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Abstract

We suggest two simple additions to packages that use wellfounded
recursion to justify termination of recursive programs:

- The contraction condition, to be proved in cases when termination
conditions are difficult or impossible to extract automatically;

- user-supplied inductive invariants in cases of nested recursion.

We have implemented these additions in Isabelle/HOL and demonstrated
their usefulness on a large example of the recursive BDD algorithm Apply.

The paper uses a simple predicate on functionals in higher order logic
as an approximate model of program termination. We explore this model
and prove that for every functional there exists a largest “domain of ter-
mination”.

∗The research reported in this paper was supported by the National Science Foundation
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tion.

1



1 Introduction

Proving termination of a recursively defined program f by wellfounded recursion
means finding a wellfounded ordering (termination relation) on the program’s
input type and checking that for any argument x the recursive calls needed to
compute f(x) use only arguments smaller than x. When the pattern of recursive
calls is simple enough, we can derive from the program text a finite set of
inequalities (termination conditions) sufficient to guarantee termination. The
whole process is also amenable to mechanization with various possible degrees
of automation. The termination relation is guessed or supplied by the user, the
termination conditions are generated from the program text, then either proved
automatically, or given to user as proof obligations.

Some termination proofs are inherently difficult, but there are also annoying
cases where an obvious termination is difficult to capture by automated tools.
Two simple examples are given by recurrences

f(0) = 0
f(n+ 1) = f(0) + f(1) + · · ·+ f(n)

g(0) = 0
g(n+ 1) = g(g(n))

that readily translate into valid and obviously terminating programs of any
given language supporting recursion.

The problem with f is that it requires checking n termination conditions
for any non-zero input n, whereas commonly used tools see only a fixed finite
number of recursive calls in the program text and derive that many termination
conditions.

The problem with g is nested recursion—occurrence of recursive calls within
recursive calls. The termination condition g(n) < n + 1 appears to be in a
vicious circle: we need it in order to define g, but to prove it, we need to know
something about g.

For programs like f , where standard algorithms for extraction of termination
conditions do not work1, we describe in Section 2 an alternative and more direct
method that instead of termination conditions uses a simple contraction property
as a proof obligation that guarantees termination.

The circularity in attempts to prove termination of nested recursive programs
is a more serious problem, with which we deal in Section 3. We will show that
circularity can be avoided if what is needed to know about the program in order
to prove termination conditions (or contraction in the alternative approach)
can be expressed as a inductive invariant property. Inductive invariants are
certain input-output relations defined in Section 3. Using them we obtain a
simple framework that generates clear and uniform proof obligations from a

1More interesting cases of the same kind are given by recurrences

Bn+1 =

n∑
k=0

Bk

(
n
k

)
Cn+1 =

n∑
k=0

CkCn−k

for Bell and Catalan numbers.
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given nested recursive definition and (user-supplied or automatically generated)
termination relation and an inductive invariant. Virtually all previously known
termination proofs of nested cases of recursion fall within our framework.

In Section 5 we describe the use of contraction and inductive invariants on
a large and difficult example of the imperative program Apply that is a key
component of any efficient BDD (boolean decision diagram) package.

Contraction and inductive invariants can be used in pencil-and-paper proofs
and in many formalizations. We choose higher order logic as our formal mathe-
matical environment in what follows because it is the most natural and popular
for logical modeling of programs. Our implementations are written in the logic of
Isabelle/HOL theorem prover (in the sequel, HOL) [11]. Among Isabelle/HOL’s
many provided facilities is recdef, a powerful library for generating and verify-
ing terminating conditions via wellfounded induction [13]. Our techniques are
meant to be used when recdef is difficult to apply.

Simple modeling of programs as HOL functions cannot, of course, capture
the notion of termination accurately. The practice has been that to prove termi-
nation of a program it suffices to prove by wellfounded recursion the existence
and uniqueness of a fixpoint of the HOL functional associated with the original
program. In order to put our results in a precise context, we adopt in Section 2
a stronger definition of “HOL termination” that is a better approximation of
the concept.

In Section 4 we extend our definition and results to accomodate modeling of
programs that terminate only on a subset of their input type. The intended do-
main of termination is, as in Isabelle’s recdef, given as an additional parameter
together with the termination relation. This raises the question of the rela-
tionship between fixpoints of the same functional obtained by various choices
for the termination relation and for the domain of definition. We answer this
question in Section 6. Theorem 7 shows the existence of the largest domain of
termination for every functional and also uniqueness of its fixpoint. Theorem 9
demonstrates an analogous result for a more realistic notion of termination that
includes the requirement of finite height of all nodes in the calling tree.

2 Termination and Contraction

Declarations of recursive programs are of the form

f x = M, (1)

where M is some term that contains no free variables other than f and x.
Modeling the declaration in HOL, we assume M is a HOL term of type B,
where f and x have types A ⇒ B and A respectively. The equation (1) is
not a valid HOL definition, so what a HOL recursive definition method needs
to do is produce by some other means a definition of f and prove (1). It is
convenient to abstract the variables in M and use the associated functional
F = λf x. M : (A ⇒ B) ⇒ (A ⇒ B) as the input to the method. Thus (1)
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translates into the fixpoint equation (or recursion equation)

∀x. f x = F f x. (2)

The existence and uniqueness of f satisfying (2) is a necessary condition for
termination of the original program, but it is not sufficient, as seen in the exam-
ple program f x = 2∗ (f x). Since termination of programs depends crucially on
the semantics of the programming language used, there is no hope of covering
this notion exactly by some simple definition of HOL “terminating functionals”.
A definition that reasonably approximates the notion of termination is still bet-
ter than no definition, so we adopt the following, postponing the discussion of
the alternatives given to the end of the section.

