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S LJ!d!dAR Y 
We discuss the  philosophy, history and thecry of v;ir,2oi~ f u ~ c t i o n s .  Win- 
dow functions a re  a means t o  t r ea t  a relational database as  a semantic 
whole, ra ther  than as  an arbitrary collection of relations. Simply stated,  
a window function maps a database s ta te  and a relation scheme to  a rela- 
tion over the  scheme. Window functions are the ba-sis for all existing 
universal scheme interfaces. We present an assumption inherent in such 
interfaces, the  u n i q u e  ro le  a ~ s u r n p t i 3 n .  

Window functions have evolved along t ~ v o  paths, giving rise to computa- 
-.  

tional definitions and weak instance definiti.or:s. i \ e  eva;i-iine several ex- 
amples of each type of window function, with special at tention to the 
association-object windorv function of PIGL!:. Y;e then lvok a i  properties 
we feel a reasonable ~vindo~v function should satisfy, notab!y the  c o n t a i n -  
m e n t  c o n d i t i o n  and f a i t h f u l n g s s .  \\-e also define ir,r+licit oI; jec ts ,  which 
a re  relation schemes tha t  a window function t reats  in a special manner,  
and a r e  useful for describing the  behavior cf i+-i-lndoir fuiictiaris. 

1. The Wny and What of Window Functions 

A s  Maier, Vardi and Lllrnan < M U >  note, the  relational d a t a  model has gone 

fa r  towards phys ica l  data  independence, but has not achieved the goal of logical  

da ta  independence. That is, users of relational systems a r e  relieved of specify- 

ing access paths within the  s t ructure  of a single relation, but they stil! must 

navigate between relations. Users and application programs are protected from 

changes in the physical implenientation of reihti.orls, b ~ i t  ilot l*l-i)ril changes in the 

logical structiire of a databas?, sdch as decon~~,osit i~r;s  mad? for normalization 

or efficiency reasons. 

Uniuersal  s c h e m e  i n t e r f a c e s  are  an a t tempt  a t  icgical da ta  independence. 

In a universal scheme interface, all the  semantics of the databdse is loaded onto 
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the attr ibutes.  Queries are phrased in terms of attributes; the  user need not 

knorv which attributes are  in which relations. The hope is that  the  attr ibute 

names correspond naturally to entities in the real worid, and that  the users have 

an intuitive semantics for these entities and their relationships that  is close to 

the actual  semantics of the database. In a universal scheme interface, a data- 

base is presented as  a semantic whole, accessible through its at tr ibutes alone. 

In the  sequel, I.' tvill denote the universe of attributes in a database: the univer- 

sal s c h e m o .  

There are  several universal scheme systems extant and under development. 

The first were APPLE <CK> and that  of Shenk and Plnkert <SP>. More recent 

s;.sterns a r e  q <AK>, SysternjL. <K, K K ,  KC, I111>, PIQUE <I,lRSSW, MW, Ro>, 

Paz-efrase <KMRS, KS>, R D L  <Ba>, DLRST <BB> and tha t  of Arazi-Conczarowski 

<.4-G>. hiany of the same issues a re  addressed by Sort-a's uork on conceptual 

graphs <So>, and by others' work on automatic: navagation in a database <Li, 

Su, Za>. 

Query processing ir? a universal scheme system can be cast  a s  a two-stage 

procedure: 

1. The s e t  of attributes, call it X, appearing in the query is determined. 
Then, on the basis of the state of the cl'atabase, a relation r over scheme 
X is generated. (If the  query contains severa! variables, the attr ibutes 
assoziated with each variable arz  used to  compilLe ssgo: die  relations.) 

2. Fur ther  operations specified by the query a1-2 ;p~;ie-I C - l  r ( X )  to  gen- 
e ra te  the answer. 

These stages a re  called binding and evaluation, respecti\-ely. 

Example 1: Consider a simple database courses rrith the  relations 

taking(STUDENT COURSE) and teaching(FACULT7' COURSZ). In response to  the 

query 

retrieve FACULTY where STLDEST = "Andretj-s" 

the  PIQUE system will construct a re!ation r on FACULTY STLDEYIT. Presumably, 
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~ ~ F ~ ~ L L - ~ -  zixEIT(t aking W t s ac hing  ) . 

In the  evaluation stage of processing the  query, PIQUE applies the selection 

U s ' r ; o ~ \ y = k & . ~ ~  to  r to  get  the final answer to the  qQ?ry. 

The generation of a relation r on scheme X in t h e  binding s tep is done, 

implicitly or  explicitly, through the  application of a u f n d ~ w  function. A window 

function f maps a relation scheme X L U and a dalabdse s i s t e  d t o  some rela- 

tivn r \I-ith scheme X': f (X', d )  = r(X'). In our de.~eloprilt.nl, vie will "curry" f 

and t reat  i t  a s  a functional that  maps relation schemes t o  functions from data- 

bxce s tz tes  to reletions: 

f : r t lat ion schemes + ( d a t a b ~ s s  siiltes + r . ~ l ~ ~ i o i ; ~ ) .  

The functional signature above doesn't tell the  -rvhole story. First, we assume a 

single, fixed database scheme for all the database skates. Second, f is 

po!ymorphicaliy typed in that  f (S) is a function with  relations cver scheme X as 

i t s  range. 

We use a n  alternative notation for window functitins in the  sequel. A window 

function will be denoted by brackets, possibly subscripted: [,I, [ . I r ,  [ , I U .  Appli- 

c6tion of a windoil- function to a scheme X is denoted [A'] ar:6 called the u i n d o w  

07: X fcr  iha t  window f ~ i l ~ t i 0 1 1 .  The application of il-12 v-i~ido\\- on X to  database 

. r T r i  stcite d is [ X ] ( d ) ;  if d is uriderslooL, w e  sori-~tlirnes uzt: siri;i;.~ L A  ,. 
1-hile the  stages of binding and evaiuation do interact ,  they are  loosely- 

coupled. Changes to  the  window functions can be rnade i\-iitiout changing the 

prueedures in the eva iu~ t ion  step, althoush suck1 chhr~ges  ~vl;i mean different 

arisutrs for queries. Ail the universal scheme sj-stems nl~ritioried above seem to 

conforx to the tva-ste;, paradigm. It is interesklng to  note tha t  they do not vary 

widely in the  expressive power for operations to  be a?p!icd in the second step 

( t h n l ~ ~ h  their qilery languages do difier in synti:?:). Tie significant differences 
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between the systems a r e  the window functions used. 

Draft 

A logical question a t  this point is why the same effect e s  .i:indow functions 

cannot be  captured with virtual relation or view mechanisms, 2s in conventional 

relstiona! systems? The first a n s v r  1s that  the use of virtual relations, while it 

hides the  computations needed to  produce them,  still requires the  user to  know 

the  names of all the  virtual relations and their  schemes. The second answer is 

that  window functions are a view definition mechanism. Fo~t-ever, defining a win- 

dow function on a specific database need not require explicit definition of a 

separate window for each set of attributes. Rather, in most universal scheme 

systems the re  is a uniform discipline for deriving a ~vinclews from. semantic infor- 

mation abogt the  database, such as the database scheme, and functional and 

join dependencies. Unlike an arbitrary se t  of virtual relations, the  windows in a 

universal scheme system are meant t o  display some manner of semantic con- 

sistency. The t e r m  window conveys the  image of a consonant set  of views into a 

single database world. 

For a universal scheme interface t o  a database to be practicable, t h e  data- 

base must  a t  least satisfy the universa l  r e la t i on  scheme assumption (URSA). 

L'RSA s ta tes  that  any attribute in U corresponds to  the same class of entities 

wherever it appears. KUMBER cannot refer to serial numbers of equipment in 

one place and social security numbers in another;  otherit-ise, there is no way t o  

distin,.;uish one class of entities from the  other in the query language. URSA 

requires that ,  a t  a minimum, an  attr ibute have the  same domain wherever i t  

appears. For relational systems in which the  available domains a r e  just integer, 

real  and string, this requirement does not mean much. I t  is more  a constraint 

on the conceptual model, where each class of entities is represented by a 

separate domain. 
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Positing the existence of window functions makes an assumption stronger 

than URSA, which we call the unique role assumption (GR4). TlR4 requires that  

an attr ibute not only always represent the  same class of entities, but also always 

represent the  same role for that  class. DATE may not represent dates both in 

the role of birthdate and the role of hiring date.  Put another way, URA means 

"the scheme determines the connection": For any set  of attributes, there  is a t  

most one connection among them. In particular, no two database relations have 

the same scheme. Without UR4, a universal scheme system has no way to  tell 

w h c h  relationship among a se t  of entities is intended when those entities are 

mentioned together. If DATE played two roles, a s  above, there  is no way to  tell if 

the window [Eh,iPLOYEE DL4TE] is asking for the  connection between employees 

and birthdates or between employees and hiring dates. 

