
Fusion for Free�

OGI� Tech�report �������

Leonidas Fegaras

Department of Computer Science and Engineering

Oregon Graduate Institute of Science � Technology

����� N�W� Walker Road P�O� Box �����

Portland� OR �	���
����

fegaras	cse
ogi
edu

January �� ����

Abstract

Program fusion techniques have long been proposed as an e�ective means of improving

program performance and of eliminating unnecessary intermediate data structures
 This paper

proposes a new approach on program fusion that is based entirely on the type signatures of

programs
 First� for each function� a recursive skeleton is extracted that captures its pattern of

recursion
 Then� the parametricity theorem of this skeleton is derived� which provides a rule for

fusing this function with any function
 This method generalizes other approaches that use �xed

parametricity theorems to fuse programs

� Introduction

There is much work recently on using higher�order operators� such as fold ��� and build ��� ��� to

automate program fusion �	� and deforestation �

�� Even though these methods do a good job

on fusing programs� they are only e�ective if programs are expressed in terms of these operators�

This limits their applicability to conventional functional languages� To ameliorate this problem�

some researchers proposed methods to translate regular functional programs into folds ���� These

methods had a moderate success so far� and only for simple functions�

The main reason for using these higher�order operators is that they satisfy some powerful

theorems� which facilitate program optimization� But there is nothing special about these theorems�

They are parametricity theorems �
� that are derived exclusively from the types of these operators�

Any function satis�es a parametricity theorem� The di�erence is that most functions are not

su�ciently polymorphic and� thus� their parametricity theorems are usually trivial�

This paper proposes a new approach on fusing programs� Instead of trying to express a function

in terms of a particular higher�order operator� such as fold� we generate an individualized higher�

order operator for this function� This operator� called the recursive skeleton of this function�

� ��

map�map�f��map�f�f

list�list�����list������

�� list���� list�list�����

�

�

�

�

�at

�at

list�list�����

list�list����� list����

list����

map�f�map�map�f��

Natural transformation� list � list
�

� listFunctor� list Functor� list � list

Figure
� The Parametricity Theorem for �at � ��� list�list����� list���

captures its pattern of recursion� It is speci�c to this function only and may not be suitable

for any other function� This operator is polymorphic enough to satisfy a useful parametricity

theorem� which is very similar to the one for fold� In fact� if a function resembles a fold� then its

recursive skeleton is exactly the fold operator� For each such recursive skeleton� we generate the

parametricity theorem� Program fusion is achieved by using these theorems alone� In a way� our

method generalizes all other methods that use the parametricity theorems of a �xed set of higher�

order operators� It is also directly applicable to conventional functional programs� The drawback

though is that our method uses many di�erent theorems for program fusion� instead of just a �xed

number� But� as we will see in this paper� using these theorems is actually no harder than using

the parametricity theorems for folds�

We believe that our approach may well turned out to have practical uses for optimizing real

functional languages� We also believe that it can be useful for proving equational theorems about

functions�

� Background� The Parametricity Theorem

Any function f of type � satis�es a parametricity theorem �also called theorem for free �
��� which is

derived directly from the type � � For �rst�order functions� this theorem states that any polymorphic

function is a natural transformation� For example� Figure
 gives the parametricity theorem for

any function �at of type�

��� list�list����� list���

The parametric type list��� is a functor that maps any type �i into the type list��i� and any function

f of type ����� into the function map�f� of type list����� list����� In general� any parametric

type T ��� is a functor that maps a function f into mapT �f�� where mapT � ������T ����T ���

is the map function for type T � Since the composition of functors is also a functor� the type

list�list���� is a functor that maps f into map�map�f��� The parametricity theorem for �at is the

	

commuting diagram in Figure
� It can be expressed as follows�

�f � �at �map�map�f�� � map�f� � �at

This commuting diagram represents a natural transformation between the functors list � list and

list� It indicates that applying f to every element of a nested list and then �attening the resulting

nested list is equivalent to �attening the list and then applying f to the �at list� This theorem is

always true regardless of the actual de�nition of �at because� if f were changing in some way the

elements of the nested list� then the type of �at would not be the polymorphic type given above�

�We assume that all functions are strict here� as they would be if they were de�ned in a non�lazy

language��

The proof of this theorem comes directly from �
���

Theorem � �Parametricity Theorem� Any expression e � � satis�es P ��� ���e� e� �� where�

P ��basic���r� s� � � r � s

P ������r� s� � � r � �����s�

P ����� � ���r� s�� � �f� � P ��� ���r� s� ��f����

P ���� � �����r� s� � � P �������	��r�� 	��s�� � � P �������	��r�� 	��s�� �

P ����������r� s� � � �x� y � P �������x� y� � � P �������r�x�� s�y���

P ��T ������r� s� � � �f � ��x � P ��� ���f�x�� x��� � r � mapT �f� s

That is� for each type variable �� we associate a function f� of type ������ where �� and �� are

instances of ��

To illustrate Theorem
� we derive the parametricity theorem for the list fold�

fold � ��� �� ���������� list�����

The construction is accomplished in four simple steps�

P ���
� ��
�����r� s� � � �f�� f�� x� y � P ��
���x� y���f��
� f����

� P ������r�x�� s�y����f��
� f����

� �f�� f�� x� y � x � f��y� � r�x� � f��s�y��

or �f�� f� � r � f� � f� � s

P ���
� �� ��
�������r� s� � � �f�� f�� f�� x� y � P ��
���x� y� ��f��
� f���� f����

� P ��������r�x�� s�y�� ��f��
� f���� f����

� �f�� f�� f�� x� y � x � f��y� � r�x� � f� � f� � s�y�

or �f�� f�� f�� y� z � r �f� y� �f� z� � f��s y z�

P ����� list������r� s� � � �f�� g � ��x � g�x� � f��x�� � r � map�g� s

or �f� � r � map�f�� s

�

P ����� �� ���������� list��������r� s� �

� P �������������� ��f���� f���� � P ���� list��������r�� s�� ��f���� f����

� �f�� f�� x� y � �f� x�� �f� y� � f��x� y� � r � �f� x� �map�f�� y� � f��s � x y�

That is� fold satis�es the following theorem�

�f�� f�� x� y � �f� x�� �f� y� � f��x� y� � fold��� �f� x� �map�f�� y� � f��fold��� x y�

If we set f� � id� where id � x�x� we get�

�f� � x� y � x� �f� y� � f��x� y� � fold��� �f� x� y � f��fold��� x y� �
�

which is the fusion law for list fold ���� Binding the function f�� which corresponds to the type

variable �� to id is something that we will do often in this paper� In general� if we have a type

t that depends on some type variables �� �� etc�� i�e�� t has the form t��� �� � � ��� then �nding

the parametricity theorem for t��� �� � � �� and then setting f� � id is the same as �nding the

parametricity theorem for the type t���� �� � � ��� where �� is the unit type�

Another example is the monad extension operator�

extT � ��� �� ���T �����T ����T ���

that satis�es for � � ���

�f�� g � extT �g� �mapT �f�� � extT �g � f��

The Y combinator for functions is de�ned as Y �f� x � f�Y �f�� x and has type�

��� �� ���������������

The parametricity theorem for this type with � � �� is�

�f� � f� f
�� g � f� � �f g� � f ��f� � g� � f� � �Y f� � Y f � �	�

which is actually the unfold�simplify�fold law �
��

� Expressing the Parametricity Theorem using Bifunctors

A bifunctor is a generalization of a functor� In contrast to regular functors� bifunctors can capture

types with contravariant type variables ����

De�nition � �Bifunctor� Let ���� � � � � an � � be a type and let f � f�� � � � � fn and g � g�� � � � � gn�

The bifunctor F ��� ���f� g� is de�ned as follows�

F ��basic���f� g� � id

F ���i���f� g� � fi

F ����� �����f� g� � F �������f� g��F �������f� g�

F ����������f� g� � h�F �������f� g� � h � F �������g� f�

F ��T ������f� g� � mapT �F ��� ���f� g��

�

where the product of functions is de�ned by �f � g��x� y� � �f x� g y�� For example�

F ������������f� g� � h� f � h � �k� g � k � f�

It is easy to prove the following theorem�

Theorem � A bifunctor F ��� ���f� g� is a functor that is covariant over fi and contravariant over

gi� That is�

F ��� ���id� id� � id ���

F ��� ���f� g� � F ��� ���f �� g�� � F ��� ���f � f �� g� � g� ���

The following theorem expresses the parametricity theorem of a type in terms of the type�s

