
Model Matching and SFMD

Computation

Steve Rehfuss and Dan Hammerstrom
Department of Computer Science and Engineering

Oregon Graduate Institute of Science and Technology
P�O�Box ������ Portland� OR �����	���� USA

stever�cse�ogi�edu� strom�asi�com

Abstract

In systems that process sensory data there is frequently a model
matching stage where class hypotheses are combined to recognize a
complex entity� We introduce a newmodel of parallelism� the Single
Function Multiple Data �SFMD� model� appropriate to this stage�
SFMD functionality can be added with small hardware expense to
certain existing SIMD architectures� and as an incremental addition
to the programming model� Adding SFMD to an SIMD machine
will not only allow faster model matching� but also increase its

exibility as a general purpose machine and its scope in performing
the initial stages of sensory processing�

� INTRODUCTION

In systems that process sensory data there is frequently a post	classi�cation stage
where several independent class hypotheses are combined into the recognition of
a more complex entity� Examples include matching word models with a string
of observation probabilities� and matching visual object models with collections
of edges or other features� Current parallel computer architectures for processing
sensory data focus on the classi�cation and pre	classi�cation stages �Hammerstrom
����
�This is reasonable� as those stages likely have the largest potential for speedup
through parallel execution� Nonetheless� the model�matching stage is also suitable
for parallelism� as each model may be matched independently of the others�

We introduce a new style of parallelism� Single Function Multiple Data �SFMD��
that is suitable for the model	matching stage� The handling of interprocessor syn	
chronization distinguishes the SFMD model from the SIMD and MIMD models�
SIMD synchronizes implicitly at each instruction� SFMD synchronizes implicitly
at conditional expression or loop boundaries� and MIMD synchronizes explicitly at



arbitrary inter	processor communication points� Compared to MIMD� the use of
implicit synchronization makes SFMD easier to program and cheaper to implement�
Compared to SIMD� the larger granularity of synchronization gives SFMD increased

exibility and power�

SFMD functionality can be added with small hardware expense to SIMD architec	
tures already having a high degree of processor autonomy� It can be presented as an
incremental addition to programmer�s picture of the machine� and applied as a com	
piler optimization to existing code written in an SIMD version of �C�� Adding SFMD
to an SIMD machine will not only allow faster model matching� but also increase
its 
exibility as a general purpose machine� and increase its scope in performing the
initial stages of sensory processing�

� SIMD ARCHITECTURE AND PROGRAMMING

As background� we �rst review SIMD parallelism� In SIMD� multiple processing
elements� or PE�s� simultaneously execute identical instruction sequences� each pro	
cessing di�erent data� The instruction stream is produced by a controller� or se�
quencer� Generally� each PE has a certain amount of local memory� which only it
can access directly� All PEs execute a given instruction in the stream at the same
time� so are synchronized at each instruction� Thus synchronization is implicit� the
hardware need not support it� and the programmer need �can
 not manage it� SIMD
architectures di�er in the functionality of their PEs� If PEs can independently ad	
dress local memory at di�ering locations� rather than all having to access the same
address at a given step� the architecture is said to have local addressing� If PEs can
independently determine whether to execute a given instruction� rather than having
this determined by the sequencer� the architecture has local conditional execution�
Note that all PEs see the same instruction stream� yet a given PE executes only
one branch of any if	then	else� and so must idle while other PEs execute the other
branch� This is the cost of synchronizing at each instruction�

� MODEL MATCHING

We view models as pieces of a priori knowledge� interrelating their components�
Models are matched against some hypothesis set of possible features� Matching
produces a correspondence between components of the model and elements of the
hypothesis set� and also aligns the model and the set ��pose estimation� in vision�
and �time	alignment� in speech
� An essential fact is that� because models are
known a priori� in cases where there are many models it is usually possible and
pro�table to construct an index into the set of models� Use of the index at runtime
restricts the set of models that need actually be matched to a few� high	probability
ones�

Model	matching is a common stage in sensory data processing� Phoneme� character
and word HMMs are models� where the hypothesis set is a string of observations
and the matching process is either of the usual Viterbi or trellis procedures� For
phonemes and characters� the HMMs used typically all have the same graph struc	
ture� so control 
ow in the matching process is not model	dependent and may be
encoded in the instruction stream� Word models have di�ering structure� and con	
trol 
ow is model	dependent� In vision� model	matching has been used in a variety
of complicated ways �cf� �Suetens� Fua � Hanson ����

� for example� graph models
may have constraints between node attribute values� to be resolved during matching�



� DATA AND KNOWLEDGE PARALLELISM

SIMD is a type of computer architecture� At the algorithm level� it corresponds
to data parallelism� Data parallelism� applying the same procedure in parallel to
multiple pieces of data� is the most common explicit parallelization technique�and is
the essence of the Single Program Multiple Data �SPMD� programming model� On
a distributed memory machine� SPMD can be stylized as �given a limited amount
of �algorithmic
 knowledge to be applied to a large piece of data� distribute the data
and broadcast the knowledge��

In sensory processing systems� conversely� one may have a large amount of knowl	
edge �many models
 that need to be applied to a �smallish
 piece of data� for ex	
ample� a speech signal frame or segment� or a restricted region of an image� In this
case� it makes sense to �distribute the knowledge and broadcast the data�� Model	
matching often works well on an SIMD architecture� e�g� for identical phoneme
models� However� when matching requires di�ering control 
ow between models�
an SIMD implementation can be ine�cient�

Data and knowledge parallelism are asymmetrical� however� in two ways� First�
all data must normally be processed� while there are usually indexing techniques
that greatly restrict the number of models that actually must be matched� Sec	
ond� processing an array element frequently requires information about neighboring
elements� when the data is partitioned among multiple processors� this may re	
quire inter	processor communication and synchronization� Conversely� models on
di�erent processors can be matched to data in their local memories without any
inter	processor communication� The latter observation leads to the SFMD model�

� PROGRAMMING MODEL

We view support for SFMD as functionality to be added to an existing SIMD ma	
chine to increase its 
exibility� scope� and power� As such� the SFMD programming
model should be an extension of the SIMD one� Given an SIMD architecture with
the local addressing and local conditional execution� SFMD programming is made
available at the assembly language level by adding three constructs�

distribute n tells the sequencer and PEs that the next n instructions are to be
distributed for independent execution on the PEs� We call the next n
instructions an SFMD block�

sync tells the individual PEs to suspend execution and signal the controller �barrier
synchronization
� This is a no	op if not within an SFMD block�

branch�local one or more local branch instruction�s
� including a loop construct�
the branch target must lie within the enclosing SFMD block� This is a
no	op if not within an SFMD block�

We further require that code within an SFMD block contain only references to PE�
local memory� none to global �sequencer
 variables� to external memory or to the
local memory of another PE� It must also contain no inter	PE communication��
When the PEs are independently executing an SFMD block� we say that the system
is in SFMD mode� and refer to normal execution as SIMD mode�

When programming in a data	parallel �C�	like language for an SIMD machine� use of
SFMD functionality can be an optimization performed by the compiler� completely
hidden from the user� Variable type and usage analysis can determine for any given
block of code whether the constraints on non	local references are met� and emit



code for SFMD execution if so� No new problems are introduced for debugging� as
SFMD execution is semantically equivalent to executing on each PE sequentially�
and can be executed this way during debugging�

To the programmer� SFMD ameliorates two ine�ciencies of SIMD programming� �i

in conditionals� a PE need not be idle while other PEs execute the branch it didn�t
take� and �ii
 loops and recursions may execute a processor	dependent number of
times�

� HARDWARE MODEL AND COST

We are interested in embedded� �delivery system� applications� Such systems must
have few chips� scalability to ����s or �����s of chips is not an issue� Parallelism
is thus achieved with multiple PEs per chip� As o�	chip I�O is always expensive
compared to computation�� such chips can contain only a relatively small number
of processors� Thus� as feature size decreases� area will go to local memory and
processor complexity� rather than more processors�

Adding SFMD functionality to an architecture whose PEs have local addressing
and local conditional execution is straightforward� Here we outline an example
implementation� Hardware for branch tests and decoding sequencer instructions
in the instruction register �IR
 already exists� Local memory is suitable for local
addressing� A very simple �micro	sequencer� must be added� consisting essentially
of a program counter �PC
 and instruction bu�er �IM
� and some simple decode
logic� The existing PE output path can be used for the barrier synchronization� A
�	bit path from the sequencer to each PE is added for interrupting local execution�

Execution of a distribute n instruction on a PE causes the next n instructions to
be stored sequentially in IM� starting at the current address in the PC� The �n��
�st
instruction is executed in SPMDmode� it is typically either a branch�local to start
execution� or possibly a sync if the instructions are just being cached��

Almost the entire cost of providing SFMD functionality is silicon area used by the
IM� The IM contains inner loop code� or model	driven conditional code� which is
likely to be small� For a ��� �	byte instruction bu�er on the current ASI CNAPS
����� having �� PEs with �KB memory each� this is about ��� of the chip area�
for a hypothetical �� PE� ��K per PE chip of the same size� it is ��� These
numbers are large� but as feature size decreases� the incremental cost of adding
SFMD functionality to an SIMD architecture quickly becomes small�

� PERFORMANCE

What performance improvementmay be expected by adding SFMD to SIMD� There
are two basic components� improvement on branches� and improvement on nested
loops� where the inner loop count varies locally�

Unnested �equiprobable
 branches speed up most when the branch bodies have the
same size� with a factor of � improvement� For nested branches of depth d� the
factor is �d� but these are probably unusual� An exception would be applying a
decision tree classi�er in a data	parallel way�

To examine improvement on nested loops� suppose we have a set of N models �or
any independent tasks
 to be evaluated on an architecture with P processors� On

�E�g�� due to limited pin count� pad area� and slower clock o��chip�
�For example� if the distributed code is a subroutine that will be encountered again�



an SFMD architecture� we partition the set into P groups� assign each group to a
processor� and have each processor evaluate all the models in its group� If evaluating

the j�th model of the i�th group takes time t�sfmd�
ij � then the total time is

Tsfmd �
P

max
i��

NiX

j��

t
�sfmd�
ij ��


where Ni is the size of the i�th group�
PP

i��Ni � N � On an SIMD architecture� we
partition the set into dN�P e groups of size P and sequentially evaluate each group
in parallel� Each group has a model that takes the most time to evaluate� SIMD
execution forces the whole group to have this time complexity� So� evaluating a

single group� Gi� takes time maxj t
�simd�
ij � where j indexes over the elements of the

group� � � j � P � The total time for SIMD execution is then

Tsimd �

dN�PeX

i��

P
max
j��

t
�simd�
ij ��


Ignoring data	dependent branching and taking t
�simd�
ij � t

�sfmd�
ij

�
� tij � we see that

optimal �i� j
	indexing of the N models for either case is a bin packing problem � As
such� �i� j
	indexing will be heuristic� and we examine Tsimd�Tsfmd by simulation�
It should be clear that the expected improvement due to SFMD cannot be large
unless the outer loop count is large� So� for model matching� improvement on nested
loops is likely not an important factor� as usually only a few models are matched
at once�

To examine the possible magnitude of the e�ect in general� we look instead at
multiplication of an input vector by a large sparse matrix� Rows are partitioned
among the PEs� and each PE computes all the row	vector inner products for its set
of rows�� Tsfmd is given by equation ��
� with ftij j� � j � Nig the set of all rows
for processor i� Tsimd is given by equation ��
� with ftijj� � j � Pg the set of rows
executed by all processors at time i� Here tij is the time to perform a row	vector
inner product�

Under a variety of choices of matrix size ���� � ��� to ���� � ����
� number of
processors ���������
� distribution of elements �uniform� clustered around the diag	
onal
� and sparsity �fraction of nonzero elements from ����� to ���
 we get that the
ratio Tsimd�Tsfmd decreases from around ���	��� for sparsities near ������ to ���
for sparsities near ����� and to ��� or less for more dense matrices �Figure �
� The
e�ect is thus not dramatic�

As an example of the potential utility of SFMD functionality for model matching�
we consider interpretation tree search �ITS�� a technique used in vision�� ITS is
a technique for establishing a correspondence between image and model features�
It consists essentially of depth	�rst search �DFS
� where a node on level d of the
tree corresponds to a pairing of image features with the �rst d model features�
The search is limited by a variety of unary and binary geometric constraints on
the allowed pairings� Search complexity implies small models are matched to small

�We assume the assignment of rows to PEs is independent of the number of nonzero
elements in the rows� If not� then for N � P � simply sorting rows by number of elements
and then assigning row i to processor i mod P is a good enough packing heuristic to make
Tsimd � Tsfmd�

�See �Grimson ���	
 for a complete description of ITS and for the complexity results
alluded to here�



1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0.0001 0.001 0.01 0.1 1

T
_
s
i
m
d
/
T
_
s
f
m
d

sparsity

Sparse Matrices

"sparse.sfmd.gnu"

Figure �� Sparse matrices� speedup vs� sparsity

numbers of data features� so distributing models and data to local memories is
practical�

To examine the e�ect of SFMD on this form of model matching� we performed some
simple simulations� To match a model with D features to a set of B data points�
we attempt to match the �rst model feature with each data point in order� with
some probability of success� pmatch� If we succeed� we attempt to match the second
model feature with one of the remaining B � � data points� and so on� If we match
all D features� we then check for global consistency of the correspondence� with
some probability of success� pcheck� This procedure is equivalent to DFS in a tree
with branching factor B�d at level d of the tree� � � d � D� where the probability
of expanding any given node is pmatch� and the probability of stopping the search
at any given leaf is �� pcheck�

By writing the search as an iteration managing an explicit stack� one obtains a loop
with some common code and some code conditional on whether the current node
has any child nodes left to be expanded� The bulk of the �no	child� code deals with
leaf nodes� consisting of testing for global consistency and recording solutions� The
relative performance of SIMD and SFMD thus depends mainly on the probability�
pleaf � that the node being traversed is a leaf� If� for each iteration� the time for the
leaf code is taken to be �� that for common code is t� and that for the non	leaf code
is k� then

Tsimd�Tsfmd �
t � k � �

t� ��� p
k � p
� ��


Panel � of �gure � shows values of p from a variety of simulations of ITS� with
B�D � f�� ��� ��� ��� ��g� pmatch � f���� ���� ��Bg� pcheck � f�� �g� Grimson �����

reports searches on realistic data of around ����	����� expansions� this corresponds
to p � ��� � ���� Panel � of �gure � shows how equation � behaves for p in this
regime and for realistic values of k� We see speedups in the range � � unless the
leaf code is very small� In fact� the code for global consistency checking is typically
larger than that for local consistency� corresponding to log� k � ��

	 OTHER USES

There are a number of uses for SFMD� other than model matching� First� common
�subroutines� involving branching may be kept in the IM� Analysis of code for IEEE

oating point emulation on an SIMDmachine shows an expected �x improvement by



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 100 1000 10000 100000 1e+06

P
(
l
e
a
f
)

total number of nodes traversed

probability of traversing a leaf in ITS

"bar"

-4

-2

0

2

4 0.1

0.2

0.3

0.4

0.5

2

3

4

-4

-2

0

2

4 0.1

0.2

0.3

0.4

0.5

2

3

4

log_2 k

p

Figure �� DFS speedup� Panel � shows the probability� p� of traversing a leaf� Panel
� plots equation � for realistic values of p and k� with t � ����

using SFMD� Second� simple PE	local searches and sorts should show a signi�cant�
sub	�x� improvement in expected time� Third� more speculatively� di�erent PEs
can execute entirely di�erent tasks by having the SFMD block consist of a single
�nested
 if	then	else� This would allow a form of �highly synchronized
 pipeline
parallelism by communicating results in SIMD mode after the end of the SFMD
block�


 CONCLUSION

We have introduced the SFMD computation model as a natural way of implement	
ing the common task of model matching� and have shown how it extends SIMD
computing� giving it greater 
exibility and power� SFMD functionality can easily�
and relatively cheaply� be added to existing SIMD designs already having a high
degree of processor autonomy� The addition can be made without altering the
user�s programming model or environment� We have argued that technology trends
will force multiple	processor	per	chip systems to increase processor complexity and
memory� rather than increase the number of processors model per chip� and believe
that the SFMD model is a natural step in that evolution�

Acknowledgements

The �rst author gratefully acknowledges support under ARPA�ONRgrants N�����	
��	C	����� N�����	��	J	����� and N�����	��	�	�����

References

Grimson� W� E� L� ����	
� Object Recognition by Computer� The Role of Geometric Con�
straints� MIT Press�

Hammerstrom� D� ����	
� A VLSI architecture for high�performance� low�cost� on�chip
learning� in �The Proceedings of the IJCNN��

Suetens� P�� Fua� P� 
 Hanson� A� J� �����
� �Computational strategies for object recogni�
tion�� Computing Surveys ����
� � � ���


