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Abstract— This paper describes the design and im-
plementation of NetVCR, a high-performance packet
replay engine for use in evaluating the performance of
networking devices.NetVCR is implemented on com-
modity hardware using widely available open-source
software. To achieve high throughput and accuracy,
NetVCR employs novel mechanisms for managing
trace files and accurate low-overhead timers. In addi-
tion, through the use of low-latency kernel patches and
priority scheduling, NetVCR can be made highly re-
silient to background system load. Using these mech-
anisms, NetVCR is able to support packet replay at
rates well above OC-12 on an x86-based server.

I. I NTRODUCTION

In order to properly evaluate the design of
network devices such as routers, switches, and
firewalls, system architects can employ a wide-
range of tools ranging from simulation to actual
physical testing of the device. At one end of
the spectrum, designers can evaluate their sys-
tems by completely simulating both the hard-
ware itself and the network traffic being pro-
cessed. Examples of this approach include the
ns simulator [1] and the IXP network processor
simulator [2]. While simulation offers a com-
pletely reproducible environment, it can be pro-
hibitively slow and inaccurate [3]. Cycle-level
simulations can be several orders of magnitude
slower than the hardware itself and simulated
traffic often does not have the same properties
as actual traffic. Another approach for evaluat-
ing devices is to use the device itself and employ
a traffic generator to emulate network load. For

example, one could implement a network de-
vice using a network processor such as the IXP
and evaluate it using a commercially available
hardware packet generator such as those pro-
vided by IXIA [4]. This approach allows for
evaluations to be done in real-time and in a re-
producible manner. However, besides being ex-
pensive1, such tools have questionable accuracy
when emulating real traffic since they stochasti-
cally generate traffic versus replaying an actual
trace. Stochastic generation misses important
low-level features of traffic including address
mixes, protocol mixes, and per-application traf-
fic characteristics [5]. Packet generators such as
these also can not reproduce the modulation of
packets as they pass through numerous hops in
the network. Features such as ACK compres-
sion [6] are commonly found in real traces, but
are not easily reproduced using synthetic gener-
ators.

While simulation and synthetic emulation
both have their uses, another approach is to
take the actual device and to test it with a
trace-driven packet generator. In this approach,
a trace is collected and stored to disk using
a tool such astcpdump and then later re-
played against a target device. When driven
by a representative library of traces, such an
approach is fast, reproducible, and highly ac-
curate in terms of address mixes and packet
loads, thus enabling designers to accurately test
route caching architectures, packet classifica-
tion algorithms, queue management algorithms,

1The pricing for an IXIA 1600 starts at $41,000



scheduling algorithms, and buffer provision-
ing in a very realistic environment. There are
two things one needs to do such an evalua-
tion: a high-performance packet collection en-
gine and a high-performance packet replay en-
gine. While tools for high-performance packet
collection exist [7], [8], similar replay engines
do not. In this paper, we describe the design
of NetVCR, a high-performance replay engine
that accurately reproduces traffic recorded from
a variety of existing trace collection tools [9],
[10], [8], [11].

II. N ETVCR DESIGN

There are many ways to build a high-
performance packet replay tool. In the design of
NetVCR, we constrain ourselves to commodity
hardware (i.e. x86-based systems) and readily
available, open-source software (i.e. Linux and
its available patches). While specialized hard-
ware and proprietary real-time operating sys-
tems can be used to build a much more pow-
erful tool, our approach is cost-effective and al-
lows users to run on pre-existing systems. A key
question in our approach is whether or not com-
modity hardware and software have the abil-
ity to replay a packet stream fast and accurate
enough. With recent advances in processor and
network technology, it is clear that the raw hard-
ware power exists. However, it is not clear
whether or not current software and operating
systems can take full advantage of it.

There are four major issues that must be ad-
dressed in building the replay engine. The first
issue is the prefetching and I/O management of
the trace itself. The trace must be efficiently
and predictably retrieved from storage (presum-
ably a disk) in real-time. The second issue is
the time-triggering of packet send events. To
accurately reproduce packet inter-arrival times
recorded in the trace, the system must have an
accurate, low-overhead mechanism for timing
packet sends. The third issue is the sending

Processor 1.8GHz Intel Xeon
Chipset E7500
Memory 512MB DDR PC1600 SDRAM
FSB 400MHz
NIC Intel 82544 1000Mbs
PCI Full length 133MHz PCI-X
Disk 120GB 7200rpm UDMA/100
OS Linux 2.4.20-pre1
File System ext3

TABLE I

EVALUATION SERVER

path itself. To achieve high-performance, the
send path must be as fast as possible. The fi-
nal issue is the scheduling of the process in re-
lation to other applications and system activi-
ties. NetVCR must be allowed to run immedi-
ately whenever packets need to be sent. Driven
by these individual design issues, the following
section describes the mechanisms employed and
demonstrates their efficacy.