bifunctor �the proof is given in the appendix��

Theorem � For any type ���� � � � � an � � we have�

�fi� gi� x� y � fi � gi � id � �P ��� ���x� y��fi��i� 	 x � F ��� ���f� g� y�

For example� the bifunctor for � � ������� is�

F ��� ���f�� f�� f� � g�� g�� g�� � h� f� � h � �k� g� � k � f��

and the parametricity theorem is�

P ��� ���x� y��f���� f���� f����

	 �m�n � m � f� � f� � n� x�m� � f��y�n��

	 �m�n � m � f� � g� � f� � n � g� � x�m� � f��y�n�� �e
�

	 �m�n � m � f� � n � g� � x�m� � f��y�n��

	 �n � x�f� � n � g�� � f��y�n��

	 x � �n� f� � n � g�� � f� � y

	 x � �n� f� � n � g�� � �n� g� � n � f�� � f� � y � �n� g� � n � f�� �e	�

	 x � �n� f� � g� � n � f� � g�� � f� � y � �n� g� � n � f��

	 x � �n� n� � f� � y � �n� g� � n � f��

	 x � F ��� ���f�� f�� f� � g�� g�� g�� y

The equivalences in �e
� and �e	� are based on the fact that range�h� � domain�f� � �f � g 	

f � h � g � h��

We annotate type variables by a sign s
 f���g as follows�

basics � basic

�s � �s

��� � ���s � � s� � � s�
�������

s � ��s� �� s�

�T ����s � T �� s�

�

where ���� � � and ���� � �� For example�

���������
�� � �����������
�

A type variable � is positive �resp�� negative� in a type � if all occurrences of � in �� are �� �resp��

���� For example� � and
 are positive in the type ��������
� while � and � are negative�

It is easy to prove that if fi � ��

i ���i and gi � ��i ���

i � then F ��� ���f� g� � ������

Theorem � Let ���� � � � � an � � be a type whose type variables are positive in � � then�

�fi� x� y � P ��� ���x� y��fi��i� 	 x � F ��� ���f� id� y

Proof� Since all type variables �i are positive in � � none of the gis in Th� � is used� Therefore� each

gi can be replaced by an arbitrary function� including the identity function itself� �

For example� the bifunctor for � � int�� � �int� list���� is�

F ��� ���f� g� � h� �f � �k�map�f� � k�� � h

We have P ��int� list������g�� g��f��� 	 g� � map�f� � g and

P ��� ���h�� h��f��� 	 x � y � �	��h
��x�� � f�	��h�y����� �	��h

��x�� � map�f� � �	��h�y����

	 h��x� � �f � �k�map�f� � k�� �h�x��

which is equivalent to h� � F ��� ���f� g�h�

� Using the Parametricity Theorem for Program Fusion

Consider the following non�polymorphic function of type list�int�� list�int��

inc � � � � �
inc �a�x� � ��	a���inc x�

The parametricity theorem of a non�polymorphic type is always a tautology� Luckily� inc happens

to be a fold� since a fold has a similar pattern of recursion�

fold f b � � � b
fold f b �a�x� � f a �fold f b x�

In particular� inc x � fold�a
 r
 ��	a��r� � � x� This is quite useful because we know that fold

satis�es a powerful parametricity theorem �Eq�
�� In fact� we have shown elsewhere ��� that there

is an automated method for fusing a function composed with a fold� Suppose� for example that

we want to fuse len�inc x�� where len computes the length of a list� so that the intermediate list

produced by inc and consumed by len is eliminated� Function len is de�ned as follows�

len � � � �
len�a�x� � �	�len x�

�

Thus� len�inc x� can be calculated from Eq�
� where f� � len� a � r���	a��r� x�� �� and y�x�

From the conclusion of Eq�
 we have�

len�inc x� � len�fold�a
 r
 ��	a��r� � � x�
� fold��� �len � �� x
� fold��� � x

where � can be calculated from the premise of Eq�
�

a � �len r� � len���	a��r�
� �	�len r�

If we substitute �len r� for s� we get a � s��	s and� �nally�

len�inc x� � fold�a
 s
 �	s� � x

The resulting fold does not create the intermediate list of the original program�

Unfortunately� not all functions can be expressed as folds� Even though there are methods for

translating a number of recursive functions into folds ���� these methods usually fail for complex

functions� One solution to this problem is to use a list traversal scheme that is more �exible and

maybe more expressive than fold� Some researchers have suggested hylomorphisms as a possible

solution ���� It remains an open issue of how easy it is to translate functions into hylomorphisms�

In this paper we propose an alternative solution to the above problem� instead of trying to

make some recursive function �t the recursion pattern of a particular �xed traversal scheme� such

as fold� we generate a traversal scheme that is individually tailored to this particular function� This

scheme may not be useful for any other function� This traversal scheme is �polymorphic enough� to

satisfy a useful parametricity theorem� We can make a function more polymorphic �i�e�� with more

type variables� by abstracting pieces of its code into some extra function arguments� But when a

function becomes �polymorphic enough�� To answer this question we consider the parametricity

theorem for fold� This theorem is useful because it has the conclusion�

f��fold��� x y� � fold��� �f� x� y

The left part is the composition of any function f� �which corresponds to the type variable �� with

a fold� The right part is another fold whose arguments can be calculated from the arguments of the

