Fusion for Free!

OGI, Tech-report #96-001

Leonidas Fegaras
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
20000 N.W. Walker Road P.O. Box 91000
Portland, OR 97291-1000

fegaras@cse.ogi.edu

January 9, 1996

Abstract
Program fusion techniques have long been proposed as an effective means of improving
program performance and of eliminating unnecessary intermediate data structures. This paper
proposes a new approach on program fusion that is based entirely on the type signatures of
programs. First, for each function, a recursive skeleton is extracted that captures its pattern of
recursion. Then, the parametricity theorem of this skeleton is derived, which provides a rule for
fusing this function with any function. This method generalizes other approaches that use fixed

parametricity theorems to fuse programs.

1 Introduction

There is much work recently on using higher-order operators, such as fold [9] and build [6, 5], to
automate program fusion [2] and deforestation [11]. Even though these methods do a good job
on fusing programs, they are only effective if programs are expressed in terms of these operators.
This limits their applicability to conventional functional languages. To ameliorate this problem,
some researchers proposed methods to translate regular functional programs into folds [6]. These
methods had a moderate success so far, and only for simple functions.

The main reason for using these higher-order operators is that they satisfy some powerful
theorems, which facilitate program optimization. But there is nothing special about these theorems.
They are parametricity theorems [10] that are derived exclusively from the types of these operators.
Any function satisfies a parametricity theorem. The difference is that most functions are not
sufficiently polymorphic and, thus, their parametricity theorems are usually trivial.

This paper proposes a new approach on fusing programs. Instead of trying to express a function
in terms of a particular higher-order operator, such as fold, we generate an individualized higher-

order operator for this function. This operator, called the recursive skeleton of this function,

a3 list (o) list(list (o)) o flat ‘
N N A list(list(v2)) > list(ag)
map(map(f)) map(f)
/ map(f) map(map(f)) P
list(list (v)) > list(ay)
ay list (o) list(list(ary)) flat
Functor: list Functor: list o list Natural transformation: list o list — list

Figure 1: The Parametricity Theorem for flat : Va. list (list(«)) — list ()

captures its pattern of recursion. It is specific to this function only and may not be suitable
for any other function. This operator is polymorphic enough to satisfy a useful parametricity
theorem, which is very similar to the one for fold. In fact, if a function resembles a fold, then its
recursive skeleton is exactly the fold operator. For each such recursive skeleton, we generate the
parametricity theorem. Program fusion is achieved by using these theorems alone. In a way, our
method generalizes all other methods that use the parametricity theorems of a fixed set of higher-
order operators. It is also directly applicable to conventional functional programs. The drawback
though is that our method uses many different theorems for program fusion, instead of just a fixed
number. But, as we will see in this paper, using these theorems is actually no harder than using
the parametricity theorems for folds.

We believe that our approach may well turned out to have practical uses for optimizing real
functional languages. We also believe that it can be useful for proving equational theorems about

functions.

2 Background: The Parametricity Theorem

Any function f of type 7 satisfies a parametricity theorem (also called theorem for free [10]), which is
derived directly from the type 7. For first-order functions, this theorem states that any polymorphic
function is a natural transformation. For example, Figure 1 gives the parametricity theorem for
any function flat of type:

Ve list (list («)) — list ()

The parametric type list(«) is a functor that maps any type «; into the type list(a;) and any function
f of type a3 — a2 into the function map(f) of type list(az) —list(az). In general, any parametric
type T(a) is a functor that maps a function f into map?(f), where map” : (a—B)—=T(a)—=T(8)
is the map function for type T. Since the composition of functors is also a functor, the type

list(list(«)) is a functor that maps f into map(map(f)). The parametricity theorem for flat is the

commuting diagram in Figure 1. It can be expressed as follows:
Vf : flat o map(map(f)) = map(f) o flat

This commuting diagram represents a natural transformation between the functors list o list and
list. It indicates that applying f to every element of a nested list and then flattening the resulting
nested list is equivalent to flattening the list and then applying f to the flat list. This theorem is
always true regardless of the actual definition of flat because, if f were changing in some way the
elements of the nested list, then the type of flat would not be the polymorphic type given above.
(We assume that all functions are strict here, as they would be if they were defined in a non-lazy
language.)
The proof of this theorem comes directly from [10]):

Theorem 1 (Parametricity Theorem) Any expression e : v satisfies P[r](e, ¢) p, where:
Plbasic](r,s)p — r=s
Ple](r,s) p — 1 =p(a)(s)
PlVa.r](r,s)p = Vfo: Plrl(r,s) plfa/]
Pl x ma](r,s)p = Plnl(mi(r), mi(s)) p A Plra](ma(r), ma(s)) p
Plri—=m](rs)p — Ve,y: Plnl(z,y) p = Plrl(r(z),s(y) p

PIT(D](rys)p = Y (Yo Plr](f(2),2) p) = r = map’(f) s

That is, for each type variable «, we associate a function f, of type ay — g, where aq and ay are
instances of a.