III. N ETVCR

In the following section, we describe the de-
sign decisions behindNetVCR and evaluate
them using a set of fixed workloads. The eval-
uation ofNetVCR was performed on an Intel-
based server described in Table I. To evalu-
ate the performance of the approaches, we mea-
sured the difference between the time a packet
should have been sent and the time it was ac-
tually sent using thegettimeofday() sys-
tem call. In the benchmarks on our system,
this call took on average, 1.16µs to run. The
measurement of the packet’s sending time was
taken immediately after the sending system call
(sendto() ), thus introducing a slight mea-
surement error equal to the time it took to per-
form the call. As shown in Section III-C, this la-
tency was about 5µs (microseconds). For all of
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Fig. 1. Read latency usingfread()

our experiments, the workload used consisted of
several fixed-interval, 64MB, 1 million packet
traces2. The trace files used contained per-
packet timestamps, MAC headers, and TCP/IP
headers. In addition, each trace consisted of a
continuous stream of packets sent at a periodic
intervalδ. Using these workloads, we then eval-
uated the tool by measuring the difference be-
tween the time a packet in the trace should have
been sent and the time it was actually sent. We
refer to this difference as the send-time error and
denote it asε.

A. Trace file management

To properly send packets from the trace, the
tool must first ensure that the trace data is read-
ily available when packets are to be sent. In par-
ticular, packet information and packet sending
times must be prefetched from the file system
and made available to the replay engine just be-
fore it is needed. While a multithreaded design
can solve this problem by employing a thread
to do the prefetching, modern file systems typ-
ically do some form of predictive prefetching
in order to minimize the latency of file I/O.

2The tool supports the DAG format along with other trace file
formats such astcpdump and TSH via freely available conver-
sion software [11]

To evaluate the effectiveness of the Linux’s
prefetching mechanism, we examined its abil-
ity to efficiently read the trace. Figure 1(a)
shows thefread() latency for each packet in
the 64MB, 1 million packet trace. As the fig-
ure shows, thefread() latency has extremely
high variability and very high peaks of over
100ms, indicating that the file system is doing
an unacceptably poor job in prefetching from
the disk. One way to address this problem
would be to “warm up” the file cache with the
trace file before running the experiment. Fig-
ure 1(b) shows thefread() latency when run
a second time. As the figure shows, the la-
tency is relatively fixed and is on the order of
10µs, a clear indication that the contents of the
trace have been already prefetched and stored in
memory. There are, however, some rather large
spikes in the figure. As we will show in Sec-
tion III-C, these spikes are caused by long, non-
preemptible paths that are present in the default
Linux kernel.

To illustrate the impact of the file system
when using a real replay workload, we replayed
a large trace with a fixed sending intervalδ of
20µs. While there are many ways to implement
the timing functions, in this experiment, the tool
employed a polling loop that continually in-
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Fig. 2. ε usingfread() with δ=20µs

vokesgettimeofday() until the send-time
has been reached. Figure 2(a) plots the send-
time errorε when the experiment is performed
for the first time. As the figure shows, the la-
tency induced by the file system prevents the
tool from keeping up as indicated by the mono-
tonically increasing error. Figure 2(b) shows the
send-time error when the experiment is run the
second time. As the figure shows, the tool eas-
ily handles the workload, accurately reproduc-
ing the packet stream.

