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Abstract

We develop a new signal modeling method, entropy-constrained adaptive PCA, that

has the exibility to accurately model the cluster structure of non-stationary data.

Using a latent data framework, we derive a statistical model for a broad category

of real world signals that includes images and measurements from natural processes.

Data of this type consists of a collection of low-dimensional patterns embedded in a

high-dimensional observation or measurement space. We use this statistical model to

develop our adaptive PCA algorithm. Our algorithm adjusts the model parameters to

minimize the dimension reduction error between the model and sample data subject to

a constraint on the entropy.

We evaluate the quality of models produced by adaptive PCA using image texture

data and salinity and temperature measurements from the Columbia river. Compared

to entropy-constrained vector quantization, local PCA and full-covariance models, adap-

tive PCA proved to be a more e�ective tool for analyzing the salinity and temperature

data. In addition, our results show that our model segments texture images as well as

entropy-constrained vector quantizers, yet uses substantially fewer model components.

Adaptive PCA models conform to the data structure better than full covariance models

when training data is sparse.
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1 Introduction

Classical methods for signal modeling, e.g. global linear models, are limited in that they

accurately model only simple, invariant signals. Complex real-world signals require more

innovative modeling approaches, since the statistical characteristics of such data vary within

the data space. Collections of local linear models, which partition the data space and

then model data within each region, o�er a promising approach to modeling such signals.

However, most \collection of model" approaches have their own limitations: they either

require large amounts of training data, limiting their usefulness on small data sets; or must

be heavily constrained geometrically, enforcing too much uniformity of model components to

accurately model non-stationary data. Our goal in this paper is to develop a new method for

creating collections of local linear models that strikes a balance between these two extremes,

allowing us to derive models appropriate for real-world data.

The classic example of a collection or mixture of linear models is the Gaussian mixture

model (GMM) with full or unconstrained covariance. Such models are often a poor choice

for high-dimensional data, as suÆcient training examples are rarely available to produce ro-

bust models. To reduce training data requirements, one typically constrains the covariance

to be spherical or diagonal [1], which limits the ability of the model components to conform

to the natural data structure. Adaptive principal component analysis (PCA), which mod-

els data as a collection of hyperplanes, has the potential to strike a balance between full

covariance and spherical GMMs. Recently several researchers [2, 3, 4] have developed ef-

fective dimension reduction methods using adaptive PCA. In addition, Tipping and Bishop

[5] and Ghararamani and Hinton [6] have developed statistical models for mixture PCA

and the related technique, mixture factor analysis, respectively. Despite their success, these

methods under-utilize the potential of local or adaptive PCA models by requiring a single

global dimension for all model components.

The intrinsic dimension of real-world signals, such as image or speech data, varies through-

out the signal space. In prior work [7], we found that dimension reduction performance

of local PCA methods could be substantially improved by allowing the dimension to vary.

Meinicke and Ritter [8] have recently proposed a mixture PCA model that incorporates

variable dimension and produces higher likelihood models than �xed-dimension methods.

Recently, we developed a statistical model for transform coding [9, 10], a common methods

of signal compression. From this model, we derived a new generalized Lloyd algorithm

for transform coding, in which coder complexity is controlled by an entropy constraint.
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The entropy constraint arises naturally from the associated statistical model. A similar

construction for adaptive PCA should provide an e�ective way to allow the dimension to

conform to the data structure, while limiting model complexity.

In order to develop more exible adaptive PCA models, we �rst develop a statistical model

of the data. Using a latent framework, we derive a model for a broad category of real-

world data that consist of collections of several distinct low-dimensional patterns, or classes,

embedded in a high-dimensional observation space. This probability model is the same as

that developed independently by Meinicke and Ritter [8]. However, we take the development

further by recognizing the entropy-constrained form of the cost function and developing a

new hard-clustering algorithm for adaptive PCA.

Following our algorithm derivation, we describe several training methods used to �t model

parameters to sample data. We conclude with an evaluation of our adaptive PCA algorithm

on both low and high dimensional real-world data; salinity and temperature measurements

from the Columbia River Estuary and image texture data. As an additional extension of

prior adaptive PCA work [5, 8], we compare the ability of our adaptive PCA model to

separate data into its distinct classes to that of both spherical and full-covariance models.

We �nd that our adaptive PCA approach indeed allows us to specify models that are

neither overly \data-hungry" nor overly constrained geometrically. These models accurately

represent this broad category of real-world data even when the sample data is sparse.

2 Adaptive PCA Model

In this section, we present the statistical model from which we derive our entropy constrained

adaptive PCA algorithm. This model is developed within a latent data framework, which

follows that presented by Tipping and Bishop [5] for probabilistic PCA and Basilevsky [11]

and Roweis and Ghahramani [12] for factor analysis. The latent data framework is based

on the presumption that observed signals are not as complex as they appear. Instead they

have some simple latent structure, which is obscured by linear transformations and noise.

Our goal is to recover this underlying structure in order to improve our understanding of

the data and to reduce the size of the signal representation.

For adaptive PCA, we envision a d dimensional latent data space S, where data from the

latent space is mapped to a d dimensional observation space X. The latent data, s, is
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Figure 1: Adaptive PCA Model. Structure of latent variable space, S, and mapping to observed space,

X. The data density in the latent space consists of a three Gaussians. This latent data is mapped to the

observed data space by orthogonal transform, W , which stretch and rotate the data.

modeled with a simple mixture density of the form

p(s) =
MX
�=1

�� p(sj�) (1)

where �� are the mixing coeÆcients and the components are spherical Gaussians p(sj�) =

N (��; �
2I) with means �� and variance �2.

Unique linear maps with translation �� and rotation plus scaling transform W� embed the

latent data in the observed space, X. W� consists of two parts, an orthogonal transform

U� and a diagonal scaling transform ��, so that W� = U��
1

2

� . Zero entries in �� suppress

latent variables, which causes the model dimension d� to drop below d. The number of

columns in U� is set by the number of non-zero entries in ��, so that U� is a d�d� matrix.