I t  is unlikely that  a relational database designed without LyR4 in mind would 

satisfy that  assumption. To get satisfaction, some attributes will probably have 

to be renamed, in order to  distinguish the roles portrayed. 'The two roles of 

DATE above could be distinguished as BIRTI-IUATE and I-IIRING-DATE. Such 

renaming can produce problems. It may not be apparent, after  renaming, that  

different attributes represent the same class of entities, and the proliferation of 

attr ibute names can become unwieldy. we are  currently considering ways to 

handle such problems by explicitly incorporating a generalization hierarchy as 

part  of the database description <MRS, Ro>. Of course, many others have 

looked a t  generalization in relational databases <BK, Sc2, SS>. 

Lot all the  universal scheme systems mentioned previously strictly enforce 

LILA. Carlson and Kaplan, in their APPLE system <CK>, try to  define window 

functions upon databases that  do not necessarily satisfy LK.1, or even URSA. 

rn lhey search for a series of natural joins and equijoins tnat  ~ - ; l l  connect two sets  

of at tr ibutes,  guided by  functional dependencies (Fa.). Tlieir rnethvd does not 

cnrl i i  -uc i  M :ndo:is for arbitral--\; relabion sche~ne.;, R. .:L:r -! if roncentrates or, 
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connecting pairs of single attributes. Trying to  impose a un!versal scheme view 

af ter  the fact upon a database that  does not satisfy L*RA c a u s e  several cornpli- 

cations. They must maintain e-xplicit information on comparabil:ty of attributes. 

Their method for computing expressions for viindoii-s can generate multiple con- 

nections between a pair of attributes, actually gi~qng several uindows for the 

same relation scheme. They &scuss several ways to  ameliorate the problem, 

but, ultimately, the user must select among connections when several exist. 

Because of such ambiguities, U P L E  is not quite a full-fledged universal scheme 

interface. 

The query system q <,4K> does not make any assumptions about the  data- 

base. There is a "relfile" containing a list of schemes for stored and virtual rela- 

tions, and procedures for computing virtual relations. To generate [XI, q 

sequentially scans the relfile for the first scheme of a stored or virtual relation 

containing X. A computation is performed, if necessary, and the corresponding 

relation is projected onto X. Nothing constrains the type of computations 

allowed to  generate virtual relations; they need not even use the stored relations 

of the database. While q's mechanism produces a single %-indoll- for any relation 

scheme, the views these windows present are not necessarily consistent with 

each other or with the database. Thus, URA is satisfied for all ~vindows derived 

from the same virtual relation, but not necessarily for the database as a whole. 

In practice, the computations used to  derive virtual relatio~ls usually consist 

en t~ re ly  of joins, and t he  database does satisfy LRA. One other probiem with q is 

that  the expressions for virtual rel5tions must be given explicitiy. U'ork is 

currently underway on methods to generatz those e x p r e ~ ~ i o ~ i ~  from dependency 

information aSout the  database <Ko3>. 

R-e do not construe URA so strongly as to prohiblt multiple semantic con- 

nections among a s e t  of attributes. \Ye only ixtead that  iiie system takes one of 

t h r i q ~  c~nnec t i ons  as tI,e n o s +  ~ a t ~ ~ r ; : ! ,  H V ~  u ; 1 1  ri7:..hr t h a t  co~nec t i on  
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automatically. Other connections must be made explicitly by t h e  user.  

Draft 

2. Types of Window Functions 

Window functions a r e  a particular approach t o  the  general problem of infer- 

ence and deduction from a knoll-ledge base. Fere  ice are  working s\-it5 highiy- 

s t ructured data,  within a limited domain of discourse, and with certain simplify- 

ing assumptions. We hope thereby t o  get  more determinism and efficiency than  

from a more  general knowledge-based deduction system. 

The window functions used in the  universal scheme systems mentioned, and 

in various theoretical studies to be discussed, are  not always errpressed in the 

form given here. Often the definition of a 11-indow function is implicit within 

some computational method. In particular, some systems compute [ X ] ( d )  

directly, never realizing an explicit expression for [XI. In other studies, the 

t e r m  connection is used variously for window function and I$-indoiv. The bracket 

notation used here  follows the "output functions" of Maier <31al>. 

There a re  two main concerns in defining a 11-indolt- function. One is tha t  it 

have a reasonable semantics, the other is tha t  it be eificient t o  compute. Most 

1%-ind~w functions can be placed along one of two lines of deveiopment, 

corresponding t o  which concern is emphasized. There a re  I\-indovi functions 

based on straight computationai definitioas, where tile sen-iantic asstimptions 

m a y  be lairly rigid. Other zvindow functions are bared oil i \ e a k  ills:hil~t9, and 

. . 
place rnore importance on the semantics. Xeak instances ;;-Ere  or:,:^^.!!;. intro- 

duced to study another aspzct of databases as semzntic nrh3!~s: g!cbal satisfac- 

tion of dependencies. W e  shall see in the  next ~ e c t i o n  how cornp:!tational 

definitions evolved to  have more semantic content. In the follort-ing section, we 

shall see the development of more efficient computation methods for weak 

instance windows. 
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In t h e  res t  of this paper, we shall let R be the  database scheme IR1, R*,..., 

R,], and let d = fr l(R,) ,  r2(R2) ,  ..., rp(Rp)f be a database over R. Thus, U is the  

union of t h e  schemes in R 

2.1. Computational Window Function C&nitions 

Most initial work on computational definitions for mindow functions made a n  

assumption stronger t h m  UR4. That assumption is the  vniuersaL instance 

assumpfion (UIA), which states that  the database relations a re  all projections of 

a single relation I olrer C'. ( I  is called a universal imfance.) That is, 

UIA is a requirement for "universal extension," where UR4 only requires 

"universal intention." 

Under UIA, the  window [XI is defined as  ~ ~ ( 1 ) .  \Ye denote this window func- 

tion as  [ I I .  The presumption is tha t  I can be recovered from d as r 1  W T Z  W 

... DQ T,. or a t  least 1 iX( / )  can be recovered, for certain X. A number of groups 

iiave studied the question of %-hen all or pa r t  of I can be recovered from its pro- 

jections <XC, BMSU, MlfSU, Ri>. In short ,  the question they address is whether 

the dependencies that  I must satisfy imply that T I ,  r2, ..., rp have a lossless join. 

The work on UIA-based window functions concentrates on findmg, for a given 

X, an  alternative expression E such that  Q ( E )  = r A , ( I ) .  The hope is tha t  E can 

be computed more efficiently than the join of all the  relations. Shenk and Pink- 

e r t  <SP> were among the first t o  look a t  this question. They concentrated on 

lassless subjoins: a subset i s l ,  s2,  ..., s,{ of d such that  

nx(s l  M sz W . . . DQ s,) = r X ( I ) .  In their study, the  only dependencies con- 

sidered a re  FDs arising from keys, and the only joins are lossless joins of pairs of 

relations. The join of r ( R )  and s(S) may only be  taken %-hen R n S + R or 

R n S + S .  This restriction guarantees small intermediate results, a s  \r DQ sj 
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will be no larger than max(:rl, is:). They attempt to find a lossless subjoin with 

the fe~vest  relations by a dynamic programmi:ng method. Their method permits 

a given relation to appear more than once in a join exprezz: -.I on. 

Jozinskii <Lo> also uses only key FDs and pairs~sisp 1os:less joins. However, 

he is looking for lossless joins with a single s3zLrco relatign. The join expression 

s tar ts  ofi with the source relation, and all subsequent relztions are  joined with 

it,  so there is only a single intermediate result,. That is, tbe expression t ree  for 

the join expression is actually a "vine." For a given S, he is interested in finding 

all the  lossless subjoins for computing [XI, so that he may pick the best accord- 

ing to a given cost function. Foneyman <Eel:. is also looking for a sequence of 

joins emanating from a single source, but he US?: an  arbitrary se t  of FDs (as 

long as they a re  embedded in the  database scheme), and allo~<-s projections of 

relations into the join expression. (Ee terms such joins extensio7z j o i n s . )  

IJIA is well knorvn to have its shortcomings. It is a hard condtion to  test  in 

general, and it is not realistic in many applications. The usefulness of VIA-based 

window functions is probably limited to a database that xt7a originally a single 

relation, but was la ter  decomposed to remove I-edundancy. To avoid these com- 

putational and semantic restrictions, several researchers have defined window 

functions where UIA is used to determine the lossless subjoins, but  it is not 

expected to actually hold for an arbitrary database state. 