To illustrate Theorem 1, we derive the parametricity theorem for the list fold:
fold : Vo, . (a— =)= F—list(a) =3
The construction is accomplished in four simple steps:

PVé,e. §—<](r,s)p — Vfs, feyx,y: P8z, v) plfs/d, f-/¢]
= Plel(r(z), s(y)) plfs/9, f-/<]
= Vs feormiyr o= fs(y) = r(z) = fo(s(y)
or Yfs,fe:rofs=f.os

PlVo,e,n.8—e—=n](r,s)p — Vs, fo, oz, y: PloN(x,y) plfs/0, f</, f/7)]
= Ple—=nl(r(z), s(y)) plfs/, fo/: fa/7]
= Vfs fes fpriy s 2w = fs(y) = r()o fo = fros(y)
or Vfs, fe, foy, 2 m (fsy) (fe 2) = folsy 2)

PV list ()] (r, s) p — Yfa,g: (Ve:g(z)= falz)) = r=map(g)s
or Yf,:r=map(fa)s

3

PlVa, 5. (o— =)= p—=list (o) = 5] (r, s) p
— Pla=3—=01(®, @) plfo/o, f5/8] = Plo—=list(a) = 51(r @, s @) plfa/a f3/5]
= Vo fo oy (fax) @ (fay) = fe(eDy) = r @ (fo) (map(fa) y) = fo(s & 2y)
That is, fold satisfies the following theorem:
Vfas for sy (fa) @ (foy) = fo(z Dy) = fold(@) (fpx) (map(fa)y) = fs(fold(D) 2 y)

If we set f, =id, where id = Az.z, we get:

Vigiw,y: 2@ (fpy) = feledy) = fold(@) (fpa)y = fa(fold(®) zy) (1)

which is the fusion law for list fold [9]. Binding the function f,, which corresponds to the type
variable «, to id is something that we will do often in this paper. In general, if we have a type
t that depends on some type variables «, f, etc., i.e., t has the form ¢(«, 3,...), then finding
the parametricity theorem for ¢(a, 3,...) and then setting f, = id is the same as finding the
parametricity theorem for the type ¢((),3,...), where () is the unit type.

Another example is the monad extension operator:
ext! : Vo, 8. (a=T(8)) =T (a)=T(6)
that satisfies for 5 = ():
Vfarg: ext?(g)omap’(fo) =extT(go fu)
The Y combinator for functions is defined as Y (f) z = f(Y (f)) « and has type:
Vo, 8. ((a—=B) wa—=) —a—j
The parametricity theorem for this type with a = () is:
Vg [g Jeofg)=F(fseg) = [eo (Y [)=Y/[(2)

which is actually the unfold-simplify-fold law [1].

3 Expressing the Parametricity Theorem using Bifunctors
A bifunctor is a generalization of a functor. In contrast to regular functors, bifunctors can capture
types with contravariant type variables [3].

Definition 1 (Bifunctor) LetVay,...,a,: T be atype andlet f = fi,..., fn andG=g1,...,Gn.
The bifunctor F[r](f,) is defined as follows:

Flbasic](f,7) — id

Flei](7.7) - fi

Flnxnl(f.9) = FInl(F.9) x Flrl(F.9)
Fln—=nl(f.9) = A.Flnl(f.9)0ho FInl(F. /)
FIT(OIL9) — map"(FI71(/,9))

where the product of functions is defined by (f X g)(z,y) = (fz,gy). For example,
Flla—a)—a](f,g) = Ah.foho(Mk.goko f)
It is easy to prove the following theorem:

Theorem 2 A bifunctor F[7r](f,g) is a functor that is covariant over f; and contravariant over
g;. That is,

FIr1Gd,id) = id (3)
FIrNE) o FIFNF) = Flrl(fo flg'og) (4)

The following theorem expresses the parametricity theorem of a type in terms of the type’s

bifunctor (the proof is given in the appendix):

Theorem 3 For any type Vaq,...,a, : T we have:

Vfiigisz,y: fiog =id = (P[[T]](x,y)[m s o =F[71(f,9)y)

For example, the bifunctor for 7 = (a—) = is:

f[[T]](mefﬁvfwvgaygﬁ7gw) = /\h.fWOhO(/\k.gﬁokon)

and the parametricity theorem is:

Plrl (@, y)lfa/ o f5/ 85 f2/7]
Vm,n: mo f, = faon= ax(m)= f,(y(n))
Vm,n mofaoga—fﬁonogaiw(m)Ifw(y(n)) (e1)
Vm,n:m= fgonogs=x(m)=f(y(n))
Vn: x(fgonoga) = f(y(n))
xo(/\n faonog,) = fyoy
o (An. fgonog,)o(An.ggono f,) = fyoyo(An.ggono f,) (€2)
o(An. fgoggomno fo04g,) = fyoyo(An.ggono f,)
o(An.n) = fyoyo(An.ggono f,)
€ —f[[ﬂ](fomfﬁvf%gavgﬁvgw)y

The equivalences in (el) and (e2) are based on the fact that range(h) = domain(f) = (f=¢ <
foh=goh).
We annotate type variables by a sign s € {4, —} as follows:

U1 A

basic® = basic

aS — aS

(M x 1) = 18 x713
(m—1)° = 7°—T75
(r(r) = T()

where =(+) = — and —(—) = +. For example,
(a=p) =2y =87 = (aT=257)2y7 =07

A type variable « is positive (resp., negative) in a type 7 if all occurrences of « in 7% are a™ (resp.,
a~). For example, @ and ¢ are positive in the type («— 3) —~—9, while and v are negative.
It is easy to prove that if f; : 7 =« and ¢; : «f — a7, then F[7](f,g) : 7~ —77.

Theorem 4 Let Vaq,...,a,: T be a type whose type variables are positive in T, then:
Vfay: Plrl(ey)lfi/ei] & «=F[7)(fid)y

Proof: Since all type variables «; are positive in 7, none of the g;s in Th. 3 is used. Therefore, each
g; can be replaced by an arbitrary function, including the identity function itself. O

For example, the bifunctor for 7 = int—a X (int—list(«)) is:

Flrl(f,g9) = Ah. (f X (Ak.map(f)ok))oh

We have P[int—list ()] (¢, ¢)[f/a] & ¢’ = map(f) o g and

Pl)f/a] e 2=y = (m(h(2) = f(mi(h(y)) A (m2(h'(2)) = map(f) o (r2(h(y))))
& W(z) = (f x (Ak.map(f) o k)) (h(z))

which is equivalent to ' = F[7](f, g) h.

4 Using the Parametricity Theorem for Program Fusion

Consider the following non-polymorphic function of type list(int) —list(int):

inc [] []
inc (a:x) = (14a):(inc x)

The parametricity theorem of a non-polymorphic type is always a tautology. Luckily, inc happens

to be a fold, since a fold has a similar pattern of recursion:

foldfb[] =b
fold f b (a:x) = f a (fold f b x)

In particular, inc x = fold(Aa. Ar. (14a):r) [] x. This is quite useful because we know that fold
satisfies a powerful parametricity theorem (Eq. 1). In fact, we have shown elsewhere [9] that there
is an automated method for fusing a function composed with a fold. Suppose, for example that
we want to fuse len(inc x), where len computes the length of a list, so that the intermediate list
produced by inc and consumed by len is eliminated. Function len is defined as follows:

len[] =0
len(a:x) = 1+(len x)

Thus, len(inc x) can be calculated from Eq. 1, where fz = len, a & r=(1+a):r, =[], and y=x.
From the conclusion of Eq. 1 we have:
len(inc x) = len(fold(Aa. Ar. (1+a):r) [] x)

= fold(®) (len []) x

= fold(®) 0 x
where ® can be calculated from the premise of Eq. 1:

a @ (len r) = len((1+a):r)
= 1+(len r)

If we substitute (len r) for s, we get a @ s=1+s and, finally,

len(inc x) = fold(Aa. As. 1+4s) 0 x

The resulting fold does not create the intermediate list of the original program.

Unfortunately, not all functions can be expressed as folds. Even though there are methods for
translating a number of recursive functions into folds [6], these methods usually fail for complex
functions. One solution to this problem is to use a list traversal scheme that is more flexible and
maybe more expressive than fold. Some researchers have suggested hylomorphisms as a possible
solution [7]. It remains an open issue of how easy it is to translate functions into hylomorphisms.