The embedded data is corrupted with additive Gaussian noise, �� � N (0; �2�I). Figure 1

illustrates this mapping from latent to observed space.

The observed data generated from a sample s drawn from latent component � is

x =W�(s� ��) + �� + �� (2)

with conditional densities

p(xjs; �) = N (�� +W�(s� ��); �
2

�I) (3)

The latent data density and mapping induces a mixture of constrained Gaussians density

on x of the form

p(x) =

Z X
�

p(xjs; �)p(sj�)��ds
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p(x) =
MX
�=1

��p(xj�) (4)

where �� are the same mixing coeÆcients given in (1) and p(xj�) = N (��;��). The

covariance is constrained such that

�� = �2�I + U���U
T
� (5)

where, without loss of generality we choose the latent variance �2 to be one. We make no

assumptions about the latent means, ��.

The Expectation-Maximization algorithm (EM) [13] �ts parametric probability models to

data by maximizing the log likelihood of the model for some training data set fxn; n =

1 : : : Ng. For additional information on mixture model �tting see chapter two of [14]. The

log likelihood for this model is given by

L =
NX
n=1

log

 
MX
�=1

��p(xnj�)

!
(6)

To simplify the log likelihood equation (6), we introduce the density z(�; xn) over the

unknown component assignments.

L =
NX
n=1

log

 
MX
�=1

z(�; xn)
��p(xnj�)

z(�; xn)

!
(7)

where
P

� z(�; x) = 1. Using Jensen's inequality to bring the sum over � outside the

logarithm function, we �nd L is bounded below by the expected log likelihood

L �
MX
�=1

NX
n=1

(z(�; xn) log ��p(xnj�) � z(�; xn) log z(�; xn)) (8)

with equality when the z(�; xn) are the posterior probabilities p(�jxn) [Neal and Hinton

(1998)]. This choice of z produces soft-clustering models.

Researchers have recently developed two di�erent probability models for PCA [5, 8], which

can be derived from this framework. In Tipping and Bishop's model [5] the dimension is

the same for all components, d� = do; 8�. The target dimension do is speci�ed prior to

model �tting and the noise variances �2� are �t to data. In the limit that all noise variances

are identical, �2� = �2, and go to zero, the EM algorithm for �tting this model reduces to

Kambhatla and Leen's Local PCA algorithm [2] for clustering by reconstruction distance.

In this hard-clustering limit, the posterior probabilities become zero or one.

p(�jx)!

8<
: 1 if (x� ��)

T (I� U�U
T
� )(x� ��) � (x� �)

T (I� UU
T
 )(x� �) 8 

0 otherwise

(9)
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In addition, the expected log likelihood (8) reduces to the cost function for local PCA

C =
1

N

NX
n=1

MX
�=1

z(�; xn)
�
(xn � ��)

T (1 � U�U
T
� )(xn � ��)

�
(10)

We take a di�erent approach and use the noise variance to control model complexity instead

of constraining the dimension to be the same everywhere in the data space. Our approach

was inspired by our development of statistical models for transform coding [9, 10]. We

found that choosing the noise variance to be the same for all components, �2� = �2; 8�

produces entropy-constrained cost functions for variable-rate coding. A similar construc-

tion for adaptive PCA should allow the local dimensions to adjust to the data structure.

Consequently, like Meinicke and Ritter [8], we choose the noise variances for all components

to be the same and �t the local dimensions d� to the data. With identical component noise

variances �2, the local covariance matrices (5) become

�� = �2I + U���U
T
� (11)

In the limit that �2 goes to zero, each local covariance matrix (11) reduces to �� = U���U
T
�

with d� = d. That is, this latter model becomes a classic Gaussian mixture model with

unconstrained covariance matrices.

To expand the log likelihood (8) for our adaptive PCA model, we �rst invert �� (11) using

the Sherman-Morrison-Woodbury formula [16]

��1� =
1

�2
(I� U�U

T
� ) + U��

�1

� UT
� (12)

with diagonal d� � d� matrix �� = �� + �2I. Using (12) to expand (8) gives the expected

data log likelihood

L =
NX
n=1

MX
�=1

z(�; xn) ln �� +
NX
n=1

MX
�=1

z(�; xn)
�1

2�2

�
(xn � ��)

T (I� U�U
T
� )(xn � ��)

�
+

NX
n=1

MX
�=1

z(�; xn)
�1

2

�
(xn � ��)

TU��
�1

� UT
� (xn � ��) + ln j��j+ (d� d�) ln�

2

�
�

NX
n=1

MX
�=1

z(�; xn) ln z(�; xn) (13)

where z are the posterior probabilities, p(�jx). Our model parameters include the compo-

nent means, ��, the component dimensions, d�, the component stretching matrices, ��, the

component transform matrices, U�, and the number of components, M . The noise variance

�2 is considered a control variable, rather than a model parameter.
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3 Entropy-Constrained Adaptive PCA

Many signal processing applications, such as compression or on-line classi�cation, bene�t

from incorporating hard-clustering methods that assign each data item to one and only one

model component. For example, compression involves �nding a compact representation for

data and hard assignments can be coded more eÆciently than posterior probabilities. For

exploratory data analysis, hard-clustering is easier to visualize and interpret. On-line and

embedded classi�cation applications have tight memory and computational time constraints.

Hard clustering implementations require less memory and processing time than comparable

soft clustering methods making them more suitable for such applications.