Osborn <Os> defined [XI as the union of .X-projections of all lossless sub- 

joins covering X. Eer  join expressions also sta.rt xith a source relation that  is 

augmented through pairwise lossless joins. The semantic zssumption is that  all 

connections corresponding to  lossless joins are equally meaningful. Her depen- 

dency information is solely key FDs. We denote her 1vindo117 function by [.Iw. 

The designers of Systern/U <K, KKU, KU, ul l>,  and Fagin, Mendelzon and 

Lllman <FMU> advocate a VIA approach, with [XI being 
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riX(rl w r2 DQ . . , w rp). 

In Systern/U, to avoid problems 11-hen relations rnay not join corxpletely, the join 

is minimized under weak equivalence. That is, relations a re  pruned from the  

espress;?n above undpr the assumptio? that  the relati9ni: do join completely. 

&ample 2: Consider a database on attributes A (advissr), S (student) ,  C 

(course) and I ( instructor) ,  with relations r ( A  S), r(S C ) ,  r(C I ) .  Minimization 

under weak equix-alence prunes the expression 

El = nsI(r ( A  S) W r ( S  C )  [>a T ( C  I ) )  

down t o  

Ez = nSI(r ( S  C) 3a r (C  1)).  

El  and E2 are equivalent on databases where every student has an advisor, but 

Ez can have more tuples when evaluated on a database u-here this is not the 

case. 

Minimization under weak equivalence is not done just as a computational 

optimization, but also for i ts  semantic overtones. In the last example, the  con- 

nection of a student t o  an instructor via a course shouldn't be influenced by the  

presence or absence of an advisor for the  student. The technique used for this 

transformation is tableau minimization <PISUl, ASU2>, which has the  advantage 

tha t  d e - ~ e n d e n c y  information can be brought in to  help reduce the number  of 

joins. 7n7e shall let TJI (E)  denote the  tableau minimization of a n  expression E,  

and let  :.Isy represent the System,& window function, so 

[XIsy = T1A(zx(r, W r2 [>a . . . W rp) .  

One problem with this approach is that  there can be several alternatives for 

ThI(E) .  Those alternatives a re  equivalent if UIA holds, but not for arbitrary 

s t a tes  of the  database. In cases where Tld yields multiple expressions 

equivalent to the original, the union of these expressions is used. 
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Exampl.e 3: Consider a database with relations r ( 4  C D), r ( B  C D), and T(D E ) .  

(Since schemes are unique in a ERA database, we may call all relations r . )  For 

the wjndow [ C E l s Y ,  the expression can be minimized to  

7 icE(r (~  C D) W T(D E)) or liCE(r(B C D) W r ( D  E)). The union of these two 

expressions is used to compute [C  E l s y  

The Cystem,/U approach gives a semantically reascnable window function 

when the the database scheme R is acyclic (See Beeri, e t  al. tBFMMUY, BFMY> 

for material on acyclic database schemes.) 

and Uilman <%K> note that in the presence of cycles, the definition above for 

[.Is;, maj- not represent a natural connection, or is likely not to be the particu- 

lar conneztion a user had in mind. 

Exmple  4: Consider a database on attributes El (bank), L (loan), A (account), 

and C (cilstomer), with relations r(B L), r ( L  C), r (B A),  and r(A C). Notice the 

cycle the relation schemes form. The database contains information about loans 

a;ld accoznts at  banks, and about which customers took out the loans and own 

the accounts. In System/U, [B CIsy will be computed as 

T ~ ~ C ( T ( B  L) W r ( L  C) W r ( B  A) W r ( A  C)). 

This expression gives all customers who have both a loan ar,d an account a t  a 

bank, 13->;ah is not a very natural meaning for the bank-customer connection. 

Irs ing the ideas of Fciore <Scl>, and Uilrrian define m.&mal o b j e c t s  to 

break up cycles in the database scheme. A maximal object is a subset of U .  Let 

M be a set of maximal objects. To compute [XI, for each W E M such that 

X L W ,  they form the join of all relations whose schemes are contained in W .  

The join for each applicable maximal object is projected onto X and then pruned 

by tableau minimization. The window [XI is finally obtained as the union of all 

these expressions. We denote this window function by [ Inr, for a set M of maui- 

ma1 objects. 
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&ample 5: Returning t o  the last example, let M = {I3 L C, B A Cj .  This s e t  of 

maximum objects says there a re  two ways to connect bank and customers,  

through loans and through accounts, where, without maximal objects, the re  was 

only a single connection, through loans and accounts simultaneously. Here, [B 

CIM = 

rig C(~ (I3 L) W T (L C)) U rig C ~ ( T  (B A) DQ T (.4 C)). 

Maximal objects augment a database scherl-ie 1%-ith semantic information 

about wtlich connections are  most meaningfui. 

and Ullman also present several methods of autornatic6lly generating a s e t  of 

maximal objects for a given datebase s c h c n e ,  using f ~ c c t i c r , e l  and join depen- 

dezcies. They allorv that  a set cf maximal object.? s3 g r - r e r a t z ?  might b e  further 

tai!ortJ by tLe dcltdtds -' dei.igner. They also permit different users to employ 

different se ts  of maximal objects, reflecting different cie~%-s on what the  impor- 

tant  connections are.  Another capability of maximal objects is that  they allow 

the  database designer to  indicate that  certain at tr ibutes are  so semantically 

distant tha t  no connection among them should be derived automatically. The 

windov; on Y can be identically t h e  empty relation, if no rnavimal object in M 

contains Y, such as [L AIM in the last example. 

Our view in developing window functions for the PIQCE query language is 

that data  dependencies by themselves a re  not sufilcieni for inferring t h e  desired 

connections among attributes. Also, minimization under weak equivalence is 

complex process, and I+-e doubt many database designers %$-ill understand its 

exact effect on the  meaning of a windorv. There may be several connection 

semantics tha t  agree with a given se t  of data  dependencies. lye have defined 

window functions based on a se t  A of associat ions and a s e t  0 of objects  <MW>. 

Associations a re  se ts  of at tr ibutes that  represent  permissible units of 

update. An association is a possible scheme for a tuple entered into the  data- 
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base. We let r ( R )  denote all the tuples in the dataSase whose scheme is the 

association R.  The reader will not be far from right to  assume that  the  se t  A of 

associations is the  database scheme, although, in practice, heterogeneous 

tuples may be stored in a single relation through the  use of placeholders. We 

depar t  from usual pract.ice in that  we allow subassociations of associations. We 

adopted the  t e rm  association in place of relation scheme to ern?hasize this 

departure.  We permit tuples over both associations R and S ,  where R is a 

proper subset of S .  Under L-JA, there is not much sense in haling relations over 

both R and S ,  as r ( R )  will be r R ( r ( S ) ) .  M7ithout UIA, relations over both 

schemes do make sense, although L*R4 does dictate certain restrictions, as we 

shall see in Section 3. 

Example 6: In an association-object database, w-e could have both an association 

C I, meaning a course is taught by an instructor, and a containing association C I 

S, meaning a course is taught by and instructor to a student. 

Objects are  also sets of attributes, and represent units of retrieval. Objects 

dictate which joins will be used to construct I+-indou7 func t ion .  For each object 

W E 0, we assume that  W is the union of associations in and define a relation 

on W ,  denoted rl(FV), by joining on all associations contained in TY: 

r ' ( W ) =  W r ( R ) .  
R E A R  L Y 

\\-e then define window f u n c t i ~ n  [ IAo from these object relations by- projecting 

the  appropriate object relations. 

[XI,, = w;oy+ ) I T ~ X ( T (  V). 

Example 7: Consider a database m-here A = [S C, C I j ,  meaning ti student takes a 

course and a instructor t,eaches a course. Let 0 = fS C I j .  For this choice of A 

and 0, the connection between student and instructor is by joining on course. If 

we add S C 1 a s  an association, then tve explicitly store from vihich instructor a 

student is taking a course. Not$-, the connection bet%$-een student and instructor 
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will ->e the projection of r(S C I), rather than students taking a course and a 

in?' .uctor teaching some section of that course. 

We shall argue in Section 3 for the desirability of the set 0 being closed 

under nonempty intersection. 

2.2. Weak Instance Window b c t i o n s  

The second main path along which window functions have evolved is weak 

instance definitions. Weak instances, and their cousins, representative 

instances, were first introduced as a means for discussing global satisfaction of a 

set of dependencies by a database CEO, Gr, Va>, and for inferring missing infor- 

mation in a database state <Mal, Wa>. They have also been used recently to 

study the equivalence of database schemes <Me>. We show now how weak 

i ~ s t a n c e s  are  used to define windolt- functions. 

