the period.

This work is heavily influenced by earlier
work by one of the co-authors on the Synthesis
kernel, which was the first to explore adaptive
resource management in the context of soft
real-time jobs [11][13]. This work extends the
Synthesis results by automatically adjusting
proportion and period for jobs, and by apply-
ing it to a production general purpose operat-
ing system.

7  Conclusion

The main contributions of this paper are the
justification of the need for automatic and
dynamic assignment of period to jobs, and the
description and evaluation of a feedback con-
troller that satisfies this need. We believe that
the systems of the future must provide high-

quality, fine-grain resource allocation with
minimum of configuration from application
programmers or users. The work describe
herein is a necessary part of that future.
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