3.1 Adaptive PCA Cost Function

The EM algorithm provides a template for deriving hard-clustering algorithms from latent

data probability models. To achieve hard-clustering, instead of the soft clustering provided

by p(�jx), we choose z(�; xn) to be one or zero.

z(�; xn) =

8<
: 1 p(�jxn) > p(jxn) 8 6= �

0 otherwise
(14)

The hard assignments given in (14) partition the data space into regions R� such that

X
x2R�

f(x) =
NX
n=1

z(�; xn)f(x) (15)

for any function f(x). By choosing hard clustering with z given by (14), the expected log

likelihood (13) reduces to the entropy-constrained cost function for adaptive PCA

C =
1

�2

NX
n=1

MX
�=1

z(�; xn)
h
(xn � ��)

T (1� U�U
T
� )(xn � ��)� 2�2 ln �� +

2�2
�
1

2
(xn � ��)

TU��
�1

� UT
� (xn � ��) +

1

2
ln j��=�

2j+
d

2
ln�2

��
(16)

The modeling cost consists of two parts, an error term and entropy term linked by 2�2. The

distortion contribution of data vector x 2 R� is the error due to reducing the dimension of

x to d�

D�(x) = (x� ��)
T (1� U�U

T
� )(x� ��): (17)

The di�erential entropy contribution of x is the sum of its discrete entropy contribution

H�(x) = � ln�� +
1

2
ln j��=�

2j+
1

2
(x� ��)

TU��
�1

� UT
� (x� ��) (18)
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and the log of a quantizer bin size d
2
ln�2 [17]. The ln�2 term quanti�es measurement

uncertainty and in this respect set the resolution of the model.

The discrete entropy H =
P

�

P
n z(�; xn)H�(xn) is the sum of the entropy associated with

selecting a model component, �
P

� �� ln��, the entropy associated with coding the data

within a component, 1

2

P
� �� ln j��=�

2j, and half the average dimension 1

2

P
� ��d�. The

average dimension comes from the Mahalanobis distance term in (18), since

Trace

"
UT
� (
X
n

z(�; xn)(xn � ��)(xn � ��)
T )U��

�1

�

#
= d� (19)

Selecting the noise variance �2 is equivalent to setting a penalty on the entropy. Choosing an

entropy penalty controls model resolution and complexity by determining both the number

of components and the dimension of each component. When �2 is large relative to the data

variance, the local dimensions are close to zero and the resulting (nearly spherical) model has

only a few components. As �2 decreases, both the number of components and component

dimensions increase. However, when �2 becomes small, the number of components decreases

and the local dimensions approach the full dimension. As �2 approaches zero, the model

becomes a hard-clustering version of a GMM with unconstrained covariance matrices. At

most choices of noise variance, di�erent model forms, from spherical to full covariance,

can appear in a single adaptive model. This exibility will allow us to e�ectively model

non-stationary data.

3.2 Adaptive PCA Model Fitting

The EM procedure inspires a generalized Lloyd algorithm for minimizing the constrained

cost. This algorithm iteratively optimizes the partition and model parameters to minimize

modeling cost (16). To optimize the partition, each data vector is assigned to the region

R� that represents it with the lowest cost. This is equivalent to assigning a data vector to

the region with the highest posterior probability (14). The partition consists of regions R�

such that

R� = fx j D�(x) + 2�2H�(x) < D(x) + 2�2H(x) 8  6= �g (20)

Note that the ln�2 term is the same for all components, so it does not a�ect partition

optimization and can be ignored. The discrete entropy shifts the partition away from the

minimum distortion solution by increasing the cost for components with large entropies.

Components with low priors, large variances, or large dimension may have no data vectors
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assigned to them, in which case, they can be removed from the model. Consequently, the

model conforms to the cluster structure by �tting small, low-dimensional components to

the data in densely populated areas of the signal space.

We optimize the model parameters, ��; ��; d�; U�; and ��, by �nding the values that min-

imize cost(16) for the current partition. The equations for the priors are

�� =
1

N

X
n

z(�jxn) =
N�

N
(21)

where N� are the number of data items assigned to component �. Minimizing cost with

respect to the translation vectors places each � at the mean of its region

�� =
1

N�

X
x2R�

x (22)

The embedding transform is constrained to be orthogonal, that is, UTU = I. Minimizing

cost with respect to W� = U��
1

2
� , while meeting this orthogonality constraint, yields the

relation

UT
� S� = ��U

T
� (23)

where �� = �� + �2I and the data covariance is

S� =
1

N�

X
x2R�

(x� ��)(x� ��)
T (24)

Consequently, U� and �� contain the d� leading eigenvectors and eigenvalues of the data

covariance S�, respectively. The stretching factors are �� = �� � �2I.

To �nd the optimal dimensions d�, we evaluate the change in cost due to increasing each

local dimension by one. If we order the eigenvalues in �� from largest to smallest, then

increasing the dimension from q � 1 to q results in a change of cost

�C = ln
�q
�2

� (
�q
�2

� 1) (25)

where �q is the q
th entry in ��. By Jensen's inequality ln � � ��1, therefore increasing the

dimension will decrease the cost (�C < 0) until the next eigenvalue is as small as the noise

variance, �q = �2. In addition, the model dimension must be no larger than the number

of stretching values  greater than zero. Since q = �q � �2, �q must be greater than �2.

These two conditions set the local dimension d� equal to the number of eigenvalues in ��

greater than the noise variance �2.

We perform a search for the best model size, M . The next section describes three di�erent

training methods that incorporate this search for the optimal number of components. We
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achieved our best results by initializing the model with a large number of components and

iteratively removing components until the best model size was found. After training the

initial model to convergence, we record the modeling cost (16) for a separate validation set.

The search process iteratively removes the least probable components, retrains, and records

the modeling cost. The model with the optimal number of components has the lowest cost

of those tested.

To select an appropriate noise variance, we noticed that models that contain several low-

dimensional components rather than just a few high-dimensional components conform better

to the data structure. Further work is needed to re�ne this observation into a principaled

method for selecting an appropriate noise variance. However, a simple heuristic can be used

to select a good value. We choose the �2 that gives the largest average model size over a

set of di�erent model initializations. At the chosen value of �2, we report results for the

model with the lowest validation set cost. For the data we evaluated, this heuristic method

selected models that conformed well to the natural cluster structure.

4 Algorithm Implementation

An important aspect of implementing the adaptive PCA algorithm is the determination of

the optimal model size. For any selection of noise variance, there is some optimal num-

ber of model components. In this section, we present three model training methods that

incorporate searches for this number of components. The �rst method uses deterministic

annealing for constrained cost functions developed by Rose [18]. The second method starts

training from a random initialization for a range of model sizes. The third method starts

with a random initialization at a large number of components and iteratively removes the

least probable component, retraining the model after each deletion. In all three cases, we

retain the model that minimizes modeling cost a separate validation data set. In our work,

we found that the third method produced the lowest cost and most consistent models.

4.1 Deterministic Annealing

Deterministic annealing is motivated by viewing clustering as a minimization of free energy

[19]. For dataX and model parameters Y with joint probability p(x; y), we wish to minimize

the average distortionD(X;Y ) =
P

x

P
y p(x; y)d̂(x; y) with some distortion measure d̂ while
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keeping the entropyH(X;Y ) =
P

x

P
y p(x; y) log p(x; y) below some value. That is, we wish

to minimize free energy F = D � TH, where T is a Lagrange multiplier. Minimizing F

with respect to cluster assignments z(x; y), yields a Gibbs distribution [18]

z(x; y) =
exp(�d̂(x; y)=T )P
y exp(�d̂(x; y)=T )

(26)

For adaptive PCA, our distortion function d̂ is

^d(x; y) = D�(x) + 2�2(H�(x) +
d

2
ln�2) (27)

where D� is given by (17) and H� is given by (18). Substituting (27) into (26) and using

(26) to expand the free energy F yields

F = �T
X
x

ln
X
�

exp

�
� [D�(x) + 2�2(H�(x) +

d

2
ln�2)]=T

�
(28)

The Lagrange multiplier T controls clustering hardness. When T = 2�2, we have soft

assignments and F is the log likelihood of the Gaussian mixture model associated with

adaptive PCA (6). As T approaches zero, the assignments becomes hard, as in (14), and

each x is assigned to a single cluster. In this hard-clustering limit, F reduces to the adaptive

PCA cost function (16).

The free energy formulation of adaptive PCA (28) allows implementation of deterministic

annealing using the template described by Rose [18]. It does not require the two-stage

training process proposed by Meinicke and Ritter [8]. To use deterministic annealing for

training an adaptive PCA model, we start with M components placed at the mean of the

data plus small random perturbation. Without these perturbations, all components will

remain at the global mean during the training process [8, 19]. We initialize T to twice

the largest global eigenvalue of the data. Gradually reducing T with �2 = T=2 increases

the model complexity, since the local dimension d� increases as �2 decreases. We use an

annealing schedule of Tnew = 0:9 Told and at each value of T the model is trained to

convergence. At the desired entropy or noise variance, we freeze �2 and turn T to zero to

achieve hard-clustering.

Unfortunately, deterministic annealing does not produce consistent models. The �nal model

size is sensitive to the numbers of components used at initialization. Consequently, it was

necessary to repeat the deterministic annealing process using di�erent numbers of initial

componentsM to �nd the optimal model size. In addition, the training process and resulting

model are sensitive to the random perturbations introduced at initialization. To insure good
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models, we must investigate models from a number of di�erent initializations. Deterministic

annealing seems susceptible to the same problems as less sophisticated methods, yet has

much heavier training time requirements.

4.2 Random Initialization

Random initialization is a classic and simple method for initializing parameters for EM

or generalized-Lloyd algorithms. To use it for adaptive PCA training, we initialize M

component means to randomly sampled training vectors. We then train the model to

convergence using the adaptive PCA algorithm. We repeat this process using di�erent

numbers of initial components M and retain the model that minimized modeling cost for

a separate validation data set. During the training process, some components may have no

data assigned to them, in which case, they can be discarded. Hence, the �nal model size

may be smaller than the initial number of components. This method has the advantage

of being simple and fast, but the selected numbers of components varies signi�cantly for

di�erent initializations. This model inconsistency increases the training time, as one must

investigate models from many initializations to insure a good �t to the data.

4.3 Iterative Pruning

While working with generalized-Lloyd algorithms, we found it critical that the initial model

represent all regions of the data space. Otherwise, some data clusters will be poorly mod-

eled by too few components. To ensure a good initialization, we propose a simple heuristic

method that starts from a large number of components, which should adequately cover the

data space. We then iteratively shrink the model size, searching for the optimal number of

components. We examined two methods of shrinking the model: combining the two compo-

nents with smallest Kullback-Leibler distance and deleting the component with the lowest

probability on a separate validation set. The second method, deleting the least probable

component, produced models that better conformed to the natural cluster structure.

The search process starts with a large number of components (we found 40 to 80 worked

well) with means assigned to randomly selected data vectors. This large model is trained to

convergence. During the training process, some components have no data assigned to them

and they can be discarded. Consequently, the trained model size may be smaller than the

initial number of components. The training process then removes the least probable com-
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ponents, one at a time, retraining the model after each deletion. Once again, we retain the

model with the lowest modeling cost. This training method produced the most consistent

and accurate models with respect to model size of the three methods. As a result, the time

spent searching for a good model �t is kept small.

4.4 Training Method Evaluation

We evaluated these three training methods on several arti�cial data sets. Here we show

results for a 1000 points training set drawn from a mixture of �ve low dimensional Gaussians

embedded in a three dimensional space. Figure 2 contains a scatterplot of the 400 point

test data projected to the two leading global eigendirections.
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Figure 2: Mixture of Five Gaussians Test Data. Scatterplot of arti�cial data set used for testing. Data

consists of 400 three-dimensional points drawn from a mixture of �ve Gaussians. Colored lines indicate the

principal eigenvectors of each component and the number of lines corresponds to the dimension. Data is

projected to the two leading eigendirections.

Our two evaluation criteria for these methods were how closely the model size matched the

number of generating components and how much the model size varied between di�erent

initializations. We trained both entropy-constrained vector quantizers [20] and adaptive

PCA models using all three methods. Figure 3 shows the average, maximum, and minimum

model sizes for 25 di�erent initializations for the random and iterative pruning methods and

for 10 di�erent initializations for the deterministic annealing method. Fewer initializations

were performed for the deterministic annealing method due to the long training times.
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For the vector quantizer, all three methods had similar average model size and the models

produced by deterministic annealing have lower variability than those from the other two

methods. At low noise variances, however, the vector quantizer model sizes are much larger

than the true size of �ve. For these spherical models, the noise variance sets the component

variance or size. Consequently, when the noise variance is small, it takes many components

to cover the data space.

For adaptive PCA, all three methods produce models with similar numbers of components

at high noise variances. At lower noise variances, the deterministic annealing and random

initialization methods produce models with too many components. In addition, the model

size varied widely for di�erent initializations. In contrast, the iterative pruning method

produces models of size �ve or six, a good match to the true model size. Figure 3 shows

examples of �ve and six component models. Each model component matches one of the

generating clusters in Figure 2 and no components bridge multiple clusters.

We also found that our iterative pruning method improves the quality and consistency

of full-covariance models. We trained hard-clustering versions of full covariance GMM on

this mixture of �ve Gaussians data using both random initialization and iterative pruning.

Since this is low dimensional arti�cial data, we can generate enough data to �t accurate

full-covariance models. For small model sizes (less than ten components), iterative pruning

produced models that better matched the natural cluster structure of the data. The models

were similar for larger model sizes. Figure 5 contains scatterplots that show the match

between model components and data. The model developed using random initialization

contains components that span natural clusters, whereas the model developed using iterative

pruning matches the natural cluster structure. For the rest of the experiments presented in

this paper, we use our iterative pruning method for model training, since it produces better

quality and more consistent models than those developed from random initializations.
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(b) APCA

Figure 3: Selected model size for di�erent training methods. Plot (a) shows model size for entropy-

constrained vector quantizer and plot (b) for entropy-constrained adaptive PCA. Models were trained using

deterministic annealing (green), random initialization (red) and iterative pruning (blue).
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Figure 4: Clustering with Adaptive PCA. Two adaptive PCA models, one with �ve and one with six

model components. Colors indicate assignment of data points to model components. Components conform

to the natural cluster structure without bridging clusters. In the right-hand scatterplot, one large clusters

is represented by two components.
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(b) Iterative Pruning

Figure 5: Hard-Clustering GMM Models with Di�erent Training Methods. Scatterplots show the assign-

ment of data points to model components where each model component is represented with a di�erent color.

Scatterplot (a) shows a model initialized with �ve randomly selected data vectors. Scatterplot (b) shows

a model initialized with forty randomly selected data vectors followed by iterative pruning down to �ve

components. The model developed via iterative pruning closely matches the natural clusters.
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5 Evaluation

We compare the modeling performance of our entropy-constrained adaptive PCA algorithm

(APCA) to an entropy-constrained VQ (ECVQ) [20] and a hard-clustering version of a full

covariance GMM (HGMM). When the model noise variance is large, APCA discards all

dimensions and reduces to ECVQ. When the model noise variance becomes small, APCA

retains all dimensions and �ts the full covariance matrices to data like HGMM. Conse-

quently, these two methods provide bounds on the modeling behavior of APCA. When

there is suÆcient training data, we expect the HGMM algorithm to provide the best match

between model and data. However, when training data is sparse, the APCA algorithm

should be less susceptible to over�tting. In this latter case, we expect the APCA models to

match unseen test data better than HGMM models.

5.1 Evaluation Criteria

In order to evaluate our APCA algorithm, we wish to quantify how well the resulting model

represents true data structure. For low dimensional data, we can determine how well the

model matches the natural cluster structure, by visually evaluating the assignment of data

to model components. To model quality quantitatively, we evaluate both the ability of the

model to correctly classify the test data and how closely the number of components matches

the number of data clusters.

We measure classi�cation ability using the conditional entropy of the cluster or generating

class given the model component Hp = H(clusj�). Component impurity, Hp, measures

the number of information bits required to specify the generating class when the model

component is known. It is zero when each model component contains points from just

one cluster. If all model components contain equal proportions of each of N clusters,

Hp = log2N .

Spherical models with many small components have good classi�cation performance, how-

ever they provide little insight into the natural cluster structure. Consequently, we also

measure model component (over)abundance using the conditional entropy of the model

component given the cluster Ha = H(�jclus). Component abundance, Ha, measures the

number of information bits required to specify the model component when the generating

class is known. Ha is zero when each model component completely contains one or more

clusters. If all data clusters are modeled by N equally probable components, Ha = log2N .
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Normalized mutual information combines these two aspects of model to data structure

correspondence into a single metric. Mutual information between the model components,

�, and clusters is given by

I(clus; �) = H(�) +H(clus)�H(�; clus) (29)

where H(x) = �
P

x p(x) log p(x) is the discrete entropy. Normalizing by H(�) +H(clus),

which is the value of H(�; clus) when the model components and clusters are independent,

yields the normalized mutual information.

NMI(clus; �) = 1�
Hp +Ha

H(�) +H(clus)
(30)

When the model components and clusters match perfectly, the normalized mutual informa-

tion is one (Hp and Ha are zero). It decreases to zero as the correspondance between the

model and data structure decrease.

5.2 Visual Evaluation of Model Quality

To qualitatively evaluate how well a model matches the data, we visually examine scatter-

plots of the data that are color coded to indicate the assignment of data vectors to model

components. These scatterplots reveal where multiple components are representing a single

cluster and where a component covers all or part of several di�erent clusters. Here we

present clustering results on a real world data set, salinity and temperature measurements

gathered in the Columbia River Estuary.

5.2.1 Columbia River Data

Sensors deployed in the Columbia River Estuary by environmental scientists at Oregon

Health & Science University [21] gather information on salinity and temperature. The

salinity sensors are susceptible to gradual response degradation known as bio-fouling. Re-

cently, we developed classi�ers to successfully detect this degradation during the summer

months, when bio-fouling is most prevalent [22]. We are now in the process of extending

these bio-fouling detectors to operate year round.

Developing robust bio-fouling detectors is complicated by normal changes in measured salin-

ity due to uctuating river and ocean conditions. Our current detectors incorporate tem-

perature information to distinguish normal changes in salinity from bio-fouling. However,
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the relationship between measured temperature and salinity changes throughout the year,

although we see similar behavior from year to year. Visual examination of time series

of salinity and temperature measurements indicate that there are at least �ve behavioral

regimes or classes.

The Columbia River data contains measurement from two sensor stations located near the

mouth of the estuary. It consists of 698 measurements spanning all seasons and acquired

over several years (1997 - 2001). Each measurement contains three values: salinity and

temperature at the highest diurnal tidal ood and temperature at the deepest diurnal

tidal ebb. The temperature measurements are normalized by the estimated di�erence in

ocean and river temperatures. We divided the data set into three equal parts to create

training, validation, and test sets. Figure 6 contains a scatterplot of the test data set.

Colors indicate di�erent classes identi�ed from visual examination of the time series: blue

is summer period, red is winter period, and cyan, orange, and green occur during spring and

fall. Green indicates measurements from when the river and ocean temperatures are close

together. Yellow indicates measurements taken during periods of abnormally low salinity.

Cyan indicates measurements taken during periods of rapid river temperature warming or

cooling.

5.2.2 River Data Analysis

We use several modeling methods to cluster the salinity and temperature data, including

our entropy-constrained adaptive PCA (APCA), entropy-constrained vector quantization

(ECVQ), hard-clustering full covariance GMM (HGMM), and local PCA (LPCA). Local

PCA [2] partitions the data space in order to minimize dimension reduction error for some

�xed target dimension. All models were trained using the iterative pruning method de-

scribed previously with model sizes selected to minimize cost on the validation set. We

developed models from six di�erent initializations. For ECVQ and APCA, we report re-

sults for a noise variance of 0.5, which gives an average dimension between 1 and 1.5 for

the APCA models. For the LPCA model, we set the target dimension to one. To evalu-

ate the models, we visually compared how well model components matched data clusters.

Scatterplots are from the model that had the lowest validation set cost.

The ECVQ models partition the space into many small spherical components. Figure 7a

shows clustering by a ECVQ model with thirteen components and noise variance 0.5. This

model does not identify regimes of good temperature and salinity correlation, consequently

we found ECVQ to be a poor choice for this data analysis.

19



24
26

28
30

32

-10

-5

0

5

10

-5

0

5

SalinityFlood Temp

Figure 6: Columbia River Salinity and Temperature Data. Scatterplot of salinity and temperature at

largest diurnal tidal ood and temperature at deepest diurnal ebb. Temperatures have been normalized

by the estimated di�erence between the ocean and river temperatures. Colors indicate di�erent classes

identi�ed from visual examination of the time series. The red and cyan regions may contain more than one

cluster.

The LPCA models partition the space into many one-dimensional subspaces. Figure 7b

shows clustering by a seven component LPCA model. Model size selection indicated that

the number of components should be at least forty (largest size tested). This large a model

is not instructive, so we present results for a model size of seven. The class separation

provided by the LPCA model is of extremely poor quality. Model components cut across

the natural cluster structure of the data. We found the LPCA modeling method to be a

poor choice for clustering or data analysis.

The HGMM models partition the space into �ve regions, but they do not match the classes

show in Figure 6. Figure 7c shows clustering by the HGMM model. The summer (aqua)

data is well delineated, however, the river temperature transition and low salinity classes

(pink) are grouped into one cluster. The component indicated by the black circles bridges

the cold temperature classes. We observed similar clustering behavior from all the HGMM

models. While HGMM models selected reasonable numbers of components (4 to 7), the

components did not conform well to the natural cluster.
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Figure 7: Clustering Examples for ECVQ, LPCA, HGMM, and APCA. Scatterplot (a) shows ECVQ

model clustering with thirteen model components and noise variance of 0.5. Scatterplot (b) shows LPCA

model clustering with seven components and a target dimension of one. Scatterplot (c) shows HGMM

model clustering with �ve model components. Scatterplot (d) shows APCA model clustering with seven

components and noise variance of 0.5. Each color and symbol combination represents a di�erent model

component.
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Unlike the previous three model types, APCAmodels are well-matched to the natural cluster

structure of the data. Figure 7d shows clustering by the APCA model. This model correctly

identi�es the summer (red), low salinity (blue), and equal river and ocean temperature

(cyan) classes. It identi�es two clusters within the temperature transition region (pink and

green) and two clusters within the winter region (yellow and black). Of the methods tested,

the APCA model corresponded most closely to the natural cluster structure and produced

the most information about di�erent salinity and temperature correlation regimes.

5.3 Quantitative Evaluation of Model Quality

To qualitatively evaluate how well a model corresponds to the data structure, we measure

the normalized mutual information between the model components and data clusters. This

metric measures how well the model classi�es the data into its generating classes and how

closely model size matches the true number of clusters. Here we present results from seg-

menting image texture data with a known number of textures. Segmenting high-dimensional

texture data provides a realistic application for evaluating how the APCA algorithm per-

forms when training data is sparse. As an added advantage, this data can be organized into

a map for e�ective visualization of segmentation or clustering accuracy.

5.3.1 Image Texture Data

Our image texture data consists of 81-dimensional vectors (9 � 9 blocks) sampled from

four di�erent gray-scale textures. The textures are images of dense leaves, cloth, marble,

and paper. Figure 8 shows the test map used to evaluate the models. We generated three

di�erent training �les with 200, 500, and 1000 vectors, one 500 vector validation set and

one 2500 vector test set. We develop all models using the iterative pruning training method

described earlier. Model size was selected to minimize cost on the validation set. Rather

than selecting a single noise variance, we report results for a range of noise variances to

demonstrate the full range of adaptive PCA model behavior.

5.3.2 Quantitative Quality Analysis

To evaluate goodness of model �t, we measure normalized mutual information on the test

data for models developed on each of the training data sets. Normalized mutual information
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Figure 8: Texture Test Data. Data consists of 81-dimensional vectors formed into 9�9 blocks and organized

into a map for visualization. Each block sampled is from one of four textures, dense leaves (dark), cloth

(coarse texture), marble (gray and white), and paper (light).

incorporaates measures of component impurity, Hp, and component abundance, Ha. Figure

9 shows normalized mutual information for the di�erent models and training set sizes.

For ECVQ, model components become overabundant as �2 decreases, hence the normalized

mutual information decreases. HGMM has very poor purity values, since the models had

fewer than four components, so the normalized mutual information is low. We found that

when the APCA models have noise variances in the right range, the component purity is

close that that of the ECVQ models, but the models are more concise. Consequently, the

values of normalized mutual information are higher than for the other modeling methods.

The APCA models reveal more about the natural cluster structure of the data than either

full covariance or spherical models.

5.3.3 Visual Quality Analysis

We also evaluated model accuracy by visually examining how well the model segmented

the test texture image. A perfect model would use four components and attribute all the

data blocks from one texture to one component. Figures 10 and 11 shows an examples

of the assignment of test data blocks to model components. Each color in these images

represents a di�erent model component. For these examples, we selected the noise variance

�2 that produced the largest average model size. The selected �2 was 2928 for the 200

vector training set and 2802 for the 1000 vector set.
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Figure 9: Normalized Mutual Information for di�erent training set sizes. Plot (a) shows NMI for ECVQ

and plot (b) shows NMI for APCA (circles) and HGMM (squares). HGMM results are plotted at 1 for

comparison purposes. Models were trained using 1000 vector (green), 500 vector (red) and 200 vector (blue)

set sizes. Error bars indicate standard deviation for ten di�erent initializations. The 500 vector and 200

vector HGMM models each have a single component, so the NMI values are both zero.
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The test image segmentation results shown in Figure 10 use models developed on the 200

vector training set with �2 = 2928. The ECVQ model has ten components, with Hp = 0:170

bits, Ha = 1:051 bits, and NMI = 0:75. This model correctly classi�ed 96.1% of the image

blocks. The APCA model has four components, with Hp = 0:202 bits, Ha = 0:195 bits, and

NMI = 0:90. It correctly identi�ed the texture for 96.5% of the image blocks. The HGMM

model (not shown) had only one component, consequently, it was unable to segment the

image. The ECVQ model uses 4 and 5 components to represent the cloth and leaf textures

respectively, whereas the APCA model uses a single component for each class. The APCA

model segments the texture image as accurately as the ECVQ model, even though it has

many fewer components.

The segmentation results in Figure 11 are for models developed on the 1000 vector training

set with �2 = 2802. The ECVQ model (not shown) has 28 components, Hp = 0:076 bits,

Ha = 2:11 bits, and NMI = 0:65. This model correctly classi�es 98.7% of the test blocks.

The HGMM model, with Hp = 1:20 bits, Ha = 0:012 bits, and NMI = 0:57, has only two

components and segments the image poorly with 52.5% correct classi�cation. The APCA

model with Hp = 0:050 bits, Ha = 0:282 bits and NMI = 0:92, models the cloth texture

with two components and the remaining textures with one component each. The APCA

model, with �ve components and correct classi�cation of 99.3%, segments the texture image

more accurately than either the ECVQ or HGMM models.

6 Selecting the Entropy Penalty

An important aspect of adaptive PCA modeling is the selection of an appropriate noise

variance, or equivalently, the entropy penalty. Evaluations performed over a range of noise

variances show that adaptive PCA models accurately model data by conforming to the

natural cluster structure at appropriate choices of noise variance. However, when the noise

variance is selected too large, the models do not have the exibility to conform to the data

structure. When the noise variance is selected too small for the available training data, the

models have only a few high-dimensional components that bridge natural clusters.

Initially, we attempted to select an optimal value of �2 by measuring modeling cost on a

validation data set, which consists of data examples not in the training set. We tested

models developed using di�erent values of �2. The model with the lowest validation set

cost indicates the optimal noise variance.
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(a) ECVQ (b) APCA

Figure 10: Texture Segmentation with 200 vector training set. Map (a) on the left shows ECVQ model

segmentation and Map (b) show APCA model segmentation. Both models were developed on a 200 point

training set.

(a) HGMM (b) APCA

Figure 11: Texture Segmentation with 1000 vector training set. Map (a) on the left shows HGMM model

segmentation and Map (b) show APCA model segmentation. Both models were developed on a 1000 point

training set.
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This method for selecting �2 performs well on arti�cial data that is generated from a PCA

model, but poorly on real-world data. The PCA model is based on the assumption that the

measured data x is generated from a low-dimensional source s, embedded in the observation

space with translation � and transform W , and corrupted with additive Gaussian noise.

Consequently, the observed data is given by

x =Ws+ �+ � (31)

where s � N (0; I) and � � N (0; �2I). If we order the eigenvalues of x from largest to

smallest, beyond some dimension d they will plateau at the variance �2 of �. The validation

set method selects noise variances �2 close to �2. However, the eigenvalues of real-world

data typically do not reach some plateau. Consequently, the validation set method correctly

selects noise variances that are small, but which result in nearly full-dimensional and under-

constrained models.

To illustrate the di�erent behaviors of arti�cial and real-world data, we perform texture

segmentation tasks on both types of data. The real texture data consists of 9�9 pixel blocks

sampled from four texture source images, as discussed in the earlier evaluation section. The

arti�cial texture data was generated according to the PCA model (31) using the means,

eigenvectors, and eigenvalues of the source textures.

To acquire the necessary information to create the arti�cial textures, we decomposed each

source imaged into 9�9 blocks to form 81 dimensional vectors. The translation � is the mean

of these blocks. We then removed the mean and performed singular value decomposition

(SVD) on the mean-removed blocks to calculate the matrix of eigenvectors U and eigenvalues

�. To determine the dimension, d, we retained the largest eigenvalues to account for 90%

of the total variance. The variance �2 for the discarded dimensions is calculated as the

mean of the discarded eigenvalues. The transform W = Û�
1

2 where the columns of Û

are the eigenvectors associated with the leading d eigenvalues and � = � � �2I are the d

leading eigenvalues minus �2. The variances and dimensions for the four textures are: leaves

�2 = 250, d = 27, cloth �2 = 268, d = 35, marble �2 = 213, d = 52, and paper �2 = 2:25,

d = 28.