A relation I ( U )  is a c~ntaining instance for database d if 

7iRi(I) 2 Ti, 1 s i l p .  

For a s e ,  of dependencies C, I ( U )  is a we& instance undzr C for d if I  E SAT(C)  

and I is a containing instance of d .  ( I  satisfies all the constraints in C.) We 

abbreviate "weak instance under C' to C-\%I. -4 database state need not always 

have a weak instance. 

Example 8: The database 

has weak instances under C = lB+C$.  One is 

A B C  
1 2  3 
4 5 6  

If <4 5> in r (A C) is changed to <1 5>, then the databass has no weak instances 
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The philosophy of the  weak instance approach is tha t  a database s ta te  

represents  partial information about some universal i n s t a ~ c e .  However, since 

the  information is incomplete, i t  does not completely determine whlch universal 

instance a database s ta te  d represents. The weak instances of the  s ta te  are the 

possible universal instances. We can use weak instances to  b e h e  a nindow func- 

tion. The windon- on X will be all those X-components of tuples that  appear in 

every weak instance of d :  

[XI@> = n 7;x.U) 
I a C-W1 

Since different choices for C give different tvindoia:s, we distinguish the  window 

function for C as [ .Ic.  

Of cours?,  this defir~ltion for [ X I c  does ne t  gil-e e r  effsr_:l~-:: method of com- 

putation. If the  dependencies in C can be used in a chase romputation <ABU, 

MILIS>, then r e p r e s e n t a t i v e  i n s t a n c e s  can be used to compute [XIc. 

Defiaitioz: An e z t e n d c d  instznce (El) T over s c h e x e  Li i= a re!ction over U that  

conteins both vz!ues and rnark2d nulls. 

We slssunz nulls a re  marked w<th numbzrs tu distirlgulsi~ them,  and v:e will 

ref€:- t o  t h e  tuples of an EI a s  roij-s to avoid c ~ r ~ f d s i o n .  Oi>e particular EI of 

i n t e r e s  is dzrived from a database s ta te  d .  First, pad out each relation in d to 

have scheme /7 usir,g distinct marked nulls. Next, take thz  cnion of the  padded 

relations. We denote the  result by T d .  In parts  of the seql-le!, we will need to  

keep t rack  of the  relation from which each r o w  in Td was generated. 

A re;jresentative icstance for a datahese d is formed in tr:o stages. First, 

form T d .  Second, the  chase procedure for depen?er,cies in C is applied to Td to 

equate nulls and  generate new rows. The result of the s?cond stage is the 

representative instance for d under C, 1%-hich we denote i?Ic(d).  To summarize: 

R i c ( d )  = c h ~ ~ o ~ ( 7 ~ ~  

It is possible tha t  a contradiction t o  an  equality-generating dependency is 
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encountered during the chase, in which case we define the representative 

instance to be the empty relation on U .  

Maier, Ullman and Vardi <MEV> show that for a largo class of dependencies 

[XIc = r;wx(RIc(d j), 
where is X-total  pro jec t ion:  the X-component of all tuple3 that have no nulls 

in the X-columns. 

Sagiv <Sal> considered [XIr, %%-here F is a set cf FDs expressed by keys. 

He gave a condition on database states,  the modi f i ed  foreign key cons t~ain t ,  

that, together with local satisfaction of F, guarantees that a database s ta te  will 

have a t  least one F-%-I. Sagiv later defined the u n i g u e n o s s  c ~ n 2 1 t i o n  on FDs and 

database schemes, which ensures that  any locally satisfying database state has 

a weak instance <Sa2>. Pis uniqueness condition is a characterization of 

independence1 for database schemes under key FDs. We shall denote a window 

function based on representative instances under FDs that satisfy Sagiv's 

uniqueness condition by [.IK, where K is the set  of key FDs. 

Yannakakis <Ya> looked at  [XIc where C is a sing!e join dependency (JD) 

correspondmg to  the database scheme, R. That is, C = t*[R,, Rz ,  . . . , R,]j. We 

denote such a window function by [ . I  R. 

Although representative instances give a means to compute [XIc ,  the 

method is not very manageable, especially when the database is large and C con- 

tains tuple-generating dependencies. Sagiv <Sa?> showed that [XIK can be com- 

puted as  the union of projections of e x t e n s i o n  jo ins ,  a parkicuLarly efficient type 

of join <Ho>. Yannakakis <Ya> showed that [XI* R can be computed efficiently 

when R is acyclic. Maier, Ullman and Vardi <MUV> give conditions for [XIc t o  be 

first-order (computable with algebraic operations), although they are not partic- 

ularly concerned with the efficiency of computation. Ne give here a 

'A data3ase schexe R:s zndependent relatve to a set C oi de~endenc~es  :f any database d on R 
thzt loce:ly set,sfies C elso gloS-l!y setlsfies C (::let IS, 3es e GW:) 

-1 6- 
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generalization of Sagiv's result, where the FDs need not be keys, but  can be any 

independent se t  of FDs embedded in R Our result uses a slightly modified 

variety of extension joins. 

Definition: Let r ( R )  and s ( S )  be relations. The join r  DC T , ~ ( S )  is an Fmoin o f  

r with s o n  X+Y if 

1. s  satisfies X+ Y ,  and 
2. X c R. 

Observations: Sote that  X must be in R n S .  In an  extension join, X must equal 

R n S .  On databases that  satisfy CIA, T W 7iXy(s) = T W l iZy(s),  where Z = 

R n S .  In fact, these joins give the  projection of the universal instance onto 

R Y. Alsg notice that  the FD-join of r with s  on ,Y+Y satisfies a!l the FDs that  r  

satisfies, plus any FD W+Z that  s  satisfies, where W Z 2 X Y. We still have the 

efficiency of extension joins for FD-joins, a s  a n  FD-join of r  with s  will have no 

more tuples than r  does. 

Definition: For database d ( R )  = tr ,(R,) ,  r2 (RS)  ,..., rp ) ]  and a se t  of FDs F, we 

say E is an Fmoin expression o n  d under F if 

1. E is r, for some r, E d ,  or 
2. E is (E' DQ T ~ ~ ? . ( T , ) ) ,  where 

X-,Y E F f ,  
scheme(E8) 1 X ,  
X Y 2 R,, and 
E' is an FD-join expression of d under F. 

That is, E represents a sequence of FD-joins involving relations in d .  Note that  

we only nesded the r i ' s  as placeholders, so we sj-ill usudly %+-rite of an FD-join 

expression on R. 

Theorem 1: Let F be an independent se t  of Fgs, embedded in database scheme 

R For any X subset U ,  there  is an expression E that  is the union of projections 

of FD-join expressions on R under F such that  [ l i ' l F ( d j  = E ( d )  for every data- 
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base d ( R )  satisfying F 2  

Proof: This proof will have several definitions and propositions interpolated in it. 

W e  intend that  the objects mentioned in the theorem statsrnent and this proof 

carry  over into those definitions and propositions. 

We first note that [XI,- = [XIG for  any set  of FDs G e q u ~ v d e n t  to F and that 

the de fk t i on  of FG-join expression depends only on tile closore of F, so we can 

make some assumptions on the form of F. I\-z can rn~dif j -  F to  an  equivalent set  

of FDs as long as the r,ew set can still be ernbedded R. First, assume that  

every FD in F is canonical. .  a single attr ibute on the  right side and no extraneous 

attr ibutes in the left side. Second, we assume the  FDs in F are  l oca l l y  c losed 

under implication: For each R,, all the canonical FD% in Ff that apply to  R, are 

in F. Note tha t  we can modify F to satisfy these two assumptions without 

affectin,: embeddability, that there is exactly one se t  of FDs equivalent t o  F that  

sat.isfies both conditions, and tha t  this se t  contains no trivial F'Ds. Finally, we 

note tha t  since R is independent under F, no FD of F can apply to  two schemes 

in F. We ail1 say that  FD X + A  in F is f r o m  R, when I?, is the  relation scheme in 

R such that  X A 5 R,. 