Definition 1 The functional F terminates at the function φ iff there exists a
wellfounded relation ρ such that

∀f x. f =ρ−1x φ −→ F f x = φx. (3)

Here and in the sequel we use the notation ρ−1x ≡ {y | y ρ x} and f =D g ≡
∀y ∈ D. f y = g y. We will also use the related notation f � D for the restriction
of f on D; this partial function is represented in HOL as a total function, and
defined by

f � D = if x ∈ D then f x else Arb,

where Arb ≡ εz. True is an arbitrary element of the domain of f .
To explain Definition 1, note that a recursive program together with the

operational semantics of its programming language define a calling relation:
y ≺ x iff the evaluation of the program with a given argument x makes a
recursive call to itself with argument y. (See [12] for some examples where the
calling relation, called there the recursion relation can be effectively used.) The
program terminates if and only if the calling relation is wellfounded. Thus, the
condition expressed by Definition 1 is necessary for termination.

The main theorem behind wellfounded recursive definitions ([16], Theorem
10.19), as proved in HOL by Nipkow, reads as follows:

Theorem 1 ([13]) Let F : (A ⇒ B) ⇒ (A ⇒ B) and let ρ be a wellfounded
relation on A. Let ψ = wfrec ρF . Then

ψ x = F (ψ � ρ−1x) x, (4)

for every x ∈ A. �

We do not need to know the exact definition of the function wfrec. Its
existence is the point of the theorem; the uniqueness with respect to satisfying
(4) follows immediately by wellfounded induction.

Lemma 1 If F terminates at φ, then

(a) φ is the unique fixpoint of F ;
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(b) φ = wfrec ρF for some wellfounded relation ρ.

Proof. (a) Wellfounded induction.
(b) Suppose ρ is such that (3) holds and let ψ = wfrec ρF . Instantiating f with
ψ � ρ−1x in (3), we get

∀x. (ψ � ρ−1x) =ρ−1x φ −→ F ψ � ρ−1xx = φx.

The antecedent here is clearly equvalent to ψ =ρ−1x φ, while the consequent
is, in view of Theorem 1, equivalent to ψ x = φx. Now ψ = φ follows by
wellfounded induction. �

Now we state and prove the first sufficient condition for termination.

Definition 2 The contraction condition for the functional F with respect to
the wellfounded relation ρ is

∀f g x. f =ρ−1x g −→ F f x = F g x. (5)

Theorem 2 If the contraction condition (5) is satisfied, then F terminates at
wfrec ρF .

Proof. We need to check the condition

∀f x. f =ρ−1x ψ −→ F f x = ψ x,

where ψ = wfrec ρF . The antecedent part is clearly equivalent to f =ρ−1x (ψ �
ρ−1x), while the consequent part is, by Theorem 1, equivalent to F f x = F (ψ �
ρ−1x)x, making our goal an instance of the assumed contraction condition. �

2.1 Recdef

Recdef is a HOL definition package designed by Slind [11, 13, 15, 14], and its
main purpose is the derivation of the fixpoint theorem

∀x. ψ x = F ψ x

where ψ = wfrec ρF , for some wellfounded relation ρ and a given functional F .
After a brief survey of recdef, we will show that when it succeeds in proving the
fixpoint theorem, it could also derive a stronger conclusion that F satisfies the
contraction condition.

Recdef begins with Theorem 1 in the form

WF ρ −→ ψ x = F (ψ � ρ−1x) x, (6)

where WF denotes the wellfoundedness predicate and ρ, x are arbitrary. The
procedure then analyzes the structure of the term M (recall that F = λf x. M)
in order to find occurrences f t1, . . . , f tm of recursive calls as subterms of M .
For each calling site it also gathers the contextual information Γi and extracts
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the termination condition TCi ≡ Γi −→ ti ρ x, where ρ is at the moment an
unspecified wellfounded relation. Since, by definition of function restriction,

ti ρ x −→ (ψ � ρ−1x) ti = ψ ti,

it is possible through a sequence of steps following the bottom-up traversal of
the term M to transform the theorem (6) into one where all occurrences of
ψ � ρ−1x are replaced with ψ, at the price of adding termination conditions as
assumptions:

WF ρ ∧ TC1 ∧ · · · ∧ TCm −→ ψ x = F ψ x. (7)

Proving the termination conditions TCi for a suitably instantiated wellfounded
relation ρ is the last step, the result of which is the desired recursion theorem
for ψ = wfrec ρF .

Note now that if we started with the theorem F (f � ρ−1x)x = F (f �
ρ−1x)x instead of (6), then the same procedure (transforming the right-had side
progressively, while keeping the left-hand side fixed) would yield the theorem

TC1 ∧ · · · ∧ TCm −→ F (f � ρ−1x)x = F f x. (8)

in which ρ and f are free variables. Thus, if the termination conditions TCi are
provable for some wellfounded relation ρ, then

∀f x. F (f � ρ−1x)x = F f x

is provable as well. It is easy to see that this equation is equivalent to saying
that F satisfies the contraction condition with respect to ρ, so we have the
following meta-result.

Lemma 2 The termination conditions generated by the recdef procedure imply
the corresponding contraction condition. �

2.2 Summary

Each of the following statements, in which ρ is assumed to be wellfounded, is a
possible notion of “termination” in HOL.