For both the real and arti�cial data sets, we generated a 1000 vector training �le, 500 vector

validation �le, and 2500 vector test �le. For the real data, we sampled blocks from the source

images starting at random o�sets. To generate arti�cial texture blocks, we drew an s from

a d dimensional unit variance Gaussian distribution, then transformed and translated it

using W and �. We then added Gaussian noise drawn from an 81-dimensional spherical
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Gaussian distribution with variance �2 to form a data vector x. Figure 12 shows the test

data organized into maps for visualization.

(a) Sampled (b) Arti�cial

Figure 12: Texture Test Data. Figure (a) shows data sampled from one of four textures, dense leaves

(dark), cloth (coarse texture), marble (gray and white), and paper (light). Figure (b) shows arti�cial data

generated from PCA model and �rst and second order statistics of texture images.

We trained adaptive PCA models for a range of noise variances �2 using the validation

set to select model size. For each model, we recorded the validation set modeling cost;

these are shown in Figure 13. The adaptive PCA algorithm produced accurate models with

the correct number of components and good segmentation accuracy for a range of noise

variances, 5000 � �2 � 150 for the arti�cial texture data and 3000 � �2 � 450 for the

sampled texture data.

For the arti�cial texture data, the validation set cost has a minimum at �2 = 270 (next

larger value tested was 360 and next smaller value was 202), which agrees well with the noise

variances �2 of three of the textures (268, 250, 213). The model at this noise variance has

four components and segments the test image accurately with correct texture classi�cation

of over 95%. For the sampled texture data, the validation set cost minimum is at �2 = 1:3

(next larger value tested was 1.7 and next smaller value was 0.75). At this low noise

variance, the model has two components: one 81 dimensional component that represents

the cloth, leaves, and marble textures and one 52 dimensional component that represents

the paper texture. However, at higher noise variances, 3000 � �2 � 450, the model has four

components and segments the image with better than 95% accuracy.
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Figure 13: Validation set cost for arti�cial and sampled texture data. Validation set cost for range of noise

variances �2 with arti�cial data cost in red and sampled data cost in blue. Circles indicate cost minima.

For entropy-constrained adaptive PCA to reach its full potential as a clustering, modeling,

and analysis tool, we need a method that selects an appropriate noise variance. Selecting

the noise variance to minimize modeling cost of a separate validation set results in values

that are too small when the data eigenvalues do not plateau at some noise oor. Evaluations

performed on texture data indicate that models conform best to the data structure when

the noise variance is at or slightly below the point where the model size or component

abundance is largest. Figure 14 contains a plot of component impurity Hp and abundance

Ha for the real texture. This plot shows that classi�cation ability is best at noise variances

where the model size is largest. At lower noise variances, where the local dimensions are

higher and there are fewer components, the classi�cation ability of the model decreases.

Investigating the relationship between model size and component dimension for di�erent

choices of noise variance may lead to e�ective methods of entropy penalty selection.

7 Summary

Adaptive models, which partition the signal space into regions and then model the data

within each region with simple linear models, can e�ectively represent non-stationary data.

However, standard adaptive modeling methods, such as K-means clustering and full-covariance
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Figure 14: Component impurity (red) and abundance (green) for real texture data for range of noise

variances �2. Circles indicate means and errobars indicate standard deviations of ten models trained from

di�erent initializations.

GMMs have their own limitations. They either require large amounts of training data to

produce robust models, like GMMs, limiting their practical usefulness or they are geomet-

rically constrained, like K-Means clustering, which limits their ability to adjust component

parameters to the data structure. In this paper, we developed a new modeling method,

entropy-constrained adaptive PCA, which strikes a balance between these two methods.

Using a latent data framework, we derived a statistical model for a broad category of

non-stationary data, in which the data consists of a collection of hyperplanes. From this

model, we develop our adaptive PCA algorithm. Adaptive PCA adjusts each component's

eigenvectors, eigenvalues, and dimension to the local data structure. In addition, an entropy

penalty provides complexity control, which allows accurate modeling of even sparse training

data. Unlike some constrained modeling methods, this entropy penalty arises naturally from

the statistical model.

We used our adaptive PCA algorithm for texture segmentation and for the preliminary

analysis of salinity and temperature measurements from the Columbia River estuary. We

evaluated how well adaptive PCA models matched the natural data structure in compari-

son to entropy-constrained VQs, a hard-clustering version of a full covariance GMM, and

local PCA. Spherical models, such as VQs, use many small clusters to model the data.

While such models can classify the data accurately, they provide little insight into the data
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structure. Local PCA produces consistently poor clusters that cut across the natural data

structure. Hard-clustering GMM produces models with too few components that bridge

the natural clusters. In contrast, adaptive PCA models consistently conform to the natural

data structure with classi�cation accuracy comparable to spherical models that have many

more components.

An outstanding research issue concerns the selection of an appropriate entropy penalty via

the noise variance. The noise variance should be relatively high when data is sparse and

lower when data is abundant. We attempted to select the noise variance by determining

the value that minimized the cost for a validation data set. However, this selection re-

sulted in models with nearly full covariance matrices. Consequently, these models were

under-constrained and exhibited the same poor modeling behavior as full covariance mod-

els. Similar validation set methods used by Meinicke and Ritter [8] also resulted in models

with nearly full dimension.

Evaluation of component impurity and abundance for models with di�erent noise variances

suggest a di�erent approach for noise variance selection. Models conform best to the natural

data structure at noise variances where the component abundance is highest. The best

models contain several low-dimensional components rather than very few high-dimensional

components. Further work is needed to re�ne this observation into a theoretically motivated

way of selecting an appropriate noise variance.
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