�rst fold by using the equalities in the premise of the theorem� That way we can fuse any function

f� with a fold yielding another fold� Given how the parametricity theorem should look like to be

useful for fusion� we can easily guess how the type of a traversal scheme should look like to generate

such a theorem� if the type of a traversal scheme f has the form t�� t�� � tn��� tn� then

tn should be a type variable� say �� To see why� we derive the parametricity theorem for f from

Theorem
 �universal quanti�cations are omitted��

P ��t�� t�� � tn ���f� f� �

� P ��t����x�� y�� �� P ��t�� � tn ���f x�� f y�� �

� P ��t����x�� y�� �� �P ��t����x�� y�� �� P ��t�� � tn���f x� x�� f y� y�� ��

� P ��t����x�� y�� �� �P ��t����x�� y�� �� �P ��tn�����xn��� yn��� �

� P ��tn���f x� x� � � � xn� f y� y� � � � yn� ���

�

If tn � �� then the parametricity theorem for f becomes�

P ��t����x�� y�� �� �P ��t����x�� y�� �� �P ��tn�����xn��� yn��� �

� f��f x� x� � � �xn� � f y� y� � � � yn��

which gives us a fusion law for fusing any function f� with f �

Our previous analysis indicates that we should transform a function into a traversal scheme

in such a way that the scheme�s output type be completely parametric �a type variable�� Having

done this� we can easily generate the parametricity theorem for the scheme and use it to perform

program fusion in the same way we use the fold fusion law to fuse a function with a fold�

The following is an example of a function that does not have a direct representation as a fold�

We will transform it to get a completely polymorphic output� This function is zip��

zip�a�x�b�y� � �a�b���zip�x�y��
zip � � �

Its type is polymorphic�

��� �� �list���� list����� list��� ��

but the parametricity theorem for this type is a simple natural transformation�

�f�� f� � map�f� � f�� � zip � zip � �map�f���map�f���

Notice that the output type of zip is not a type variable� Thus� this theorem cannot be used as is for

fusing any function g with zip� To make the output type of zip a type variable� we should generalize

both the inductive equations of zip� First observe that the second equation returns � �� this should

be replaced by an extra parameter� n� of zip� Finally� the �rst equation returns a list construction�

this too should be abstracted into another extra parameter� c� The transformed function zip is now�

zip�c�n��a�x�b�y� � c�a�b�zip�c�n��x�y��
zip�c�n� � n��

which has a su�ciently polymorphic type�

��� �� �� ���� � � ����� ���������list���� list������

since its output type is the type variable �� Function zip can be computed in terms of zip�

zip � zip� �a�b�r�
 �a�b��r� ��
 � � �

In a way� zip is a worker and the above de�nition of zip is a wrapper ���� The parametricity theorem

for zip with � � � � �� is�

�f� � c� n� c
� � f� � c � c� � �id � id � f�� � f� � zip��c� n� � zip��c�� f� � n�

Suppose now that we want to perform the program fusion len�zip�x�y��� We can achieve this

fusion by unwrapping zip and by using the zip fusion law for f� � len and c�a�b�r���a�b��r�

�Function zip can be expressed as a second�order fold that traverses one of the zip arguments and deconstructs

the other argument during the traversal� This results into an asymmetry� the fold fusion law can only be used for

fusing one argument only� An alternative� symmetric� de�nition of zip is given elsewhere ��	 but it requires a more

general traversal scheme than fold�

�

len�zip�x�y�� � len� zip� �a�b�r�
 �a�b��r� ��
 � � ��x�y� �
� zip� c� ��
 len � � ��x�y�
� zip� c� ��
 � ��x�y�

The premise of the zip fusion law gives us a value for c�

c�x�y�len z� � len�c�x�y�z��
� len��x�z��z�
� �	�len z�

Therefore� if we generalize the term len z to a variable w� we get c�x�y�w� � �	w� That is�

len�zip�x�y�� � zip� �x�y�w�
 �	w� ��
 � ��x�y�

Finally� if we unroll zip and set f � zip��x�y�w�
 �	w� ��
 ��� we get�

f�a�x�b�y� � �	�f�x�y��
f � �

� The Fusion Algorithm

Program fusion in our framework is perform in �ve steps�

� Given a function f � generate a su�ciently polymorphic function SKf � called the recursive

skeleton of f � that captures the recursion scheme of f �

� Rede�ne f as the wrapper of SKf � i�e�� f � SKf�e�� � � � � en�� for some expressions ei�

� Generate the parametricity theorem for the type of SKf � with � � �� for any type variable �

other than the type variable of the output�

� Whenever there is an application g�f e� in a program� unwrap f into SKf and use the para�

metricity theorem to fuse the application�

These steps are described in greater detail below�

��� Extracting the Recursive Skeleton of a Function

This section presents an algorithm for extracting the recursive skeleton of a function f of type

t�� t�� tn� It works over functions f de�ned in terms of m recursive equations�

f p��� p��n � e�
���

f pm�� pm�n � em

where pi�j is a pattern and ei is an expression that may contain recursive calls to f � Each such

recursive call must provide n arguments to f � i�e�� f a� an� and each ai is an expression whose

�

free variables are bound exclusively in the patterns pi�j � In that case� the skeleton of f is SKf �

whose ith inductive equation is de�ned as follows�

SKf�g�� � � � � gm� pi�� pi�n � gi�vi�SKf�g�� � � � � gm� ai�� ai�n�

That is� we assign a function gi for the output of each inductive equation and we collect all variables

vi that appear in the patterns and all the recursive calls� SKf�g�� � � � � gm� ai�� ai�n� in ei as

arguments to gi� Function f can be de�ned in terms of SKf by expressing gi as follows�

gi � �vi� ri�� ei�ri�SKf�g�� � � � � gm� ai�� ai�n�

that is� gi is equal to ei with variable rj substituted for each recursive call�

The type of SKf is �when we set all but the output type variable to ����

��� ������� � ��m���� t�� � tn��

The parametricity theorem for this type is�

�f�� gi� g
�

i� xi �
�

i

f� � gi � g�i � F ���i���f�� id� � f��SKf�g� x� � SKf�g�� x ���

Proof� The parametricity theorem for the type of SKf is
V
i P ���i� ����g�i� gi� � � f��SKf�g� x� �

SKf�g�� x� We have�

P ���i�����g�i� gi� � 	 P ���i���x� y� �� g�i�x� � f��gi�y�� from Th�

	 x � F ���i���f�� id� y � g�i�x� � f��gi�y�� from Th� �

	 g�i�F ���i���f�� id� y� � f��gi�y�� �

For example� consider the list reverse function�

rev � � � � �
rev �a�x�� append �rev x� �a�

Its recursive skeleton SKrev � rev is straightforward�

rev�n�c� � � � n��
rev�n�c� �a�x�� c�a�x�rev�n�c� x�

which is actually equivalent to the list primitive recursion� Function rev can be expressed in terms

of rev�

rev � rev� ��
 � �� �a�x�r�
 append r �a� �

The type of rev is�

��� �� ������� �� � list���� ����� list�����

which satis�es the following parametricity theorem �for � � ����

�f�� n� c� n
�� c�� x � f� � n � n� � id � f� � c � c� � �id � id � f�� � f��rev��n� c� x� � rev��n�� c��x

The above algorithm can be easily extended to allow recursive calls f a� an in which some

variables in ai are bound in an outer case statement� In that case� we would need more extra

parameters for SKf � one for each case branch� A more substantial extension can be achieved by

permitting ai to contain variables that do not appear in the function patterns or in the outer case

statements� In that case we do not abstract the function call but instead we construct a lambda

expression that captures all these free variables� If all arguments to the recursive calls are free

variables� our method deteriorates to the unfold�simplify�fold law �Eq� 	�� because the recursive

skeleton becomes the Y combinator� Since this is undesirable� we try to abstract as many arguments

of the recursive calls as possible�

For example� consider the following program that computes the map over bushes�

mapB�f��Leaf x� � Leaf�f x�
mapB�f��Branch r�� Branch�map�z
 mapB�f� z� r�

where� Leaf and Branch are the value constructors of Bush�

data Bush��� � Leaf � j Branch list�Bush����

Notice that the variable z in the second equation is not bound in the pattern of the equation� Thus�

in this case we do not abstract the recursive call alone� but a lambda abstraction that contains the

recursive call�

mapB�l�b��f��Leaf x� � l�f�x�
mapB�l�b��f��Branch r�� b�r�z
 mapB�l�b��f� z�

Function mapB is de�ned in terms of mapB�

mapB � mapB� �f�x�
 Leaf�f x�� �r�g�
 Branch�map�g� r� �

The type of mapB is�

��� �� �� ��� ����� ��list�Bush����� �Bush�������������Bush�����

The parametricity theorem for � � � � �� is�

�f� � l� b� b
�� f� x � f� � b � b� � �id � �g� f� � g��

� f��mapB��l� b��f� x� � mapB��f� � l� b���f� x

��� The Fusion Algorithm

The problem of fusing two recursive functions f and h in h�f�x�� is to derive a new recursive

function with the same functionality as h�f�x��� This is not always possible� Typically� f produces

an intermediate data structure which is consumed by h� When these two functions are fused�

this data structure is not generated� In our framework� the fusion h�f�x�� is achieved by fusing

h�SKf�g� x�� since f � SKf�g� x�� for some functions gi� The law for this fusion is derived directly

from the parametricity theorem of SKf �

We have seen that even with all the extensions described in Section ��
� the type of SKf has

the following form�

��� ������� � ��m���� t�� � tn��

Note that� type �i does not contain any negative instances of �� As we have seen from Eq� �� the

parametricity theorem for this type is�

�h� gi� g
�

i� xi �
�

i

h � gi � g�i � F ���i���h� id� � h�SKf�g� x� � SKf�g�� x ���

This gives us a law for fusing any function h with f � h is given� each gi is derived directly from

the de�nition of f � and each F ���i�� is derived from De�nition
� The only things that need to be

computed are the g�i functions�

In a previous work ���� we describe a method for solving a similar set of equations for fusing

folds� It relies on the fact that for each function h there exists a function INV�h� such that

�x
 range�h� � h�INV�h� x� � x� i�e�� INV�h� is a right inverse of h� To see why this is true�

consider all the values a�� � � � � an� n � that satisfy h�a�� � � h�an� � b for some value

b
 range�h�� Then� INV�h� b is de�ned to be one of these ai� The method described in ��� and

also used in this paper� does not actually derive a function INV�h� from h� It only assumes that

such function exists and uses the property h � INV�h� � id to eliminate it�

Using INV�h�� the premise of Eq� � becomes�

h � gi � g�i � F ���i���h� id�

	 h � gi � F ���i���INV�h�� id� � g�i � F ���i���h� id� � F ���i���INV�h�� id�

	 h � gi � F ���i���INV�h�� id� � g�i � F ���i���h � INV�h�� id� from Eq� �

	 h � gi � F ���i���INV�h�� id� � g�i � F ���i���id� id� since h � INV�h� � id

	 h � gi � F ���i���INV�h�� id� � g�i � id from Eq� �

	 h � gi � F ���i���INV�h�� id� � g�i

Thus� we derive the following algorithm from Eq� ��

Algorithm � �Fusion Algorithm�

�h� gi� xi � h�SKf�g� x� � SKf�g�� x where g�i � h � gi � F ���i���INV�h�� id� ���

�x � h�INV�h� x� � x ���

Eq� � fuses h with f into a function that has the same recursive skeleton as f � The components

g�i of the resulting skeleton are derived by fusing h� gi� and F ���i���INV�h�� id�� Since INV�h� is

unknown� we only fuse h with gi� This fusion can be achieved by using Eq� �� Eq� �� as well some

standard partial evaluation techniques �such as applying a function to a value construction�� At

the end we hope to derive terms of the form h � INV�h� only� which cancel INV�h�� Otherwise� if

there is a term INV�h� in the program that is not cancelled out� then the fusion algorithm fails

and the fusion h�f x� is not performed�

As an example� we will fuse nth �zip�x�y�� n� where

	

nth � � n � error��
nth �a�x� n � if n�� then a else nth x �n���

Using the fusion algorithm we get�

nth �zip�x�y�� n � nth �zip� �a�b�r�
 �a�b��r� ��
 � � ��x�y�� n
� zip� �a�b�r�
 nth ��a�b���INV�nth� r��� ��
 nth � � ��x�y� n
� zip� �a�b�r�
 n
 if n�� then �a�b� else nth�INV�nth� r� �n����

��
 n
 error�� ��x�y� n
� zip� �a�b�r�
 n
 if n�� then �a�b� else r�n���� ��
 n
 error�� ��x�y� n

If we unroll zip and set f �x�y� n � nth �zip�x�y�� n� we get�

f �a�x�b�y� n � if n�� then �a�b� else f �x�y� �n���
f n � error��

But there are examples in which INV�h� is not cancelled out� such as in the case of the length

of the quadratic reverse� Using the fusion algorithm we get�

len�rev�x�� � len�rev� ��
 � �� �a�x�r�
 append r �a� � x�
� rev� ��
 len�� ��� �a�x�r�
 len�append �INV�len� r� �a�� � x
� rev� ��
 �� �a�x�r�
 len�append �INV�len� r� �a�� � x