Next, we introduce some variations on the rules for chasing with FDs. The 

normal F-rule for chasing an El T under an FD X+A E F takes two rows v and 

u; in T with v(X)  = u(X) and tr ies t o  equate v(A) v-ith u(-4). In equating 

entries, we allow nulls to be replaced by values and lo\\-er-numbered nulls. If 

v(A) and w ( A )  are  distinct values, and FD violation has occured, and we se t  T to 

9. Also, in applying an F-rule, or its variants below, only nulls in v and u; may be 

changed. We shall use two restricted forms of the  F-rule in this proof. The NF- 

rule (nu1'-preserving F-rule) will only equate v ( A )  and u ; ( A )  if one is a value and 

the  other a null. I t  will not equate two nulls. The BF-rule (baslc F-rule) is more 

2E.  Chm hes ide~endently shown a s i ~ d e r  resxlt <Chi, Ch2>. 
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restrictive than the KF-rule. The BF-rule is used when T is T d ,  or  derived f rom 

Td by chasing. Let X+A be from R,. The BF-rule requires that  one of v and w 

come from r,(R,) originally. Note that  the  row, say v ,  that  came from T, will 

have a value a t  v ( A ) ,  and that  for some tuple t  in r, ,  t (X -4) = v (X A ) .  

We now use the SF-rule and the  BF-rule to  deAne ttt-o restricted types of 

chase. 

Dekition: If T is an El, then the n u l l p r e s z r v i n g  chrz.se of T under FDs F ,  

denoted n c h m e r ( T ) ,  is one in which only the NFiule for m)s in F is used 

Definition: If T is an EI that  is derived from T d ,  then the bzsi~r: chase of T under 

F.Ds F, d e ~ o t e d  bch=scF(T) ,  is one in rvhich only the BF-rule fcr FDs in F is used. 

W e  s ta te  x-ithout proof that n c h a s z F ( T )  and bchme, - (T)  represent  finite 

Chili.ch-Rosser processes, hence their results are  unique. Using a se t  of FDs G 

equivalent to  F could give ditrerent results, but 11-5 noted that  F is uniquely 

determined by our zssumptions. Als:, note t h s t  if either restieted chase uncov- 

ers  an  FD violation, so M-ill c h ~ ? , - ( T ) .  Note thet  in both ~ c h a s e ~ ( T ~ )  and 

bc :hmeF(Td) ,  when a rule for X + A  is applied to rows z. a n d  T I : ,  both v ( X )  and 

u; (X) >+-ill contain no nulls, since neither chase equates nulls. 

Ucfition: The res t ra ined  represt intat ive  i n s tance  for dat3base d under F ,  

denoted R171F(d), is bchas?,-(Td). 

Tlie foliowing proposition shoit-s that  n c h a z  car, LE. used in place of bchase 

in cor~put ing  RRIF(D). 

Proposition 1: If d is a locally (hence globaliy) satisfj-ing database s ta te  on R 

theri 

Proof of Proposition 1: We can certainly compute nchme , - (Td j  by first comput- 

ing T = b c h m e F ( T d )  and then computing n c h a s e F ( T j .  The proposition will be 

proved if 11-e can show that  n c h a s e F ( T )  = T. Suppose some KF-ruie for X + A  in 
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F applies to T, where X + A  is from Ri. Say the  rule applies to rows w ,  and w2 

to change w z ( A )  to w , ( A )  (hence w l ( A )  is a value and w 2 ( A )  a null). There can- 

not be a tuple u in ri(Rr) with u ( X )  = w I ( X )  (= u 2 ( X ) ) ,  or else the  BF-rule could 

have been used to  fill in w 2 ( A ) ,  as w , ( A )  would have to equal u ( A ) .  

We construct a new database s ta te  d '  from d by adding a tuple u'  to ri, 

where u ' ( X )  = w1(X) .  Here is hoiv we form u' .  Let u be a tuple over Ri such 

that  u ( X )  = w , ( X )  and u is distinct marked nulls on Ri - X .  Chase ri(Ri) u {u j 

under the FDs in F tha t  apply to Ri. (Any variety of chase will yleld the  same 

results here.) No FD violation arises, or else one would arise in c h a s e F ( T d ) ,  show- 

ing that  d  is not globally satisfying. If this "mini-chase" does not fill in all the 

nulls in u, change the remaining nulls to  new values tha t  do  not appear else- 

where in d .  The resulting tuple is u'. Note that  u ' ( - 4 )  must  be one of the new 

values. If u ( A )  had been filled in with a value, it would have been filled in during 

b c h a s e F ( T d ) .  

We have been careful to construct u '  S O  that  d '  is locally satisfying. All the 

relations except ri are  the same as in d ,  and ri has only had u' added, which 

violates no FDs. Let w '  be the row for u' in Td. .  Consider computing 

bchasep(Td . )  by intially ignoring w' .  We eventually obtain an EI T '  = T U Iw'j. 

Kow consider: w l ( X )  = w l ( X ) ,  but w , ( A )  # w l ( A ) ,  since w ' ( A )  = u ' ( A )  is a new 

value. Thus we have a violation of X+A,  and d '  is not globally satisfying--a con- 

tradiction t o  the independence of R under F.  

We conclude tha t  no KF-rules can be applied t o  T, so b c h a s e F ( T )  = 

nchar;ep( T ) .  

Corollary: If in computing R R I ~ ( ~ )  for some d ,  we generate a row w where w is 

has no nulls on X  A ,  and  X + A  is an FD in F from Ri, then there  is a tuple 

t E r,(R,) with t ( X  A )  = w ( X  A ) .  



Windows Functions Draft 

Definition: For a row t in a RI  or RR/, let u;dou;n -arrgu; be the non-null portion 

o f w .  

Proposition 2: Let d(R) be database satisfying F and let T be RRJF(Td) 

1. For any row u; in T ,  wdoun-crraw is in E ( d )  for some F3-join 
expression E on R 

2. For any tuple t (S) 5 E ( d )  on R there is a rot\- 
w in T w i t h u ( S )  = t .  

Proof of Proposition 2: (Part  1.) The s ta tement  is true for T d .  We shou- it 

remains t rue  after application of a BF-rule t o  change a null to  a value. ,bsdme 

u1dou-n-arrow is in E (d ) ,  for some FD-join expression E. Suppose X+A from 

R, is used with row w '  to change w(A) to w8(A). We noted in the  last corollary 

that  r,(R,) must contain a tuple t with t ( X  A )  = w'(X A ) .  Therefore, E ' ( d )  con- 

tains zudown-arrow after w(A) is fi!led in, where E' = E W rm(r,). 

(Part  2.) The statement is clearly t rue  if E is just r,. Suppose that  

t € E ( d )  where E = E' DQ T X . ~ ( T , )  and X+A E F .  Thus, t ( S  - A )  E E1(d ) .  We 

inductively assume that  there  is a row u;, in T with w l ( S  - A )  = t ( S  - A ) .  We 

also know that  ri must have a tuple u with u ( X  A )  = t (X  i4). Let w2 be the row 

in Td coming from U .  \Ye can apply t he  BF-rule for X+A t o  w ,  and w 2  t o  se t  

W1(A) = w2(A). Thus, in T, w l ( S )  must equal t ( S ) ,  or else we can get  and FD 

viclation, and d is not globally satifying. 

From Proposition 2 we can conclude that  for any X 2 CT, there is some 

expression E tha t  is the  union of projections of FD-joins on R such that  E ( d )  = 

r,(RRIF(d)) for every satisfying state d .  In particular, we can form E by taking 

every FD-join expression D (that  doesn't repeat  terms) 11-here scheme  (D) 2 X, 

projecting each onto X, and taking the union. 

The strategy for the rest  of the proof is as  follows. Given a database d(R) 

satisfying F, we want to show tha t  RRIF(d) contains all the combinations of 

values that  RIr(d) does. (RRIr(d) and RI,-(d) could differ in that  RIF(d) could 
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have equated nulls.) To do so, we exhibit a database d* satisfying F that  con- 

tains d (relation by relation) such that  RRIF(d*) = R/,-(d*). Furthermore, there  

will be a mapping $ from rows of RRIF(d*) to rosvs of R-J?IF(d) such that  w and 

+(w) agree everjwhere w has a value that  appears in R R I F ( d ) .  We will con- 

s t ruct  d* a s tep a t  a time, where a s tep adds one tuple to  one relation in d .  The 

addition will have the effect of "promoting" a null to a value in IZLPIF(d). 

Let d ( R )  satisfy F'. Let T = RRIF(d). We knors from Proposition 1 that  no 

KF-rule can be applied to T. Suppose some F-rule for X+A can be applied to 

make changes in T. The F-rule must equate two nulls, since if it equates a null 

and a value, so could an  KF-rule. Eence suppose the F-rule for X+A can be 

applied on rows v and w of T to equate nulls v (A) and u. (A ). IVe must have v (X) 

and w(X) free of nulls, since T has no repeated nulls. Let X+A be from R,. 

There cannot be a tuple t E r, with t (X)  = v(X),  or else % ( A )  and w(A) would 

ahve been given the  value t ( A )  in computing T. 