In this paper we propose an alternative solution to the above problem: instead of trying to
make some recursive function fit the recursion pattern of a particular fixed traversal scheme, such
as fold, we generate a traversal scheme that is individually tailored to this particular function. This
scheme may not be useful for any other function. This traversal scheme is ‘polymorphic enough’ to
satisfy a useful parametricity theorem. We can make a function more polymorphic (i.e., with more
type variables) by abstracting pieces of its code into some extra function arguments. But when a
function becomes ‘polymorphic enough’? To answer this question we consider the parametricity

theorem for fold. This theorem is useful because it has the conclusion:

fo(fold(d) zy) = fold(®@) (fs2)y

The left part is the composition of any function fz (which corresponds to the type variable §) with
a fold. The right part is another fold whose arguments can be calculated from the arguments of the
first fold by using the equalities in the premise of the theorem. That way we can fuse any function
fs with a fold yielding another fold. Given how the parametricity theorem should look like to be
useful for fusion, we can easily guess how the type of a traversal scheme should look like to generate
such a theorem: if the type of a traversal scheme f has the form ¢t; -ty —---—1t,_1 —1t,, then
t, should be a type variable, say 3. To see why, we derive the parametricity theorem for f from

Theorem 1 (universal quantifications are omitted):

Plti—ta—- =t 0(f,) p
=Pltal(z1,91) p= Plta—-- = t](f 21, fyr) p
= Pltal(z1,y1) p = (Pl (@2, y2) p = Pltz—- - =] (f w1 22, fy1 y2) p)
= Pltal(zi, 1) p = (Pltal(w2,y2) p = -+ (Plta—1l(@n-1,yn—1) p
= Plt d(fzrze. . on, fyiya. . yn) p)

If t, = 3, then the parametricity theorem for f becomes:

Pltal(zr, y1) p = (Plt2)(22,52) p = - - (Plta—a](zn—1,yn-1) p
= fa(friae...20) = fyiye...yn))
which gives us a fusion law for fusing any function fz with f.

Our previous analysis indicates that we should transform a function into a traversal scheme
in such a way that the scheme’s output type be completely parametric (a type variable). Having
done this, we can easily generate the parametricity theorem for the scheme and use it to perform
program fusion in the same way we use the fold fusion law to fuse a function with a fold.

The following is an example of a function that does not have a direct representation as a fold.
We will transform it to get a completely polymorphic output. This function is zip!:

zip(a:x,b:y) = (a,b):(zip(x,y))
zip - =[]
Its type is polymorphic:
Va, f. (list(or) X list(5)) —list(a x 3)

but the parametricity theorem for this type is a simple natural transformation:

Vfa, fa: map(fa X fg) ozip = zip o (map(f,) x map(fs))

Notice that the output type of zip is not a type variable. Thus, this theorem cannot be used as is for
fusing any function g with zip. To make the output type of zip a type variable, we should generalize
both the inductive equations of zip. First observe that the second equation returns []; this should
be replaced by an extra parameter, n, of zip. Finally, the first equation returns a list construction;

this too should be abstracted into another extra parameter, c. The transformed function zip is now:

zip'(c,n)(a:x,b:y) = c(a,b,zip’(c,n)(x,y))

Zip'(en) - =n)
which has a sufficiently polymorphic type:

Va, B, 7. (e x § x y =) x () =7)) = (list(a) x list(5)) =~
since its output type is the type variable v. Function zip can be computed in terms of zip":
zip = zip'(A(a,b,r). (a,b):r, A(). [])
In a way, zip’ is a worker and the above definition of zip is a wrapper [8]. The parametricity theorem
for zip’ with a = g = () is:
Viyeon, s froe=do(id xid x f,) = f,ozip'(c,n) =zip'(c, fy on)

Suppose now that we want to perform the program fusion len(zip(x,y)). We can achieve this

fusion by unwrapping zip and by using the zip’ fusion law for f, = len and c(a,b,r)=(a,b):r:

'"Function zip can be expressed as a second-order fold that traverses one of the zip arguments and deconstructs
the other argument during the traversal. This results into an asymmetry: the fold fusion law can only be used for
fusing one argument only. An alternative, symmetric, definition of zip is given elsewhere [4] but it requires a more

general traversal scheme than fold.

len(zip(xy)) = len(zip'(Aabi). (ab)ir, A). [1)(xy))
= zip’(', A(). len [])(xy)
=zip'(¢, A()- 0)(xy)
The premise of the zip’ fusion law gives us a value for ¢’:
c’(x,y,len z) = len(c(x,y,z))
= len((x,z):z)
= 1+(len z)
Therefore, if we generalize the term len z to a variable w, we get ¢'(x,y,w) = 14+w. That is,
len(zip(x,y)) = zip'(A(x,y;w). 14w, A(). 0)(x.y)
Finally, if we unroll zip” and set f = zip'(A(x,y,w). 14w, A(). 0), we get:
f(a:x,biy) = 1+(f(x,y))
f_ =0

5 The Fusion Algorithm

Program fusion in our framework is perform in five steps:

e Given a function f, generate a sufficiently polymorphic function SKy, called the recursive

skeleton of f, that captures the recursion scheme of f;
e Redefine f as the wrapper of SKy, i.e., f = SK(eq,...,€,), for some expressions e;;

e Generate the parametricity theorem for the type of SKy, with @ = () for any type variable «
other than the type variable of the output;

e Whenever there is an application g(fe) in a program, unwrap f into SK; and use the para-

metricity theorem to fuse the application.