The above experiments indicate the utility of
precaching the trace file into memory. Unfortu-
nately, such an approach only works for small
trace files that fit into the file cache. Because
trace files can be much larger than resident
memory, it is clear that some form of active, on-
the-fly prefetching is required. One way to do
this is to use a separate thread which actively
loads the trace into memory. While this can ef-
fectively perform the task, it consumes process-
ing resources and requires a locking mechanism
to synchronize access to the shared memory.
Both can limit the maximum replay through-
put supported. A more effective way for doing
this is to memory map upcoming parts of the
trace usingmmap() and then, using themad-
vise() call, to pass a behavioral hint to the

kernel in order to allow it to aggressively DMA
the parts of the trace into memory in the back-
ground. In this case, since the trace is stored
contiguously, passing a sequential access hint
is all that is required. The use ofmmap() and
madvise() is efficient and can be done within
the logic of the main sending loop. In our imple-
mentation, a double-buffered approach is used
where one buffer is used to prefetch the next
part of the file while the other is being actively
accessed. The size of each buffer was set to
32MB. Figure 3(a) shows the read latency using
this approach. As the figure shows, the latency
is extremely small and very predictable. Fig-
ure 3(b) plotsε for the madvise() approach
using the same workload as before, but with
a double-buffered prefetching implementation.
As the figure shows, the file system is able to
efficiently and predictably supply the tool with
packets from the trace even at aδ of 20µs.
Note that a small spike in latency is observed
half-way through the experiment. This spike is
caused by the latency of themmap() call itself.

B. Timers and timing

In the previous experiments, the tool em-
ployed a polling loop that continually invoked
gettimeofday() until the packet time was
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Fig. 3. Performance usingmadvise()

(a) δ=70µs (b) δ=2500µs

Fig. 4. ε using a polling loop

δ Polling usleep() Firm timers
70µs 78% 40% 19%
2500µs 99% 4% 1%

TABLE II

CPU UTILIZATION OF DIFFERENT APPROACHES

reached. This approach, while affording an ex-
tremely high degree of accuracy, is extremely
compute-intensive. To avoid this resource con-
sumption, one could use theusleep() system

call to put the sending process to sleep until the
send time of the next packet. This approach
saves a large amount of CPU time, but it does
so at the expense of accuracy. In most cases,
usleep() employs a timer mechanism which
is triggered by a periodic tick interrupt. On x86-
based machines this interrupt is generated by the
Programmable Interval Timer (PIT) and has a
period of 10ms. As a result, based on where
the send-time falls on this interval, it can expe-
rience up to10ms of jitter. Figure 4, Figure 5,
and Table II show the send-time errorε and



(a) δ=70µs (b) δ=2500µs

Fig. 5. ε usingusleep()

Fig. 6. ε usingusleep() at real-time priorityδ=70µs

the CPU utilization of the tool using a polling
implementation and ausleep() implemen-
tation. The experiments were run using fixed
sending intervals ofδ=70µs andδ=2500µs. To
capture CPU utilization, thet ime program was
used. As the figures and table show, the use
of usleep() forces one to give up accuracy
in return for efficiency. Usingusleep() , the
CPU utilization remains extremely low while
ε fluctuates wildly due to the10ms precision
of the PIT. An interesting point to note is that
when the real-time priority of a process is set
in Linux 2.4-based kernels, the implementation
of usleep() changes. For sleep times that

are under2ms, usleep() employs a polling
loop to implement them. Figure 6 showsε upon
re-running theusleep() experiments with the
real-time priority set. As the figure shows, the
accuracy of the tool matches those of the polling
implementation shown in Figure 4(a). In addi-
tion, the CPU utilization of the tool jumps to
78%, also matching that of the polling imple-
mentation.

It is clear that decreasing the periodic tick in-
terval would increase the accuracy of the timer
immensely, however, doing so would also in-
crease the interrupt handling overhead as well.
To address this, modern real-time operating sys-
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Fig. 7. ε using firm timers

tems provide high resolution timers based on
an aperiodic interrupt source [12]. For x86-
based systems, the PIT or the CPU APIC (Ad-
vanced Programmable Interrupt Controller) can
be programmed to generate aperiodic interrupts
to support high-performance, time-sensitive ap-
plications such asNetVCR. Figure 7 shows the
performance of the same workload using firm
timers [13], [14]. Firm timers use a combina-
tion of the periodic PIT and an aperiodic APIC
timer to accurately and efficiently implement
usleep() . Figure 7 and Table II showε and
the CPU utilization using firm timers over the
two workloads. As the figure shows, this im-
plementation achieves the best of both worlds.
It retains the accuracy of the polling approach
while matching the efficiency ofusleep()
across all time intervals.