We shall use the same construction we used to  form database d '  in the proof 

of Proposition 1. We can  add a tuple u '  to  ri such that  u ' (X)  = v(X),  U 1 ( A )  is a 

ne-ttr value found nowhere else in d ,  and Ti U tu'j satisfies F.  If X' is the set  of 

at tr ibutes where u '  has original ( to d )  values, then v (A") = ~L'(~Y'), as  any values 

filled into u' during the "mini-chase" will also have been added to  v during the  

computation of T. 

Let us compare T = RRIF(d) to T '  = RRIF(d '). \Ye can compute RRIF(dl) by 

f i s t  computing T I  = RRIF(d) u f y j ,  where y is the  padded version of u'. (That 

is, do nothing with the  row for u' initially.) lye know that v(X) = w(X) = y(X),  so  

we may continue by setting v(A) and u;(-4) to y(A) (= u'(A)).  I'e have, in effect, 

promoted the nulls in v(A) and % ( A )  in 7' to  the value y(A) in T'. We may also 

be able to  use y to  fill in new values for other nulls in T I .  Kotice, however, that  

in computing T', we can  ensure that  v always s u p e r s e d e s  y ,  in the sense that  if 
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y 1 : 5 )  = x ( B )  for som-e row x  # y in T, ,  then v ( B )  = y ( 9 ) .  Call the  s e t  of all 

such attr ibutes match (y ) .  Initially, m a t c h ( y )  = X', and v(X') = y  ( X ' ) ,  so 

u ( m a f c h ( y  ) )  = ~ ( m a t c h ( y ) ) .  If y  is used t o  fill in a value for null x ( B )  in any 

roix- x of T , ,  'L' (B) can be filled in with y  ( 5 )  f i s t .  If any row x is used t o  fill in a 

nu!! y(L?j, then either ' ~ ' ( 9 )  can be filled in with x ( B )  kst ,  or v ( B )  already 

eqtials z ( B ) .  Thus, in T', v ( m a t c h ( y ) )  = y ( m a t c h ( y ) ) .  

Yu'hat can happen to  the rest  of the rows in T in going from T1 to T'? We will 

argue tha t  no row other than y %ill have a null replaced by an original value, 

hence T and T' will have exactly the  same combinations of original values in 

their rows. Consider continuing with bchase,- from T 1 .  If a null x(B) gets 

chzngel  to  a new value by a BF-rule for Z*B,  that  value have come from y ( B ) ,  

so Z+B is from R,. This restriction follows from the  corollary t o  Proposition 1 

and the  observation that  u '  is the only possible tuple in d '  that  contains new 

values. 

Now consider some null in T1 tha t  gets  filled in viith an  original value. We 

want to  shot\- that  only y  gets nulls replaced by original values. Suppose we use 

the BF-ru!e for Z + B  on a row w1 t o  fill in w2(B) .  If W1(Z 8 )  is all original 

values, then w 2 ( B )  would have been filled in in T ,  unless w l  or u ; z  is y .  If u1 is 

y ,  then 2 B 2 Ri, so v could have been used in its place with an KF-rule, as v 

has all the original values tha t  y  does. Since bchasep(Td) = nchmep(Td)  by Pro- 

poiition 1, there  is some way that ~ ~ ( 6 ' )  would have been filled in with a value in 

T .  If w 2  is y, we don't care.  

I f ,  on the other hand, w,(Z B) contains some new values, then, following 

previous arguments,  Z + B  is from R, and u;, is y .  If 3 f ( 4 )  is a newr value, we 

don' t  care.  If y ( B )  is an  original value, consider the  follo~j-ing. Assume w 2 ( B )  is 

the f i s t  null to  be filled in with an  original value from y .  Let Q be the maximal 

set  of at tr ibutes such that  y ( Q )  = w 2 ( Q )  in T1.  Observe tha t  y ( Q )  is all original 
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values. Before applying the BF-rule for Z+B to  u ; ~ ,  if any of i ts  nulls were filled 

in, they must have been replaced by new values from y .  I t  follows that  Q 3 Z .  

Therefore Q+B must be in F. Row y ( Q  B) is all original va!ues and Q B E Ri, 

so v could be used to fill in w2(B)  using the NF-rule for Q+B. As argued before, 

u 2 ( B )  must have been filled in with a value in T. 

So, the only nulls changed to original values in going from T to T' a re  in row 

y .  and y  is superseded by v .  \Ye can easily construct a mapping I) from TI to T 

as described before: For a row w E T' ,  everyrj-here w has an original symbol, 

$(w) has the same symbol. Mapping $ takes every row in T' other than y  to the 

corresponding row in T, and takes y to v .  

A11 this I+-orks has been but one s tep in con;-erting d to  d *  . Suppose in 

RRIF(dt) an  F-rule can be used to equate nulls. We can then form d "  by adding a 

row- to some relation in d '  to promote those nulls to values, with a mapping y7' 

from RRIF(cZM) to RR/,-(dl) that  preserves combinations of original values. Kote 

tha t  $' 2 + gives such a mzpping directly from Rli1,-(d ") to RR/,-(d). We can con- 

tinue to  add rows to  relations in d to promote nulls that  can be equated by F- 

rules. We obtain a sequence of database states d ,  d ' ,  d " ,  d:'!, d:"),  ... . Do we ever 

reach a database state d:') in this sequence where R R I ~ ( ~ ( ~ ) )  = R I = ( ~ [ ~ ) ) ?  (State 

dci) is the  desired s ta te  d *  .) The answer is yes. Kotice a newly added row in 

R R I ~ ( ~ : ~ ) )  is superseded by some row in R R I ~ P ( ~ { ~ - ' ) ) .  By induction, the  new row 

is superseded by some row in RRIF(d). Therefore, the number of new rows 

added to d is bounded by the number of nulls in RRIF(d) ,  and d *  will be 

reached eventually. 

End of Proof of Theorem 1 

Maier, Ullrnan and Vardi <MUV> suggest a departure from the two-step 

paradigm for universal scheme query processing that  can be used with 

representative instances. Rather than apply a query to the intersection of pro- 
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jections of weak instances, apply i t  t o  the  p r o j e c t i o ~ s  individually, and then 

intersect  the  results. For the alternative model to be attractive, there  mus t  be 

an effective method for computing the  intersection of query results, of course. 

3. Pru?erties and Theory of W:ndow Functions 

EIere we look a t  several properties of window functions, and see which win- 

dow functions defined so far have those properties. We feel tha t  the first two 

properties given, the  containment condition and faithfulness, a re  minimum con- 

ditions for a reasonable window function. 

3.1. The Containment Condition 

Bj -  LR.A-, a se t  of attributes uniquely determines a connection among the  

a t t r i b ~ t e s  themselves, which connection a window is supposed to  transmit. If a 

see of at tr ibutes A' is a subset of Y, whatever the  connection among the  attri- 

butes of X, i t  mus t  be an aspect of the connection among the  attr ibutes of Y. 

Example 9: Under LPA, it is pernlissible for [S C I ]  t o  mean a student takes a 

course from an instructor and for [S C] t o  mean a student takes a course. URA 

would not be satisfied if the  meaning of [S C I] were changed to  a student is a TA 

for a course under an instructor. 

For a window function t o  be consistent with UPLA, whenever S L Y and t is 

a tcple in [Y], t (Xj should be in [XI. Stated another 11-ay, [XI 2 I ;~([Y]).  This 

inequality is the c o n t a i n m s n t  c o n d i t i o n .  I t  is similar to Sciore's notion of doum- 

u n r d  c l o s u r e  <Scl>.  

In the  two systems tha t  do not require a UR4 ddatabase, APPLE and q, the  

windon- functions cannot be shown t o  necessarily satisfy the  containment condi- 

tion for all database states.  Even if virtual relations in q a re  defined solely by 

joins, i t  is not sufficient t o  guarantee t h e  containment condition is satisfied. 
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Lemma 1: [ . I I  satisfies the  containment condition. 

Proof: For the universal instance window function, we have a stronger condition, 

namely [ X I I  = lix([Y]r) for X L Y. 

Lemma 2: Let fsl(S1),s2(S2), ..., sm(Sm)] be a set  of relations where 

S1S2 . . , Sm 2 X. Let { g  , ,  g2,  . . . , q, j be a s:et of relations that  includes 

Is1 ,s2, . . . , sm j. Then 

rx(sl DQS2 W . .  . DQs,) 2 7iX(gl DQ q ,  M . .  . D Q q , ) .  

Corollary: [,Iu, [ . ] ~ ; r ,  [ la, and ['IAo satisfy t h l  containment condition. 

Corollary: [ W I A o  = T I (  W), for W E 0. 

h m m a  3: Any weak instance window function satisfies the containment condi- 

tion. 

Proof: Let X L Y and let  C be the se t  of dependencies for the  w-indo~v function. 

3.2. Faithfulness 

The principle for the  next condition is "What you see is what you've got." 

The containment condition requires that  the  set of views given by a windoe func- 

tion be consistent with each other. The views given by a 11-indov; function should 

also be consistent with the contents of the database. A v.-indou- function is faith- 

ful if for any relation scheme R E R, the  relation on R in the  database agrees 

with the  window on R ,  for all s ta tes  of the database: r ( K )  = [R]. 

This definition assumes that  the database has no two relations with the  

same scheme, which will be t rue  if the  database satisfies URA. Since a database 

in APPLE could have two relations on the same scheme, the definition does not 

apply there.  A window function for q %ill be faithful if the  c o ~ v e n t i o n  is followed 
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that  the re  is only one relation per scheme, and stored r J a t i o n s  come before vir- 

t u d  relations in the  relfile. 

The universal instance I$-indow function is clearlj- faithful. The window func- 

tion [ l I W 7  is not neceszarily faithful. Consider tht: database scheme R = { A  B ,  

5 C, i', Cj,  rj-ith 9 a key of 3 C. The TI-indoll- [ A  C] rril! not nec'essarily agree with 

r(,l C): since [ A  C] contains tuples from T . ~ ~ ( A  B W B C). 

The follo~ving lemma assumes that  there  are  not t~?-:, distinct relations 

S C ! I P ; ~ : ; - S  R and S in R such that R  L S. If  R contains such schemes, the 

lemrxc: holds if the  database relations satisfy the  containment condition. 

h-r--=- 8 :  [ and [ In :re faithful 

Pr+>ci. Liider tabieau niinim;zation, >Q r 2  P i  ... P(;; ~ p )  \\-ill always be 

redu-  2 i~ ri,  \$-here r, is the reihiicn with scheme R. 

Thee. .:in 2: [ . I A o  is faithful if only if A G 0 and the  relations on associations 

in A :, lisfy the containrilent condition. 

Prc;:. In the proof, [I,] xvill mean [.IAo 

(only if) Ye S ~ O T L -  t he  contrapositive. Let R be an association of A tha t  is not 

in 9. Consider a s ta te  of the  database where r ( R )  # $5 and r ( S )  = $, S # R .  If 0 

has r i 3  gbject containing R,  then [R]  = $, and the window fucntion is not faithful 

to  ~ ( 1 .  ) .  If W E 0 and  2 R, the join used to  form r'(FV) must include a t  least 

on- 1.t ~ C L L G ~  apar t  from r ( R ) .  Eence r'(iFj = $5. This equality holds for any 

obie:' containing R ,  so [R] = $ # r ( R ) .  

Kovc suppose A L 0, but the database relations do not satisfy the  contain- 

mc;n: coridition. Let R  and S be associations in A such tha t  R  2 S ,  but r ( R )  LJ 

riR(r(,C)j. It follows that  r ( R j  W r ( S )  is not a proper subset of r  ( S ) .  For any 

ob;ei.!- R', W 2 S ,  r  ( R )  and r ( S )  will enter  the join for rf(iY'),  so r s ( r ' ( W ) )  G 

r ( R j  ;.a r ( S ) .  Eence,  [ S ]  is properly contained in r (R j  ><i r ( S j ,  and is not 
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faithful t o  r ( S ) .  

(i:] If A L 0, and the  containment condition holds for the database rela- 

tions, it is not hard to show tha t  r ( R )  = r l ( R )  for any R  E A I t  follows that  

[ R ]  2 r ( R ) .  By Lemma 2,  for any object W containing R ,  .rr2?(r1(W)) G r 1 ( R ) ,  

so [ R ]  C r ( R ) ,  and we have the desired equality. 

Henceforth, when dealing with association-object window functions, we shall 

assume A 2 0 and tha t  the relations on azsoc ia t io~s  in A sztisfy the contain- 

ment  condition. 

Weak instance window functions a re  not necessarily faithful. For FDs, Men- 

de!zon <Me> shoves that  for a database s ta te  d ,  therc  is z ca= .p l~ te  state d '  with 

the  same se t  of weak instances. A complete s ta te  essentially is one that  is the 

projection of its representative inztance. Weak instance v-indow functions are  

faithful on complete database states. Ve also have the follo~+-ing two theorems 

about particular weak instance window functions. 

Theorem 3: [.IKis faithful if every relation scheme in R has a no?trivial key. 

Sketch of Proof: Consider a locally satisfying (hence gicjbally satisfying) data- 

base s t a te  d .  Let R  € R be a relation scf;s;ne such that  nQd3un- 

arrou;Gx(RI~d))  contains a tuple t  not in r ( R ) .  Let K be a nontrivial key for R .  

Modify d t o  d '  by adding t '  to r ( R ) ,  where t l ( K )  = t  ( K ) ,  but t t (R -K)  + t  (R-K). 

Since r(R) does not already have a tuple that  agrees with t  on K ,  d '  is locally 

satisfying. However, d '  is not globally satisfying, since t will still show up  as par t  

of a row of RIK(d8) and contradict t  '. 

The windows in [.IK cen be unfaithful if R has r e l a t i o ~ s  with only trivial keys. 

Let R  = fA B ,  A C, B D,  C Dl, with key FDs A + C and B+D. Then the expres- 

sion 1iCD(r(A B )  PO r ( A  C )  W r ( B  D)) can add tuples t o  [ C  D l K  that  a re  not in 

r (C D). Kote tha t  a relation scheme formed by synthesis <Be> will have no 

trivial keys. Theorem 3 also holds if the  only scheme wit5 a trivial key is a 
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universal key <BDB>. 

Theorem 4: [ . ]  is faithful. 

Sketch of Proof: Look at R E R and consider the  computation of RI* dd). The 

JD *I': is the  only dependency used in chssing Td ,;hen fNs~r;liil< the representa- 

tive instance for d .  We can show by indilction that  at each  stage of the computa- 

tion of the  repesen ta t ive  instance, if ar,y rov: w is no?_-null on R ,  then 

u ( R )  E r ( R ) .  Also, for spy tuple t E r ( R ) ,  t h e r ~  will a!u:?.j-: be a row u: with 

w (R)  = t . W e  conclude that  [R]. R = r ( R ) .  

3.3. Integrity of Objects 

The purpose of t h e  next condition is to  prevent a little knowledge from 

being a dangerous thing. The conchtion is s ta ted in t e rms  of objects, so i t  

applies to  only association-object window functions. In this subsection, [ . ]  will 

mean [ Ibo In Section 3.4, we show how objects can be defined on any window 

function, so we shall be able to  apply the condition more generally. 

The idea behind integrity of objects is tha t  if someone knoll-s the  semantics 

of all the  associations within a n  object W ,  then he should be able t o  deduce the 

rnean:ng of t h e  connection on any subsst  of W .  Formally, for Fv E 0, let 

a( ' )  = iR E A'R G W j .  

Object W is integrczl relative to  [ 1, if for any subset A' of W, [XI can be com- 

puted from fr(R)jR € a ( R ) j .  

Example 10: To se how integrity of oblects can fail, c o n s ~ d e r  lJ  = IP (painting), 0 

(owner), R (art ist) ,  D (address){, A =  tP 0, P R, 0 D, R D{, and  0 = A U tP 0 D,  P R 

Dl. lye are  storing information on owners and art ists  of paintings, and addresses 

of owners and artists, and rnahng connections on ON-ners and artists. In the 

object P 0 D, the  connection from painting t o  address is via owner. Fowever, the 

object P F. D can also add tuples to  [P D l ,  so  [P D] cannot be computed from 
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relations in a ( P  0 D) alone. The danger here is tha t  if a user knows tha t  the 

database has information about paintings, on-ners and addresses, but  does not 

know about art ists ,  his assumption as  t o  the meaning of [P Dl ?$-ill be incorrect. 

The u-indour [P D] is really the combination of tivo different connection?. 

The next theorem shows that  integrity of objects is equlvzlent t o  t h e  objects 

being closed under  nonempty intersection. This closure property has a cornpu- 

tational advantage. I t  implies that  for any X, there  is a urique minimal object W 

cor,taining X. That is, for any other cbject 1' that  contains X, V 2 W .  Thus, [XI 

can be computed as r x ( r l ( W ) ) ,  since for any object V 2 X, 

r x ( ~ ' ( v > )  -C T ~ ~ ( T ' (  W ) ) .  

KD u ~ i o n s  need be taken to compute [A']. 