T1: recdef ’s termination conditions for F are true for some ρ
T2: F satisfies the contraction condition with respect to some ρ
T3: F terminates (Definition 1)
T4: for some ρ, wfrec ρF is a unique fixpoint of F
T5: for some ρ, wfrec ρF is a fixpoint of F

By the results given above (or for simpler reasons), each of the statements
Ti implies one below it. The following examples show that none of these impli-
cations is reversible. Programs f and g given in the Introduction are counterex-
amples for T2 ; T1 and T3 ; T2 respectively. For T4 ; T3, a counterexample
is given by F f x ≡ if x = 0 then f(1) − f(0) else f(x − 1); its only fixpoint is
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the constant zero function, which is also equal to wfrec (<)F , but F does not
terminate. Finally, for T5 ; T4 take F f x ≡ f (x− 1); every constant function
is is its fixpoint, and wfrec (<)F (which happens to be the function constantly
equal to Arb) is just one of them.

In practice, the weakest condition T5 seems to be the most often used crite-
rion for termination. However, most of the existing termination proofs proceed
by checking satisfaction of termination conditions (as recdef does), so they ac-
tually demonstrate that T1 holds.

3 Inductive Invariants

Consider again the conditional recursion equation (3)

WF ρ ∧ TC1 ∧ · · · ∧ TCm −→ ψ x = F ψ x,

where ψ = wfrec ρF . If we are dealing with nested recursion, then ψ appears
in the termination conditions TCi, and it may be impossible to prove these
conditions without knowing something about ψ. However, these conditions can
be (and often are) properties of ψ that one can directly prove; that is, without
assuming the truth of the recursion equation ψ x = F ψ x. Here we show that
a whole class of properties, called inductive invariants, can be proved without
using the recurrence equation, and therefore can be used in the proof of that
equation. In fact, as our survey of the literature shows, most of the existing
proofs of termination of functions defined by nested recursion are based on some
inductive invariant property.

Predicates of the form S : A⇒ B ⇒ bool express input-output relations for
functions f : A ⇒ B. We will say that f satisfies S if S x (f x) = True holds
for all x ∈ A.

Definition 3 A predicate S : A ⇒ B ⇒ bool is a inductive invariant of the
functional F : (A ⇒ B) ⇒ (A ⇒ B) associated with the wellfounded relation ρ
iff the following condition is satisfied:

∀f x. (∀y. y ρ x −→ S y (f y)) −→ S x (F f x) (9)

If f satisfies an inductive invariant S, it follows from (9) that F f satisfies
S as well. Thus inductive invariants are invariants.

Checking inductive invariance is an inductive method of proving properties
of wfrec≺ F , as the following key result shows.

Lemma 3 If ρ is wellfounded then wfrec ρF satisfies all inductive invariants
of F associated with ρ.

Proof. Denote ψ = wfrec ρF . Assuming S is an inductive invariant and instan-
tiating f in (9) with ψ � ρ−1x, we get

∀x. (∀y. y ρ x −→ S y
(
(ψ � ρ−1x) y

)
−→ S x (F (ψ � ρ−1x)x).
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This is equivalent to

∀x. (∀y. y ρ x −→ S y (ψ y)) −→ S x (ψ x) (10)

because ψ � ρ−1x y = ψ y is clearly true when y ρ x, and F (ψ � ρ−1x)x = ψ x is
Theorem 1. The formula (10) is exactly what is needed for the inductive proof
of the formula ∀x. S x (ψ x) saying that ψ satisfies S. �

We will now weaken the contraction condition by adding a premise involving
an input-output relation; then we will prove that the weakened condition is still
sufficient to guarantee termination, at the price of establishing first that the
input-output relation used is an inductive invariant.

Definition 4 The restricted contraction condition for the functional F with
respect to a wellfounded relation ρ and an inductive invariant S is given by the
formula:

∀f g x. f =ρ−1x g ∧ (∀y. S y (g y)) −→ F f x = F g x. (11)

Thus, in (11) the restriction is that g satisfies S. The old contraction condi-
tion (5) is a special case of (11), corresponding to the trivial (constantly true)
inductive invariant S.

Theorem 3 Suppose the restricted contraction condition (11) is satisfied and S
is an inductive invariant of F associated with ρ. Then F terminates at wfrec ρF .

Proof. Let ψ = wfrec ρF . Instantiate (11) with g = ψ. The second conjunct is
true by Lemma 3, so we obtain

∀f x. f =ρ−1x ψ −→ F f x = F ψ x. (12)

It only remains to prove ∀x. F ψ x = ψ x. For this, jsut instantiate f = ψ �
ρ−1x in (12) and use Theorem 1. �

Theorem 3 gives a method for proving termination: find a inductive invari-
ant and prove the corresponding restricted contraction condition. The method
is conceptually simple and easily implementable. Given definitions of a well-
founded relation and an input-output relation, it generates two goals—inductive
invariance of the relation and restricted contraction condition—that can be ei-
ther passed to the user, or (sometimes) disposed of automatically.

3.1 Combining Inductive Invariants with recdef

Inductive invariants can also be used in conjunction with recdef (Section 2.1), so
that recdef is used in place of checking the restricted contraction condition. The
conclusion is weaker, though: instead of termination, we only get the fixpoint
equation.

Recall that the procedure for extracting the termination conditions associ-
ated with the functional F produces a predicate TC such that

TC ρ f −→ F (f � ρ−1x)x = F f x, (13)

This is just formula (7) of Section 2 with TC ≡ λρ f. (TC1 ∧ · · · ∧ TCm).
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Theorem 4 If there exists a wellfounded relation ρ and an inductive invariant
S associated with ρ such that

(∀x. S x (f x)) −→ TC ρ f,

then wfrec ρF is a fixpoint of F .

Proof. Instantiate f = wfrec ρF in (13), combine with Theorem 1, and use
Lemma 3 to eliminate the assumption TC. �

Theorem 4 suggests the possibility of treating nested recursive definitions
fully automatically with an extension of recdef : Use recdef to generate termi-
nation conditions, then check if they can be expressed as input-output relations,
and if so then prove their inductive invariance. That would result in a method
similar to the one developed by Giesl [5].

3.2 The Method of Alternative Specifications

A well-known method for proving termination of nested recursive equations was
proposed by Moore [8]. Given a functional F as before, it asks the user to
provide a concrete function h satisfying two conditions:

(M1) ∀x. F h x = h x (“partial correctness”);
(M2) TC ρ h, for some wellfounded relation ρ.

Theorem 5 If h satisfies the conditions (M1) and (M2) then h is a fixpoint of
F and h = wfrec ρF .

Proof. The conditions (M1) and (M2) together with (13) imply

F (h � ρ−1x)x = hx

which is the equation (4) whose unique solution is wfrec ρF . �

Note that every function h defines an input-output predicate Sh that only
it satisfies: Sh x y iff y = hx. It is immediate to check that substituting Sh for
S in the formulas (9) and (11) results in both cases in

∀f x. f =ρ−1x h −→ F f x = hx.

Thus, inductive invariance of Sh and the restricted contraction condition asso-
ciated with it are both equivalent to terminating at h.

3.3 Examples

Nested Zero The functional

Gg n ≡ if n = 0 then 0 else g (g (n− 1))
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corresponds to the second example in the Introduction. The termination con-
dition g n < n + 1 is an inductive invariant. (More precisely, the inductive
invariant is defined by: S nm iff m ≤ n+ 1.) Indeed, one needs to check

∀g n. (∀m < n. gm < m+ 1) −→ Gg n < n+ 1.

This is clearly true for n = 0, while for n > 0 it reads as

∀g. (∀m < n. gm < m+ 1) −→ g (g (n− 1)) < n+ 1

and the conclusion of this formula follows by using the assumption twice.
The restricted contraction condition also holds: if f i = g i holds for all

i < n and if g i < i + 1 (the inductive invariant) holds for all i, then it follows
immediately that Gf n = Gg n. But note again that plain contraction (without
the additional assumption about g) is unprovable.

A direct proof by induction that G terminates at the constant zero function
is also possible.

McCarthy’s Ninety-One Function This classical example is a recursive
definition of a function of type nat⇒ nat, given by the functional

F f x ≡ if x > 100 then x− 10 else f(f(x+ 11))

The termination conditions for F are

x ≤ 100 −→ x+ 11 ≺ x and x ≤ 100 −→ f(x+ 11) ≺ x,

for a suitable wellfounded relation ≺. A relation that works is the ordering
defined by 1 � 2 � 3 � · · · � 99 � 100 and 100 � 100 + i for all i ≥ 1.
This makes the first termination condition satisfied, while the second can be
rewritten as

11 ≤ x ≤ 111 −→ x < f(x) + 11.

This expresses an obvious input-output relation and one can check that the
relation is in fact an inductive invariant. We will check that an even stronger
(but simpler) relation, namely

S x y ≡ x < y + 11 (14)

is an inductive invariant for F . Thus, we need to prove

z < (F f z) + 11 (15)

assuming
x < f(x) + 11 (16)

holds for all x ≺ z. For z > 100, the relation (15) reduces to z < (z − 10) + 11,
which is true. In the remaining case z ≤ 100, the relation (15) rewrites as

z < f (f (z + 11)) + 11. (17)

Now we can assume that (16) holds for all x > z, since x ≺ z and x > z are
equivalent when z ≤ 100. In particular, z + 11 < f (z + 11) + 11 must hold,
giving us z < f (z+ 11). Instantiaing x with f (z+ 11) in (16) is now legitimate
and gives us f (z+ 11) < f (f (z+ 11)) + 11, so (17) follows by transitivity of <.
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Takeuchi’s Tarai Function This is the function of type int× int× int⇒ int
defined by the functional

F f (x, y, z) ≡ if x ≤ y then y else f(f(x− 1, y, z), f(y − 1, z, x), f(z − 1, x, y)).

Moore [8] proved the termination of F by showing that the function h defined
by

h(x, y, z) = if x ≤ y then y else (if y ≤ z then z else x)

satisfies the conditions (M1) and (M2) above with respect to the wellfounded
relation induced by a certain measure ρ. It turns out that predicates

S1 (x, y, z)u ≡ x ≤ y −→ u = y

S2 (x, y, z)u ≡ y < x ∧ y ≤ z −→ u = z

S3 (x, y, z)u ≡ y < x ∧ z ≤ y −→ u = x

are all inductive invariants with respect to the relation ρ, so their conjunction
is an inductive invariant as well. But this conjunction is clearly the predicate
Sh satisfied by h only, so F terminates at h.

HOL Version of the While Combinator In Isabelle/HOL [11], for any
predicate b : A⇒ bool and function c : A⇒ A, the function while b c : A⇒ A is
defined as wfrec ρW , where

W f x ≡ if b x then f (c x) else x

and ρ is defined by
x ρ y ≡ (∃n. b (cn x)) ∧ x = c y.

Given any two predicates P : A ⇒ bool and Q : A ⇒ bool, one can check
that the following relation S is an inductive invariant for W :

S x y = P x

∧ (∀z. P x ∧ b z −→ P (c z) ∧ c z ≺ z)
∧ (∀z. P x ∧ ¬(b z) −→ Qz)
−→ Qy

The theorem while rule supplied with Isabelle/HOL says precisely that while b c
satisfies every relation S of this form. Thus, while rule is essentially an in-
stance of Lemma 3.

4 Partial Termination

Many interesting recursive programs terminate only on some subset of the input
type, so we need to generalize the notion of termination to termination on a
given subset. Here are the important definitions of the last two sections in their
generalized form.
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Definition 5 Given a functional F : (A ⇒ B) ⇒ (A ⇒ B), a wellfounded
relation ρ on A, a subset D of A, and a relation S : A⇒ B ⇒ bool, we say that

• F terminates on D at φ by means of ρ iff

∀f x. x ∈ D ∧ f =D∩(ρ−1x) φ −→ F f x = φx; (18)

• a function f : A⇒ B satisfies S on D iff

∀x. x ∈ D −→ S x (f x); (19)

• S is an inductive invariant of F on D by menans of ρ iff

∀f x. x ∈ D ∧ (∀y ∈ D. y ρ x −→ S y (f y)) −→ S x (F f x); (20)

• the restricted contraction condition for F with respect to ρ, S, and D is

∀f g x. x ∈ D ∧ f =D∩(ρ−1x) g ∧ (∀y ∈ D. S y (g y)) −→ F f x = F g x.
(21)

Now we restate Lemma 1, Lemma 3 and Theorem 3 in this general setting.
Generalizations are direct, but note a twist in the uniqueness statement that
now relates termination at two subsets. The proofs, being rather straightforward
extensions of those given in previous sections are omitted.

Lemma 4 (a) If F terminates at φ on D then φ satisfies the restricted fix-
point equation φ =D F φ. Moreover, if the termination is by means of ρ,
then φ =D wfrec ρF .

(b) If D1 ⊆ D2 and F terminates at φi on Di (i = 1, 2), then the restriction
of φ1 terminates on D1 if and only if φ1 =D1 φ2.

�

Lemma 5 wfrec ρF satisfies on D all inductive invariants of F associated with
D and ρ. �

Theorem 6 Suppose the restricted contraction condition (21) is satisfied and
S is an inductive invariant of F associated with D and ρ. Then F terminates
on D at wfrec ρF . �

5 Example: The BDD Apply function

In this section we survey the proof of termination of the imperative BDD pro-
gram Apply. This proof has been verified in HOL and reported on in [6]. Our
HOL proof does not use the recdef mechanism, but is instead based on the HOL
version of Theorem 6.

Binary decision diagrams (BDDs) are a widely used representation of boolean
functions. Intuitively, a BDD is a finite rooted directed acyclic graph in which
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every node except special nodes TrueNode and FalseNode is labeled by a vari-
able and has two children: low and high. Special nodes represent the constant
boolean functions, and the function fu represented by any other node u is de-
fined recursively by fu = if x then fl else fh, where x is the variable associated
with u and l, h are its left and right children respectively. Bryant [4] originally
proved that every function is represented by a unique reduced ordered BDD,
where reduced means that no two nodes represent the same function, and ordered
means that variable names are totally ordered and that every node’s variable
name precedes the variable names of its children. Efficient BDD packages im-
plement reduced ordered BDDs. An abstract, but detailed presentation of such
a package of programs is given in [1]. Our work [6] contains a HOL model of
a significant part of the package. Referring to these papers for more detail, we
will now describe just the minimum required to define the Apply program.

The global state used by any BDD package contains a pool of BDD nodes.
We assume there is an abstract type Node representing node addresses, and a
type Var of variables. A primitive function active : Node ⇒ bool indicates the
presence of a node in the current state, and the accessor functions var, low, high
take a node as an argument and return the associated variable and children.
What, if anything, these functions return if the argument is not an active node,
is left unspecified. For simplicity we will assume that Var is the type of natural
numbers whose natural ordering corresponds to the ordering of variables needed
to implement the concept of ordered BDDs.

The BDD routine Mk takes a variable x and two nodes l, h as inputs and
returns a node u such that var(u) = x, low(u) = l, and high(u) = h. If a
node with these three attributes already exists in the state, the state is left
unchanged; otherwise Mk adds u to the state. We gloss over the details how
Mk tests whether it needs to add a node to the existing state and the possibility
that Mk can raise an out-of-memory exception.

The crucial routine Apply takes a binary boolean operation op and two
nodes u and v, and returns a node w which represents the boolean function fw
specified by

∀x. fw x = op(fu x, fv x). (22)

A recursive declaration of Apply is given in pseudocode in Figure 1.
Clearly, the variable op is of little significance for termination of Apply.

Assuming op is constant, we can think of Apply as being a function of type
Node×Node×State⇒ State×Node.2 Recursion makes Apply one of the most
complicated programs in the package. Pondering the algorithm in Figure 1, one
realizes that even a hand proof of termination of Apply requires effort. The
ultimate reason for termination is clear: in an ordered BDD (and only those we
would like to consider), the level (that is, the var value) goes down when passing
to children nodes, so in all recursive calls of Apply the level decreases either for
both node arguments, or decreases for the “higher”, while the other stays the
same. Thus, in order to prove that the arguments decrease in recursive calls, it is

2In [6], we show how to use monadic interpretation to hide “state threading” and translate
imperative programs to visibly equivalent HOL counterparts.
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1 Appply[T ](op, u, v) =
2 if u, v ∈ {TrueNode, FalseNode} then op(u, v)
3 else if var(u) = var(v) then
4 w ←−Mk(var(u),Apply(op, low(u), low(v)),Apply(op, high(u), high(v)))
5 else if var(u) < var(v) then
6 w ←−Mk(var(u),Apply(op, low(u), v),Apply(op, high(u), v))
7 else
8 w ←−Mk(var(v),Apply(op, u, low(v)),Apply(op, u, high(v)))
9 return w

Figure 1: The program Apply, as in [1], omitting the memoization part, inessen-
tial for the purpose of proving termination. The global variable T is the table
of BDD nodes.

necessary to work with a restricted set of states, described by a predicate goodSt
that needs to be preserved by Apply. A workable invariant goodSt asserts that
the associated BDD to each active node is ordered and reduced. Clearly, we
cannot expect termination for all input-”good state” pairs. We obviously need
to add at least the restriction that the two input nodes be present in the input
state. These restrictions define a subset D of Node×Node× State on which we
can reasonably expect termination by means of the wellfounded relation defined
by the measure that associates to an input-state triple (u, v, T ) the maximum
of the values var(u), var(v) in T .

Next we need to deal with nesting. Nesting is not immediately seen in
Figure 1 becasue the state is not explicitly mentioned in the program text,
being thus an extra hidden argument. Consider the line 6; in expanded form,
this piece of code could read like this:

61 lu ←− low(u)
62 hu ←− high(u)
63 x←− var(u)
64 l←− Apply(op, lu, v)
65 h←− Apply(op, hu, v)
66 w ←−Mk(x, l, h)

If we made the state explicit, these lines would look as follows, with primes
denoting the appropriate modifications of functions representing programs:

61 (lu, T1)←− low′(u, T )
62 (hu, T2)←− high′(u, T1)
63 (x, T3)←− var′(u, T2)
64 (l, T4)←− Apply

′(op, lu, v, T3)
65 (h, T5)←− Apply

′(op, hu, v, T4)
66 (w, T6)←−Mk

′(x, l, h, T5)
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exposing nesting in the definition of h:

h = fst(Apply
′(op, hu, v, snd(Apply

′(op, lu, v, T3)))).

To prove termination, we need to find input-output properties of Apply

that are sufficient to show that the measure goes down in each recursive call,
and then to prove that these properties are inductive invariants of the functional
defining Apply. It turns out that the input-output predicate S defined by

S (u, v, T ) (w, T ′) ≡ T ′ contains T

∧ w is active in T ′ (23)
∧ var′(w, T ′) ≤ var′(u, T ), var′(v, T )

is such an inductive invariant. We have carried out the proof of inductive
invariance and the proof of the corresponding restricted contraction condition
in Isabelle/HOL [6].

6 Fixpoint Operators in HOL

Is there a canonical way to associate in HOL a partial function with every
functional F : (A ⇒ B) ⇒ (A ⇒ B)? Given F , we would like to define a
natural domain D (subset of A) associated with it, and a function φ : A ⇒ B
which satisfies the restricted fixpoint equation φ =D F φ. We will give two
answers to this question. The first is proveded by Theorem 7 below saying
that there exists a maximal subset of A on which F terminates in the sense of
Definition 5. The second answer comes from modeling the standard iterative
fixpoint construction in HOL. Finally, we will show that the two fixpoints are
the same in the case when (vaguely speaking) the calling relation associated
with F is finitary in the sense that for every x ∈ A there are only finitely many
y such that y ≺ x.

We should note that proofs of results of this section have not been formally
verified yet.

6.1 Largest Domain and Natural Fixpoint

Definition 6 We say that a subset D of A is a domain for F if F terminates
on D. When F terminates on D by means of ρ, we will say that the pair (D, ρ)
is a germ of F .

Lemma 6 Suppose (D, ρ) is a germ of F and D′ is a downward closed subset
of D with respect to ρ. Then (D′, ρ′) is a germ of F , where ρ′ is the restricton
of ρ on D′.

Proof. Straightforward. �

Theorem 7 There exists a largest domain for F .
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Proof. Consider the ordering on the set of germs given by: (D, ρ) � (D′, ρ′)
iff D ⊆ D′ and the restriction of ρ′ on D is equal to ρ. For every chain C in
this ordering, consider the pair (∪D,∪ρ), where the unions are taken over all
elements of the chain C. It is easy to see that this pair is a germ and an upper
bound for C. By Zorn’s Lemma, there exists a maximal germ, say (D, ρ). We
claim that D is the largest domain for F .

Assuming the contrary of the claim, suppose (D′, ρ′) is germ of F such that
D′ is not contained in D. Now, there exists z ∈ D′ \ D such that all smaller
elements (with respect to ρ′) than z in D′ belong to D as well. In view of
Lemma 6, it is no loss of generality to assume that D′ = E ∪{z}, where E ⊆ D
and z is the greatest element in D′.

Let ψ = wfrec ρF and ψ′ = wfrec ρ ′F . By Lemma 4(a), F terminates at ψ on
D and terminates at ψ′ on D′. By Lemma 6, E is a domain for F , as downward
closed in D′. Now E is a subdomain of both D and D′, so by Lemma 4(b), we
obtain that the restrictions of ψ and ψ′ on E coincide.

Define the function φ by

φx ≡ if x ∈ D then ψ x else ψ′ x.

Since ψ and ψ′ have equal restrictions on E = D ∩ D′, we have that φ =D ψ
and φ =D′ ψ

′. By Lemma 4(b), F terminates at φ on both D and D′.
We want to prove that F terminates at φ on D ∪ D′ = D ∪ {z} by means

of σ, where σ is the (obviously wellfounded) relation ρ ∪ ρ′. This amounts to
checking that

f =(D∪{z})∩(σ−1x) φ −→ F f x = φx (24)

holds for every f and every x ∈ D ∪ {z}. Consider first the case when x ∈ D.
Then (D ∪ {z}) ∩ (σ−1x) = D ∩ ρ−1x and (24) follows since F terminates at φ
on D. In the remaining case when x = z, we have (D ∪ {z}) ∩ (σ−1x) = E and
(24) follows since F terminates at φ on D′. �

Definition 7 The largest domain for F will be denoted DF and called the ter-
mination domain of F . The termination fixpoint νF is defined by

νF x ≡ if x ∈ DF then wfrec ρF else Arb,

where ρ is any wellfounded relation such that F terminates on D by means of
ρ.

6.2 Finite Termination and Iterative Fixpoint

Standard operational semantics suggests that the function recursively defined
by the functional F : (A⇒ B)⇒ (A⇒ B) is the limit of the sequence

φ0 = Arb, φ1, φ2, . . .

where φn+1 x = F φn x. But what is the limit partial function φ? An obvious
candidate would have the domain consisting of all x for which the sequence

φ0 x, φ1 x, φ2 x, . . .
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stabilizes, and for such x define φx as the limit value of the sequence. However,
the fixpoint equation does not have to hold for this (too large) domain, as
demonstrated by the example

F f x ≡ if constant f then x else x− 1.

The domain on which the stabilization limit function satisfies the fixpoint
equation is best defined as the union of an increasing sequence of subsets. The
subsets ∆n of A defined inductively by

∆0 = ∅ ∆n+1 = {x | ∀f. f =∆n φn −→ F f x = φn+1 x}. (25)

Lemma 7 ∆n ⊆ ∆n+1 and φn+1 =∆n φn, for every n.

Proof. Both statements are trivially true for n = 0. Proceeding by induc-
tion, for ∆n ⊆ ∆n+1 we need to prove F f x = F φn x assuming f =∆n φn
and x ∈ ∆n. We will prove F f x = F φn−1 x and F φn x = F φn−1 x. The
second equation follows from the definition of ∆n and the induction hypothesis
φn =∆n−1 φn−1. The first equation similarly follows from the definition of ∆n

and f =∆n−1 φn−1. It remains just to prove this last relation. It follows by
transitivity of =∆n−1 from the relations f =∆n−1 φn and φn =∆n−1 φn−1. The
second of these two formulas is an already used induction hypothesis, while the
first is a consequence of the induction hypothesis ∆n−1 ⊆ ∆n.

To prove φn+1 =∆n φn, assume x ∈ ∆n; the goal is φn+1 x = φn x. By
definition of φn, we have φn x = F φn−1 x. We have proved ∆n ⊆ ∆n+1; thus,
x ∈ ∆n+1 and so, by definition of φn+1, we have φn+1 x = F φn x. Our goal can
now be rewritten as F φn x = F φn−1 x. In follows from the definition of ∆n

and the induction hypothesis φn =∆n−1 φn−1. �

Definition 8 For a given functional F , define its iterative domain ∆F as the
union of the subsets ∆n above. Define the iterative fixpoint µF of F by

µF x =
{
φn x if x ∈ ∆n

Arb if x /∈ ∆F

Theorem 8 F terminates at µF on ∆F . In particular, µF satisfies the re-
stricted recursion equation µF =∆F

F (µF ).

Proof. Take the wellfounded relation ρ such that x ρ y holds if and only if
x ∈ ∆n and y ∈ ∆n+1 for some n. Thus, to prove that F terminates at µF on
∆ by means of ρ, we need to check that

f =∆n
µF −→ F f x = µF x (26)

holds for all f and x ∈ ∆n+1. We have µF x = φn+1 x (since x ∈ ∆n+1) and
also µF =∆n

φn. Thus, (26) can be written as

f =∆n
φn −→ F f x = φn+1 x,

which is true by definition of ∆n+1. �
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6.3 Relationship Between νF and µF

First, we have an immediate consequence of Definition 7 and Theorem 8.

Corollary 1 ∆F ⊆ DF and µF =∆F
νF. �

In many cases the domains DF and ∆F are actually equal. To explain
such situations, we need a more restrictive notion of termination than given in
Definition 5.

Definition 9 We say that F is finitely terminates at φ on D by means of a
wellfounded relation ρ if the following condition is satisfied: for every x ∈ D
there exists a finite subset D(x) of D ∩ (ρ−1x) such that

∀f x. x ∈ D ∧ f =D(x) φ −→ F f x = φx. (27)

Theorem 9 If F finitely terminates on D by means of ρ, then D ⊆ ∆F and
µF =D wfrec ρF .

Proof. Denote ψ = wfrec ρF and φ = µF . Let ρ′ be the relation defined by

x ρ′ y ≡ x ρ y ∧ x ∈ D(y).

Clearly, ρ′ is wellfounded and F terminates at ψ by means of ρ′. We claim that
every element of D has finite height, where the height of x is defined as the
supremum of lengths of downward chains (under ρ′) starting at x. Indeed, since
there are only finitely many elements smaller (under ρ′) than x, the existence of
arbitrarily long downward chains would by König’s Lemma imply the existence
of an infinite downward chain, which would contradict wellfoundedness of ρ′.

Let Dn denote the subset of D consisting of all its elements of height n or
less. (Thus, D0 = ∅ and D1 is the set of minimal elements under ρ′.) It will
suffice to prove

Dn ⊆ ∆n and φ =Dn ψ, (28)

which we do by induction on n. The case n = 0 is trivial.
With (28) as the induction hypothesis, we need to prove that for every

x ∈ Dn+1

x ∈ ∆n+1 and φx = ψ x. (29)

Using the induction hypothesis, we can strengthen our assumption to that the
height of x is exactly n+ 1. Note that now we have D(x) ⊆ Dn because every
y ∈ D(x) has height at most n. By definitions of ∆n+1 and φn+1, for the first
goal in (29) it suffices to prove F f x = F φn x, with an additional assumption
f =∆n

φn. This additional assumption implies f =D(x) φ because φ =∆n
φn

and D(x) ⊆ Dn ⊆ ∆n. Using the induction hypothesis φ =Dn ψ, we then obtain
f =D(x) ψ and φn =D(x) ψ, and using (27) twice deduce the desired equality
F f x = F φn x. Now we know x ∈ ∆n+1, so x ∈ ∆F , and so φx = F φx, by
Theorem 8. On the other hand, φ =D(x) ψ implies by (27) F φx = ψ x, finishing
the proof of φx = ψ x. �

Since µF clearly finitely terminates on ∆F , Theorems 8 and 9 have the
following consequence.
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Corollary 2 DF = ∆F if and only if F finitely terminates on DF . �

Note that DF = ∆F in Corollary 2 can be replaced with νF = µF .
An example when termination does not mean finite termination is given by

this recursive definition of f : nat× nat⇒ bool:

f(0, 0) = ∀i > 0. f(i, 0)
f(0, j) = True if j 6= 0
f(i, j) = f(i− 1, j + 1) if i 6= 0

Take the wellfounded relation ρ on nat × nat determined by the call graph of
this recursive definition. The minimal elements are (0, j), the maximal element
is (0, 0), and the remaining elements are organized into chains of length n going
from (0, n) up to (n, 0), for every n > 0. The contraction condition holds on the
whole input type, so the natural domain is DF = nat × nat (and we can prove
that µF (i, j) = True). On the other hand, we have ∆n = {(i, j) | i < n}\{(0, 0)}
and so the iterative domain ∆F = nat × nat \ {(0, 0)} is strictly smaller than
DF .

7 Conclusion and Related Work

We have described and implemented techiques that can be used to justify re-
cursive definitions in higher order logic when direct checking of termination
conditions is not possible. For example, the contraction condition can be easily
provable even in cases when termination conditions are impossible to extract
directly from the program text. In the cases where termination conditions are
difficult to prove due to nested recursive calls, we have shown how using suitable
inductive invariants can make these conditions easier to establish. Furthermore,
inductive invariants in combination with the corresponding restricted contrac-
tion condition can be applied when we have to deal with both nested recursion
and problematic extraction of termination conditions. The BDD Apply algo-
rithm is a substantial example that presented us with all these difficulties and
that we were able to handle with our techniques.

Contraction conditions are a standard way of proving fixpoint theorems (à
la Banach). In the context of higher order logic, this technique has been used
by Matthews [7] to support recursive function definitions over types with coin-
ductive structure.

The challenge of justifying nested recursive definitions has attracted a great
deal of research, in various formal systems; [12, 8, 15, 5, 3] are but a few examples
of interesting case studies and general methods. They are all related to our work
for the simple reason that inductive invariants (even if not recognized as such)
are at the core of most of the known termination proof of nested recursion.
Our contribution is in presenting this common pattern of reasoning as a general
method, where much can be proved once and for all, leaving the user only with
clear proof obligations specific to the problem at hand. The obligations are: (1)
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to find a suitable inductive invariant (in addition, and analogous to finding a
suitable wellfounded relation) (2) to prove that it is an inductive invariant; and
(3) to prove the termination conditions (with the additional assumption that
the inductive invariant holds).

Often the nested termination conditions themselves are inductive invariants,
so the first attempt would be to try them. The method described by Giesl
[5] follows a similar pattern: heuristic generation of “induction lemmas” that
correspond to nested termination conditions, then proving their “partial cor-
rectness”, which amounts to inductive invariance. High level of automation,
which is the main virtue of Giesl’s method, is also its limitation: There are
complicated cases, for example the Apply function above, or the unification al-
gorithm (as in [15]), that this approach would have difficulties with. Compared
with Giesl’s method, ours is more general and, as a consequence of that greater
generality, our proofs are considerably simpler than those in [5].

Slind [15] has demonstrated that his recdef package can be used for nested
recursive definitions, even as complex as the unification algorithm. The method
here is to start with the conditional recursion theorem and the corresponding
conditional induction theorem, both automatically derived by recdef, then com-
bine them to eventually get rid of the termination conditions. The combination
process, however, requires a substantial effort from the user’s part that in the
presented examples always includes proving some inductive invariant (derived
from the nested termination conditions). The impression is that our conceptu-
ally simpler method is at least equally powerful and efficient.

Giesl and Slind [5, 15] make a point that, contrary to the previous under-
standing, it is generally possible to prove termination of functions defined by
nested recursion without simultaneously proving their correctness/specification.
Note, however, the vagueness in the notions of correctness and specification. The
fact is that some form of specification is invariably being used, namely the in-
ductive invariant! And this is all quite natural: the specification of our example
algorithm Apply

3 can hardly be used to prove its termination; what makes
termination proof possible is inductive invariance of the much simpler predicate
given in (23).

Modeling program termination in HOL can be done in several ways. Müller
and Slind have surveyed the topic in [10]. The most accurate modeling can
be done in HOLCF [9], the HOL version of domain theory. We have adopted
the simplest, most often taken and often the most convenient approach where
partial functions are modeled as total functions taking an arbitrary value on
arguments outside the specified domain of definition. Modeling such programs
as partial functions raises the question of defining a natural fixpoint operator on
functionals, and we have shown that the “most general” fixpoint can be defined
in HOL. We have also shown the existence of the “most general” fixpoint under
the constraint corresponding to finite depth of recursive calling, (cf. [2]). As-
sessing usefulness of this concept requires further study. In particular, it would

3The correctness of Apply is expressed by the equation (22), which involves the interpre-
tation function that associates boolean functions to BDD nodes.
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be interesting to find conditions under which the HOL fixpoint of a functional
corresponds to the fixpoint of the corresponding functional in HOLCF.
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