C. Packet transmission

An efficient packet transmission loop is es-
sential in supporting gigabit network replay.
To make sending more efficient and to support
playback at speeds faster than the disk’s speed,
NetVCR supports the ability to replay packets
without the original payload by replacing the
payload with an equal amount of null-padded
data instead. Because one of the applications

Task Average time spent

Main loop 9.38µs
Data padding 1.45µs
Checksum calculation 1.27µs
sendto() 5.16µs
Trace read 1.30µs

TABLE III

PROFILE OF SENDING LOOP

for this tool is to evaluate routers and switches,
it is often not necessary to send the original
packet payloads with the packets themselves.
For all of the results in this paper, this option
was used. Padding the payload allows the send-
ing loop to be much faster, as full packet pay-
loads do not need to be read from the file sys-
tem. As a side-effect of using dummy data,
however, a new, valid checksum must be cal-
culated for the packet at run-time. Table III
shows the latency profile of the tool usingmad-
vise() , firm timers, and padded payloads. As
shown in the table, the main sending loop takes,
on average, less than 10µs. Assuming MTU-
sized packets, this allowsNetVCR to nearly sat-
urate the gigabit ethernet link of our test system.
When broken down further into components,
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Fig. 8. ε using firm timers with background load andδ=70µs

most of the latency of the loop occurs with the
call to send the packet with data padding and
checksum computation each taking under 2µs
to perform. As a further optimization,NetVCR
supports a trace pre-processing step that pre-
computes the checksum assuming padded data
in order to reduce the latency of the sending loop
further.

D. Scheduling

The previous experiments were all run us-
ing a dedicated server with very little compet-
ing load. Since in practice, there could be many
other services and processes running, it is im-
portant that the tool perform predictably un-
der load. The first step to ensuring correct be-
havior is to use the real-time scheduling prior-
ities of Linux. While this can ensureNetVCR
gets priority over other user processes, the tool
is still at the mercy of the kernel which must
schedule it to run at the right time. Unfortu-
nately, since Linux 2.4-based systems contain
relatively long, non-preemptible paths within
the kernel, it is often the case that the tool can
not run when it needs to. Figure 8 demonstrates
this problem by re-running the experiment in
Figure 7 using real-time priorities, firm timers,
andδ=70µs, but with two different background

loads. The first background load consists of a
memory stress test in which a user process con-
tinuously reads and writes a buffer of 128MB
to generate page faults. The second background
load consists of a file system stress test in which
a user process continuously reads and writes a
file of 8MB. Figure 8 shows the results under
these two loads. As the figures show, in both
cases, the addition of this low priority, back-
ground load is enough to completely disrupt the
performance of the tool.

To address this issue, several patches to the
Linux kernel have been developed. Among
them are a preemptible kernel patch and a low-
latency kernel patch [15], [16]. By making the
kernel preemptible or by reducing the longest
non-preemptible path through it, the tool can be
made much more predictable. Figure 9 shows
the performance of the same experiments using
the low-latency patch to Linux. As the figure
shows, reducing the length of non-preemptible
paths in the kernel allows the tool to maintain
accurate timing.

IV. RELATED WORK

While we were finishing the development
of NetVCR, another packet replay engine,
tcpreplay , was released [17].tcpreplay
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Fig. 9. ε using low-latency kernel and firm timers with background load andδ=70µs

(a) δ=70µs (b) δ=2500µs

Fig. 10. ε usingtcpreplay

performs a similar function asNetVCR, how-
ever, many of the performance issues addressed
in NetVCR are not addressed intcpreplay .
To demonstrate the impact of our design, we in-
strumented the latest version oftcpreplay
(1.2a) with timing code and examined its per-
formance. Figure 10 shows its performance us-
ing the 70µs and the 2500µs workloads used in
the previous section. As the figure shows, the
combination of poor file system prefetching and
inaccurate timers adversely impacts the perfor-
mance of the tool.

V. CONCLUSION

By addressing the issues of trace prefetching
and timers and by employing a low-latency ker-
nel, NetVCR is able to successfully replay net-
work traces at gigabit rates on commodity hard-
ware. As part of future work, we plan on releas-
ing the source code forNetVCR [18] and hope
to work with the developers oftcpreplay to
merge the performance features ofNetVCR into
tcpreplay . In addition, we also plan on pur-
suing additional mechanisms that will allow for
multi-gigabit replay including removing unnec-
essary data copying via IO-Lite [19], examin-



ing kernel modifications for improving perfor-
mance [20], [21], and examining the paralleliza-
tion of the replay task itself on SMP servers.
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