Thsorem 4: All objects in 0 are  integral if and onlp if O is closed under nonempty 

intersection. 

Proof: (if) By the  remarks  above, if FV is an  object an6  i? 2 X, t h e r e  is a 

nlirlirnal object W', FY 2 G" 2 S, such tha t  [X] = .iix(i.'jil-')). The object reia- 

tion r'(FV') depends on 01114. relations for a( i : " ) ,  c - i l t h  is a subset of a ( W ) .  

Eecce,  PI is integral. 

(only if) Let X be t h e  intersection of objects Ir and ilr, vinere X is not itself 

an object. Assume no objects smaller than 1' and i Y  have intersection X. There 

rliust be some association R in ~ ( i v )  such that  R is 1iot a sclb:ek ~f 1.: SO R is not 

in ~ ( l ' ) .  By considei-ing states of the database that  dS.-r Sji r ( R )  being e m ~ t y  

or nonempty, i t  is possible t o  induce changes i:: [XI thz t  do n-t. depend on rela- 

t i o ~ s  for a ( V ) .  Therefore, ITis not integral. 

There a re  direct  arguments that  the  closiire of O ~ J ~ C L S  ~ i l 2 - f  intersection is 

desirable. Kith closure under intersection, azj- ~cindo~*c takes its value f rom a 

s i n g l ~  object. There a re  no unions needed to c ~ m p u t e  v-indo~i-s. When unions 

a re  used, the re  is a!1~3;;s the denqer tha t  t h s  u s ? r  i c  ~:?VSI-E: of on!y one or  some 
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of the connections used to compute a window. 

Multiple connections in a w~indo~v may not be a big problem if the  various 

connections a r e  of the  same "flavor," as in the  [B C] ~ r i n d o ~ v  in the  banks exam- 

ple. There is a common generalization of the t ~ v o  connections involved, namely 

"customer does business wlth the  bank." In the paintings example, there  is no 

natural  generalization of the tm70 connections between paintings and addresses 

via oTmer and art ist ,  since the association between paintings and owners has 

quite a different flavor from the association between artists mc! paintings. 

Even if object.: a re  not closed under intersection, i t  seems tha t  associations 

should be. Consider associations R1 and R2 whose intersection is S .  I t  makes 

sense to have an S-value 1%-ithout any values from R 1  - (in an Rz-tuple). Like- 

wise, we can  have an S-value without values from Rz - S. I t  seems tha t  we 

should be able t o  s tore  S-values with neither values from R1 - S nor R2 - S ,  so S 

should be  an  association. 

There a re  a t  least two ways to modify a set  of objects to gpt closure under 

intersection. One method is adding more objects and the  other method is 

renaming attr ibutes.  The first method is probably better  for t h e  banks example: 

add a n  association B C, meaning the  customer deals with the  bank. In the  paint- 

ings example, the  second method is preferable: rename D (address) t o  ObYER-D 

and ArlRTIST-D. 

3.4. Implicit Objects 

While objects were used In the definition of only one of the F+-indow functions, 

we can pick out seis of attributes that  behave as  objects relalive t o  other win- 

dow functions. 11 is an implicit o b j z c t  for a winiow function [ ] if the re  is some 

s ta te  of t h e  database xhere  the inclusion 
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is strict. (The inclusion always holds if the window function satisfies the contain- 

ment  condition.) That is, [V] can contain a tuple that  is not in the  projection of 

any rt7indow on a scheme larger than V. 

It is not  harc! to  h o w  for [ that  the  implicit objorts a re  precisely 0. For 

other ~vindoit* functions, especially weak instance window functions, i t  is useful to  

discriminate objects f r o m  non-objects. We need only s tore  expressions for the 

windoirs on implicit objects in order to have a simple means to compute all the  

windov~s. For the  two specfic weak instance ~ i n d o w  functions we covered, we 

can characterize the  implicit objects. 

Theo~ern 5: i' is an implicit object for [ ' I K  if V is the union of relation schemes 

that  ha\-e a lossless extension join under K 

Theorem 6: I r is  an implicit object for [ , I *  R if 17 is the scheme of a n  embedded 

join dependency *S implied by *R, where S L R. 

Prmf: Th:: result folloivs from ttvo facts. 

1. I i  Ri* R(dj  contains a rorv that  is non-null exactiy on v, then there  is an  

er~~Zje J l d d  J 3  in-cplled by *R with scheme T'. (Lernr~ia 5.1 GI 'ianri3kakis <Ya>.)  

2. 11 Y is the scheme of and embedded JD implied by *R, then i t  is possible to  

L i d  a database s ta te  d such that  Ri* R ( d )  contains a r o w  defined exactly on V, 

ant2 no rox-s tha t  are  rlon-nul! on more than I f .  

Both theorems imply that  all relation schemes are irnplicit objects. Using 

hypergraph notation <BFMY>, we can describe the  implicit objects for [ . I *  R. 

The JD *R implies the  embedded JD *S, S c R, if and on!y if S is closed, con- 

nected,  and whenever i t  contains two edges of a block of R, it contains all the 

ed-r- ,cz - in the block. 

The definition of a n  object being integral can be extended to any window 

functino by pnrasing i t  in terms of implicit objects and defining a(W) in t e rms  of 
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hInIXa 5: ['IK does not guzrantee integrity of objects. 

Proof: Let R = fA B C, B C D, A D El and keys A B, B C and A D. (This esarn- 

pie is d t i l  t o  Sagiv <Sal>.)  The expression for [.4 -1IK-s 

1iAD(r(A D E ) )  U T ~ ~ ( T ( A  B C) Da T(B C D)). 
A D E is an implicit object containing A D, but [.A DlK depeads on more than 

r ( A  D E ) .  

Leama 6: 1.1, R guarantees integrity of objects. 

Proof: I f  V and W a r e  schemes of embedded JDs imp1.ied by *K, then there  is a n  

ernbedded JD on scheme F n V i .  Thus, implicit objects for 1.1. R are  closed 

under intersection, and Tneorem 4 applies. 

4. Further Work 

One objection to  UF-4 is that  come connections may be lost if at tr ibutes are  

renamed in order t o  satisfy it. Suppose we have two FACULTY-STUDENT relation- 

ships: FACULTY has a STUDEXT in a COERSE, and a FACULTY adlises a STUDENT. 

We can rename F-4CULTY t o  INSTRUCTOR and ADVISOR to distinguish the  two 

roles. Po~vever, we lose the  connection between INSTRUCTOR and ADVISOR, and 

with properties of FACULTY, such as  OFFICE. To address this loss, an explicit 

hierarchy of roles can be introduced <Sc2, SS>. \Ye have been looking a t  exten- 

sions t o  the  association-object window function tha t  allow equijoins on attr ibutes 

related by the  role hierarchy <MRS>. For example, we can use the equijoin on 

ADViSOR = FACULTY of the relations r(STVDEZT ,4DVISOF.) and r(FiICUL'lY 

OFFICE) t o  connect a STUDEST t o  his or he r  ADVISOR'S OFFICE. Beeri and Korth 

<BK> describe a similar approach tha t  involves FD information as well. Sciore 

and  Warren <Sc3> have been experimenting with "file grammars," whicn allow 

windoll-s t o  include multiple instances of the  same attr ibute,  as might arise in 
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computing an EMPLOYEE'S UYiAGER's M.iL?l'rZGER from the relation r(EMPL0YEE 

liKY,AGER). 

We consider the question of 11-hen a weak instance window function had an  

equivalent computational definition. The dual questio? is st-hether every compu- 

tational 11-indowr function has an equivalent st-eak instance definition. An 

association-object tvindow function need not have a v - ~ a k  instance d e h t i o n .  

The problem comes in that weak instance definitions assume every tuple in the 

database is pa -t of some universal tuple over U ,  ~vhere  in the  association-object 

model, LJ might not be an object. That is, some attr ibutes can be too semanti- 

cally distant to be connected automatically. Recent work on extending weak 

instances t o  have "placeholder" nulls <La, St, U12> shou!d allov: a weak instance 

definition for association-object window functions. The affect on a representa- 

tive instance is t o  have "non-chaseable" nulls initially and use ex is tence  con- 

s t ra in t s  <Ma2> to  indicate where "chaseable" nulls may be inserted. 

Finally, u7e note tha t  we been considering windo~vs as purely a mechanism 

for database query. P-hat about update? The does cot  seem to  be the flexibility 

t.o upc-ate over arbitrary schemes that  there  is to query over arbitrary schemes. 

The work tha t  has been done on universal scheme update <St> indicates that  

either a user must be prompted to  supply values on additional attributes, or 

that  the database must  store "missing value" nulls. 
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