These steps are described in greater detail below.

5.1 Extracting the Recursive Skeleton of a Function

This section presents an algorithm for extracting the recursive skeleton of a function f of type

t1 —ty—---t,. It works over functions f defined in terms of m recursive equations:

fP1,1"'P1,n = €

fpm,l o Pman = €Em

where p; ; is a pattern and e; is an expression that may contain recursive calls to f. Each such

recursive call must provide n arguments to f, i.e., fa;---a,, and each a; is an expression whose

free variables are bound exclusively in the patterns p;;. In that case, the skeleton of f is SKy,

whose ith inductive equation is defined as follows:

SICf(gl7"'7gm)pi,1 o Pin = gi(v_hSICf(glv"'vgm)ai,l "'ai,n)

That is, we assign a function g; for the output of each inductive equation and we collect all variables
T; that appear in the patterns and all the recursive calls, SK¢(g1,...,9m) @i1 -+ @i pn, in € as

arguments to ¢g;. Function f can be defined in terms of SKy by expressing g; as follows:

g = MNULT). &[T /SKf(g1, oo gm) @ix -+ ;5]

that is, g; is equal to e; with variable r; substituted for each recursive call.

The type of SKf is (when we set all but the output type variable to ()):
Va. (mm—a) X - X (T, = a) =3t — - =t 2o
The parametricity theorem for this type is:

Ufor 09 vis Nfuogi= g0 Flrl(fo,id) = fa(SKs(@)T) = SKs(g)T (5)

Proof: The parametricity theorem for the type of SKy is A; Pl — a](gl, 9:) p = fo(SKs(9)T) =

SK¢(g") T. We have:

Plri—al(gig)p < Plrl(e,y) p= gi(2) = falg:(y)) from Th. 1
< = F[r](fa,id)y = gi(z) = fulgily)) from Th. 4
& gi(Fnl(fa,id) y) = falgi(y)) O

For example, consider the list reverse function:

rev[] =[]

rev (a:x) = append (rev x) [a]
Its recursive skeleton SKyey = rev’ is straightforward:

rev'(nc)[] =n()

rev’(n,c) (a:x) = c(a,x,rev’'(n,c) x)

which is actually equivalent to the list primitive recursion. Function rev can be expressed in terms

of rev’:
rev = rev’'(A(). [], A(a,x,r). append r [a])

The type of rev’ is:
Va, 3. () —a) x (8 x list(f) x a—a)=list(f) >«

which satisfies the following parametricity theorem (for 5 = ()):
Viwsnyeon'.dia: foon=n'o0id A fooc=co(id xid X f,) = fo(rev'(n,c)z) =r1ev'(n',)z

10

The above algorithm can be easily extended to allow recursive calls faq---a, in which some
variables in a; are bound in an outer case statement. In that case, we would need more extra
parameters for SKs; one for each case branch. A more substantial extension can be achieved by
permitting a; to contain variables that do not appear in the function patterns or in the outer case
statements. In that case we do not abstract the function call but instead we construct a lambda
expression that captures all these free variables. If all arguments to the recursive calls are free
variables, our method deteriorates to the unfold-simplify-fold law (Eq. 2), because the recursive
skeleton becomes the Y combinator. Since this is undesirable, we try to abstract as many arguments
of the recursive calls as possible.

For example, consider the following program that computes the map over bushes:

mapB(f)(Leaf x) = Leaf(f x)
mapB(f)(Branch r) = Branch(map(Az. mapB(f) z) r)

where, Leaf and Branch are the value constructors of Bush:
data Bush(a) = Leaf « | Branch list(Bush(«))

Notice that the variable z in the second equation is not bound in the pattern of the equation. Thus,
in this case we do not abstract the recursive call alone, but a lambda abstraction that contains the

recursive call:

mapB’(l,b)(f)(Leaf x) I(f,x)
mapB’(l,b)(f)(Branch r) = b(r,Az. mapB’(l,b)(f) z)

Function mapB is defined in terms of mapB’:
mapB = mapB’(A(f,x). Leaf(f x), A(r,g). Branch(map(g) r))
The type of mapB’ is:
Va, B,7. (e x =) x ((list(Bush(3)) x (Bush(8) —v)) —~)—a—Bush(3)—~
The parametricity theorem for o = 3 = () is:

Vi, LD, fia: foob=1V0o(id x (Ag. fy09))
= [y (mapB'(l,b)(f)) = mapB'(f, o 1, 0")(f)

5.2 The Fusion Algorithm

The problem of fusing two recursive functions f and h in h(f(z)) is to derive a new recursive
function with the same functionality as h(f(z)). This is not always possible. Typically, f produces
an intermediate data structure which is consumed by h. When these two functions are fused,
this data structure is not generated. In our framework, the fusion h(f(z)) is achieved by fusing
h(SK(g) z), since f = SK(g)), for some functions g;. The law for this fusion is derived directly
from the parametricity theorem of SK;.

11

We have seen that even with all the extensions described in Section 5.1, the type of SKy has
the following form:

Va. (mm—a) X - X (T, = a) =3t — - =t 2o

Note that, type 7; does not contain any negative instances of o. As we have seen from Eq. 5, the

parametricity theorem for this type is:
Vhogi,gizi: Nhogi=gioFIrl(hid) = h(SKs(g)T) = SKs(9) T (6)

This gives us a law for fusing any function h with f: h is given, each g; is derived directly from
the definition of f, and each F[r;] is derived from Definition 1. The only things that need to be
computed are the ¢/ functions.

In a previous work [9], we describe a method for solving a similar set of equations for fusing
folds. Tt relies on the fact that for each function h there exists a function ZAVV(h) such that
Va € range(h) : h(ZINV(h)z) = x, i.e., INV(h) is a right inverse of h. To see why this is true,
consider all the values aq,...,a,, n > 0 that satisfy h(a;) = --- = h(a,) = b for some value
b € range(h). Then, ZVV(h) b is defined to be one of these a;. The method described in [9] and
also used in this paper, does not actually derive a function ZVV(h) from h. Tt only assumes that
such function exists and uses the property h o ZAVV(h) = id to eliminate it.

Using ZNV(h), the premise of Eq. 6 becomes:

hogi = gio FIrl(h,id)

< hog o F[rn](INV(Rh),id) = g/ o F[r:](h,id) o F[r;](ZINV (h),id)

< hogo F[rn](ZNV(h),id) = g/ o F[r:](h o ZINV(h),id) from Eq. 4

< hog;o f[[TZ]]((h),ld) = gZ/ o f[[TZ]](ld ld) since h oDW(h) =
< hogo F[r](INV(Rh),id) = gl oi from Eq. 3

< hog; o F[rn](@NV(Rh),id) = ¢!

Thus, we derive the following algorithm from Eq. 6:

Algorithm 1 (Fusion Algorithm)

Vhy g,z h(SKs(@)Z) — SKs(¢")T where g/ = h o g; o F[r:](ZNV (h),id) (7)
Ve : h(INV(h)z) — =z (8)

Eq. 7 fuses h with f into a function that has the same recursive skeleton as f. The components
g. of the resulting skeleton are derived by fusing h, g;, and F[r;](ZNVV(h),id). Since ZNV(h) is
unknown, we only fuse h with g;. This fusion can be achieved by using Eq. 7, Eq. 8, as well some
standard partial evaluation techniques (such as applying a function to a value construction). At
the end we hope to derive terms of the form h o ZNV(h) only, which cancel ZAVV (h). Otherwise, if
there is a term ZAV(h) in the program that is not cancelled out, then the fusion algorithm fails
and the fusion A(f z) is not performed.

As an example, we will fuse nth (zip(x,y)) n, where

12

nth[]n = error()
nth (a:x) n = if n=0 then a else nth x (n-1)

Using the fusion algorithm we get:

nth (zip(x,y)) n = nth (zip'(A(a,b,r). (a,b):r, A(). [])(x,y)) n

= zip'(AM(a,b,r). nth ((a,b):(ZAVV(nth) r)), A(). nth [])(x,y) n

= zip’(A(a,b,r). An. if n=0 then (a,b) else nth(ZAVV (nth) r) (n-1),
). An. error())(x,y) n

A
A(a,b,r). An. if n=0 then (a,b) else r(n-1), A(). An. error())(x,y) n

= zip'(

~— AAA

If we unroll zip” and set f (x,y) n = nth (zip(x,y)) n, we get:

f (a:x,bzy) n = if n=0 then (a,b) else f (x,y) (n-1)

f_n = error()

But there are examples in which ZVV(h) is not cancelled out, such as in the case of the length

of the quadratic reverse. Using the fusion algorithm we get:

len(rev(x)) = len(rev’(A(). [], A(a,x,r). append r [a]) x)
= rev’'(A(). len([1), A(a,x,r). len(append (ZAV(len) r) [a])) x
= rev'(A(). 0, A(a,x,r). len(append (ZAV(len) r) [a])) x

The skeleton of append is:
append’(f.g) [1y =f(y)
append’(f,g) (axx) y = g(a,x,y.append’(f,g) x y)
If we apply the fusion algorithm recursively to fuse len with append, we get:

len(append (ZAV(len) r) [a])

= len(append’(Ay. y, A(b,x,y,s). b:s) (ZAMV(len) r) [a])

= append’(Ay. len(y), A(b,x,y,s). len(b:(ZAVV (len) s))) (ZAVV(len) r) [a]
= append’(Ay. len(y), A(b,x,y,s). 14s) (ZAVV(len) r) [a]

Therefore, len(rev(x)) is
rev'(A(). 0, A(a,x,r). append’(Ay. len(y), A(b,x,y,s). 14s) (ZAVV(len) r) [a]) x

which contains a term ZAVV(len) that has not been cancelled out. This problem occurs whenever
the result of a recursive call of a function is handled by another recursive function in a non-trivial
way (i.e., when it is deconstructed and/or recursed upon it). All the other cases can be handled
effectively by the fusion algorithm.

There are two ways to handle cases like this: One is to actually synthesize ZVY(h) from h. For

example,
INV(len) = int_fold(A().[], An. O:n)
where int_fold is the fold over integers. That way, we can fuse append’ with ZAVV(len) yielding:

len(rev(x)) = rev’'(A(). 0, A(a,x,r). int_fold(A(). Ay. len(y), Af. Ay. 14f(y)) r [a]) x

13

The other way is to use additional laws. These laws, called promotion laws, instead of fusing g
with fin ¢g(f(z)), they promote ¢ to the right of f. That is, these laws take the form: go f = hoF'(g),
for some function h that does not depend on ¢ and some function /' that depends on g. For example,

we have the law:

len(append x y) = (len(x))+(len(y))
which actually states that len is a homomorphism. That way, len(rev(x)) becomes:

rev'(A(). 0, A(a,x,r). len(append (ZAV(len) r) [a])) x
=rev'(A(). 0, A(a,x,r). (len(ZAV (len) r))+(len([a]))) x
=rev'(A(). 0, A(a,x,r). r+1) x

In general, we need to solve the following equation to synthesize k:
SKy(@) o SKy(h) = ko SK(7)

given SKy, ¢;, and h;. This equation may not have a solution in general.

6 Extensions

From Th. 3 we have:

Vfay: Plrl(ey)lfi/ei] & «=F[)(FINV()y

since f; o INMV(f;) = id. The fusion algorithm can be extended accordingly to handle any function
fim— =T

Vhya;: h(fay...zn) = f(FIn)(h,INV(R)) 21) - - (Fra](h, INV(h)) 2,,)
Ve : h(INV(R)z) — =

Using these extensions, we can achieve various types of fusion and deforestation, not captured by

the regular fusion algorithm. The following sections describe some of them.

6.1 Accumulator Deforestation

The linear version of list reverse is rev x = reverse x [|, where reverse uses an extra accumulator:

reverse [|[w = w
reverse (a:x) w = reverse x (a:w)

Its recursive skeleton is:

reverse’'(f,g) []w = f(w)
reverse’(f,g) (a:x) w = g(reverse'(f,g) x (a:w))

If we use the regular fusion algorithm, we derive:

len(reverse x []) = reverse’(len,id) x []

14

which uses the accumulator in the same way as reverse does: it starts with an empty list and at each
step it conses an element to the accumulator. At the end, it returns the length of the accumulator.

We can avoid building the list accumulator by using a simple integer accumulator instead:

h[lw =w
h (a:x) w=h x (1+w)

Such a definition can be derived by abstracting the accumulator from each recursive call in reverse’:

reverse’'(f,g) []w = f(w)
reverse’(f,g) (a:x) w = g(a,w,\z. reverse'(f,g) x z)

As before, reverse can be expressed in terms of reverse':

reverse = reverse'(Az.z, A(a,w,f). f(a:w))
The type of reverse’ is:

Va, 3,7 (7= 8) X (ax v x (y—=)= B) =list(a) =y — 3
If we set @ = () and 3 = v, then the extended fusion algorithm gives:
h(reverse'(f,g) x w) — reverse’(ho foZNV(h), hogo (id x ZINV(h) x (Ak. ZINV(h)okoh))) x (h(w))
Using this rule and after some simplifications, we get:
len(reverse x []) = reverse'(Az.z, A(a,w,f). f(1+w)) x 0

which is equivalent to the desired definition of len(rev x).

15

References

[1]

R. Burstall and J. Darlington. A Transformation System for Developing Recursive Programs.
Journal of the ACM, 24(1):44-67, January 1977.

W. Chin. Safe Fusion of Functional Expressions. Proceedings of the ACM Symposium on Lisp
and Functional Programming, San Francisco, California, pp 11-20, June 1992.

L. Fegaras and T. Sheard. Revisiting Catamorphisms over Datatypes with Embedded Func-
tions. In 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
St. Petersburg Beach, Florida, January 1996. To Appear.

L. Fegaras, T. Sheard, and T. Zhou. Improving Programs which Recurse over Multiple In-
ductive Structures. In ACM SIGPLAN Workshop on Partial Fvaluation and Semantics-Based
Program Manipulation, Orlando, Florida, pp 21-32, June 1994.

A. Gill, J. Launchbury, and S. Peyton Jones. A Short Cut to Deforestation. Sizth Conference
on Functional Programming Languages and Computer Architecture, Copenhagen, Denmark,
pp 223-232, June 1993.

J. Launchbury and T. Sheard. Warm Fusion. Seventh Conference on Functional Programming

Languages and Computer Architecture, La Jolla, California, pp 314-323, June 1995.

E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, En-
velopes and Barbed Wire. In Proceedings of the 5th ACM Conference on Functional Program-
ming Languages and Computer Architecture, Cambridge, Massachusetts, pp 124-144. Springer-
Verlag, LNCS 523, August 1991.

S. Peyton Jones and J. Launchbury. Unboxed Values as First Class Citizens in a Non-strict
Functional Language. Fifth Conference on Functional Programming Languages and Computer
Architecture, Cambridge, MA, pp 636-665, August 1991.

T. Sheard and L. Fegaras. A Fold for All Seasons. Sizth Conference on Functional Programming
Languages and Computer Architecture, Copenhagen, Denmark, pp 233-242, June 1993.

P. Wadler. Theorems for Free! Fourth Conference on Functional Programming Languages and

Computer Architecture, Imperial College, London, September 1989.

P. Wadler. Deforestation: Transforming Programs to Eliminate Trees. Proceedings of the 2nd

Furopean Symposium on Programming, Nancy, France, pp 344-358, March 1988.

16

A Proofs

Theorem 3 For any type Vaq,...,a, : T we have:

Vfiigisz,y: fiog =id = (P[[T]](x,y)[m s o =F[71(f,9)y)

Proof (by induction over the structure of the type 7):

o If 7 = basic, then F[7](f,7) = id and P[r](z,y)[fi/ci] = (z = y).

o If 7 = ay, then F[7](f,9) = f; and P[r](z,y)[fi/i] & (x = fily))-

o If 7 =7 x 7, then F[7](f,9) = F[rl(f,) x F[r](f,), and

PLrl(e, y)[fi/ o)

Plrl(mo (@), m(y)fi/] A Plral(ma(), ma(y)) [fif v
(m1(z) = F[n)(F,9) (m())) A (72(2) = Fr](F.9)
v = (FInl(F.9) x FIrI(f,9) v

v=F[71(/,9)y

]

to 00

(m2(y)))

from Th. 1
induction hypothesis

o If 7 = 71— 13, then F[7](f,9) = M. F[r](f,7) o ho F[r1](7, f), and

PLrl(k, h)[fi/ o]

Plnl(z, y)lfi/ ail = Plral(k(), h(y))[fi/ ev]

v =Tl 9y = k@) = FrI(],9) (h(y)

ko Fnl(f,9) = FIrl(f,9) o h

ko FInl(f.9) o FInl(@. f) = Flrl(f.9) o h o F[ril(3. [)

ko F[n](Fog, [og) = Flrl(f,g) oo F[nl(, J)
ko Flnl(id,id) = F[r](f,g) o h o F[1i1(g, f)
koid = F[r](f,g) o ho FInl(g, f)
k=F[r1(f,9)h

A1

from Th. 1
induction hypothesis

(*)
from Eq. 4
since f; o g; = id

from Eq. 3

The equivalence (*) is true because range(h) = domain(f) = (f=g< foh=goh).

o If 7 =T(r'), then F[r](f,7) = map? (F[7'](f,7)), and

L o]

v = map (F[7'1(f,9) y
z=F[r1(f,9)y

to 00

17

: (V20 Pr)(h(2), 2)[fi/i]) = @ = map” (h) y from Th. 1
Yh: (Vz: h(z) = F[T')(f,9) 2) = = map? (h)y induction hypothesis

d