The skeleton of append is�

append�f�g� � � y � f�y�
append�f�g� �a�x� y � g�a�x�y�append�f�g� x y�

If we apply the fusion algorithm recursively to fuse len with append� we get�

len�append �INV�len� r� �a��
� len� append� y
 y� �b�x�y�s�
 b�s � �INV�len� r� �a� �
� append� y
 len�y�� �b�x�y�s�
 len�b��INV�len� s�� � �INV�len� r� �a�
� append� y
 len�y�� �b�x�y�s�
 �	s � �INV�len� r� �a�

Therefore� len�rev�x�� is

rev� ��
 �� �a�x�r�
 append� y
 len�y�� �b�x�y�s�
 �	s � �INV�len� r� �a� � x

which contains a term INV�len� that has not been cancelled out� This problem occurs whenever

the result of a recursive call of a function is handled by another recursive function in a non�trivial

way �i�e�� when it is deconstructed and�or recursed upon it�� All the other cases can be handled

e�ectively by the fusion algorithm�

There are two ways to handle cases like this� One is to actually synthesize INV�h� from h� For

example�

INV�len� � int fold� ��
� �� n
 ��n �

where int fold is the fold over integers� That way� we can fuse append with INV�len� yielding�

len�rev�x�� � rev� ��
 �� �a�x�r�
 int fold� ��
 y
 len�y�� f
 y
 �	f�y� � r �a� � x

�

The other way is to use additional laws� These laws� called promotion laws� instead of fusing g

with f in g�f�x��� they promote g to the right of f � That is� these laws take the form� g�f � h�F �g��

for some function h that does not depend on g and some function F that depends on g� For example�

we have the law�

len�append x y� � �len�x��	�len�y��

which actually states that len is a homomorphism� That way� len�rev�x�� becomes�

rev� ��
 �� �a�x�r�
 len�append �INV�len� r� �a�� � x
� rev� ��
 �� �a�x�r�
 �len�INV�len� r��	�len��a��� � x
� rev� ��
 �� �a�x�r�
 r	� � x

In general� we need to solve the following equation to synthesize k�

SKf�g� � SKf�h� � k � SKf�g�

given SKf � gi� and hi� This equation may not have a solution in general�

� Extensions

From Th� � we have�

�fi� x� y � P ��� ���x� y��fi��i� 	 x � F ��� ���f� INV�f�� y

since fi � INV�fi� � id� The fusion algorithm can be extended accordingly to handle any function

f � ��� ��n���

�h� xi � h�f x� � � � xn� � f �F �������h� INV�h�� x�� �F ���n���h� INV�h�� xn�

�x � h�INV�h� x� � x

Using these extensions� we can achieve various types of fusion and deforestation� not captured by

the regular fusion algorithm� The following sections describe some of them�

��� Accumulator Deforestation

The linear version of list reverse is rev x � reverse x � �� where reverse uses an extra accumulator�

reverse � � w � w
reverse �a�x� w � reverse x �a�w�

Its recursive skeleton is�

reverse�f�g� � � w � f�w�
reverse�f�g� �a�x� w � g�reverse�f�g� x �a�w��

If we use the regular fusion algorithm� we derive�

len�reverse x � �� � reverse�len�id� x � �

�

which uses the accumulator in the same way as reverse does� it starts with an empty list and at each

step it conses an element to the accumulator� At the end� it returns the length of the accumulator�

We can avoid building the list accumulator by using a simple integer accumulator instead�

h � � w � w
h �a�x� w � h x ��	w�

Such a de�nition can be derived by abstracting the accumulator from each recursive call in reverse�

reverse�f�g� � � w � f�w�
reverse�f�g� �a�x� w � g�a�w�z
 reverse�f�g� x z�

As before� reverse can be expressed in terms of reverse�

reverse � reverse� z
z� �a�w�f�
 f�a�w� �

The type of reverse is�

��� �� �� ������ ��� � � ��������� list�������

If we set � � �� and � � �� then the extended fusion algorithm gives�

h�reverse�f� g� xw� � reverse�h�f �INV�h�� h�g ��id�INV�h���k� INV�h��k �h��� x �h�w��

Using this rule and after some simpli�cations� we get�

len�reverse x � �� � reverse� z
z� �a�w�f�
 f��	w� � x �

which is equivalent to the desired de�nition of len�rev x��

�

References

�
� R� Burstall and J� Darlington� A Transformation System for Developing Recursive Programs�

Journal of the ACM� 	��
�������� January
����

�	� W� Chin� Safe Fusion of Functional Expressions� Proceedings of the ACM Symposium on Lisp

and Functional Programming� San Francisco� California� pp

�	� June
��	�

��� L� Fegaras and T� Sheard� Revisiting Catamorphisms over Datatypes with Embedded Func�

tions� In �	rd ACM SIGPLAN
SIGACT Symposium on Principles of Programming Languages�

St� Petersburg Beach� Florida� January
���� To Appear�

��� L� Fegaras� T� Sheard� and T� Zhou� Improving Programs which Recurse over Multiple In�

ductive Structures� In ACM SIGPLAN Workshop on Partial Evaluation and Semantics
Based

Program Manipulation� Orlando� Florida� pp 	
��	� June
����

��� A� Gill� J� Launchbury� and S� Peyton Jones� A Short Cut to Deforestation� Sixth Conference

on Functional Programming Languages and Computer Architecture� Copenhagen� Denmark�

pp 		��	�	� June
����

��� J� Launchbury and T� Sheard� Warm Fusion� Seventh Conference on Functional Programming

Languages and Computer Architecture� La Jolla� California� pp �
���	�� June
����

��� E� Meijer� M� Fokkinga� and R� Paterson� Functional Programming with Bananas� Lenses� En�

velopes and Barbed Wire� In Proceedings of the �th ACM Conference on Functional Program

ming Languages and Computer Architecture� Cambridge� Massachusetts� pp
	��
��� Springer�

Verlag� LNCS �	�� August
��
�

��� S� Peyton Jones and J� Launchbury� Unboxed Values as First Class Citizens in a Non�strict

Functional Language� Fifth Conference on Functional Programming Languages and Computer

Architecture� Cambridge� MA� pp �������� August
��
�

��� T� Sheard and L� Fegaras� A Fold for All Seasons� Sixth Conference on Functional Programming

Languages and Computer Architecture� Copenhagen� Denmark� pp 	���	�	� June
����

�
� P� Wadler� Theorems for Free Fourth Conference on Functional Programming Languages and

Computer Architecture� Imperial College� London� September
����

�

� P� Wadler� Deforestation� Transforming Programs to Eliminate Trees� Proceedings of the �nd

European Symposium on Programming� Nancy� France� pp �������� March
����

�

A Proofs

Theorem � For any type ���� � � � � an � � we have�

�fi� gi� x� y � fi � gi � id � �P ��� ���x� y��fi��i� 	 x � F ��� ���f� g� y�

Proof �by induction over the structure of the type ���

� If � � basic� then F ��� ���f� g� � id and P ��� ���x� y��fi��i� 	 �x � y��

� If � � �i� then F ��� ���f� g� � fi and P ��� ���x� y��fi��i� 	 �x � fi�y���

� If � � �� � ��� then F ��� ���f� g� � F �������f� g�� F �������f� g�� and

P ��� ���x� y��fi��i�

	 P �������	��x�� 	��y���fi��i�� P �������	��x�� 	��y���fi��i� from Th�

	 �	��x� � F �������f� g� �	��y��� � �	��x� � F �������f� g� �	��y��� induction hypothesis

	 x � �F �������f� g�� F �������f� g�� y

	 x � F ��� ���f� g� y

� If � � ������ then F ��� ���f� g� � h�F �������f� g� � h � F �������g� f�� and

P ��� ���k� h��fi��i�

	 P �������x� y��fi��i� � P �������k�x�� h�y���fi��i� from Th�

	 x � F �������f� g� y � k�x� � F �������f� g� �h�y�� induction hypothesis

	 k � F �������f� g� � F �������f� g� � h

	 k � F �������f� g� � F �������g� f� � F �������f� g� � h � F �������g� f� �!�

	 k � F �������f � g� f � g� � F �������f� g� � h � F �������g� f� from Eq� �

	 k � F �������id� id� � F �������f� g� � h � F �������g� f� since fi � gi � id

	 k � id � F �������f� g� � h � F �������g� f� from Eq� �

	 k � F ��� ���f� g� h

The equivalence �!� is true because range�h� � domain�f� � �f � g 	 f � h � g � h��

� If � � T �� ��� then F ��� ���f� g� � mapT �F ��� ����f� g��� and

P ��� ���x� y��fi��i�

	 �h � ��z � P ��� ����h�z�� z��fi��i�� � x � mapT �h� y from Th�

	 �h � ��z � h�z� � F ��� ����f� g� z� � x � mapT �h� y induction hypothesis

	 x � mapT �F ��� ����f� g�� y

	 x � F ��� ���f� g� y �

�

