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Abstract

Smoothing regularizers for radial basis functions have been studied extensively, but no general smoothing
regularizers for projective basis functions (PBFs), such as the widely-used sigmoidal PBFs, have heretofore
been proposed. We derive new classes of algebraically-simple mth-order smoothing regularizers for networks
of projective basis functions f�W�x� �

PN
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With appropriate constant factors, these regularizers bound the corresponding mth-order smoothing integral
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In the above expressions, W denotes all the network weights fuj � u0� vj� v0g, and Ω�x� is a weighting function
(not necessarily the input density) on theD-dimensional input space. The global and local cases are distinguished
by different choices of Ω�x�.

These simple algebraic forms R�W�m� enable the direct enforcement of smoothness without the need for
costly Monte-Carlo integrations of S�W�m�. The regularizers are tested on illustrative sample problems and
compared to quadratic weight decay. The new regularizers are shown to yield better generalization errors than
weight decay when the implicit assumptions in the latter are wrong. Unlike weight decay, the new regularizers
distinguish between the roles of the input and output weights and capture the interactions between them.

1 Introduction: What are the right biases?

Regularization is a technique for reducing prediction risk by balancing model bias and model variance. A regularizer
R�W � imposes prior constraints on the network parameters W . Using squared error as the most common example,



the objective functional that is minimized during training is
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where y�i� are target values corresponding to the inputsx�i�,M is the number of training patterns, and the regularization
parameter 	 controls the importance of the prior constraints relative to the fit to the data. Several approaches can be
applied to estimate 	 (see for example Eubank (1988) or Wahba (1990)) in order to minimize the prediction risk by
optimizing the bias/variance tradeoff.

Regularization reduces model variance at the cost of introducing some model bias. An important question arises: What
are the right biases? (Geman, Bienenstock & Doursat 1992). A good choice of the regularizer R�W � will result in
lower expected prediction error than will a poor choice.

Weight decay is often used effectively, but it is an ad hoc technique that controls weight values rather than the fit to the
data directly. It is thus not necessarilyoptimal. Weight decay is not appropriate for arbitrary function parameterizations,
since it will give very different results, depending upon whether a function is parameterized, for example, as f�w� x�
or as f�w�1� x�.

Since many real world problems are intrinsically smooth, we propose that in many cases, an appropriate bias to impose
is to favor solutions with low mth-order curvature. Direct penalization of curvature is a parametrization-independent
approach. The desired regularizer is the standard D dimensional curvature functional of order m:
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Here k k denotes the ordinary euclidean tensor norm and �m��xm denotes the mth order differential operator. The
weighting function Ω�x� ensures that the integral converges and determines the region over which we require the
function to be smooth. Ω�x� is not required to be equal to the input density p�x�, and will most often be different.

The use of smoothing functionals like (2) has been extensively studied for smoothing splines (Eubank 1988, Hastie &
Tibshirani 1990, Wahba 1990) and for radial basis function (RBF) networks (Powell 1987, Poggio & Girosi 1990, Girosi,
Jones & Poggio 1995). However, no general class smoothing regularizers that directly enforce smoothness S�W�m�
for projective basis functions (PBFs), such as the widely used sigmoidal PBFs, has been previously proposed.

Since explicit enforcement of smoothness using (2) requires costly, impractical Monte-Carlo integrations,1 we derive
algebraically-simple regularizers R�W�m� that tightly bound S�W�m�.

2 Derivation of Simple Regularizers from Smoothing Functionals

We consider single hidden layer networks with D input variables, Nh nonlinear hidden units, and No linear output
units. For clarity, we setNo � 1, and drop the subscript onNh (the derivation is trivially extended to the caseNo 
 1).
Thus, our network function is

f�x� �
NX
j�1

ujg��j �x� � u0 (3)

where g��� are the nonlinear transfer functions of the internal hidden units, x � RD is the input vector2 , �j are the
parameters associated with internal unit j, and W denotes all parameters in the network.

For regularizers R�W �, we will derive strict upper bounds for S�W�m�. We desire the regularizers to be as general as
possible so that they can easily be applied to different network models. Without making any assumptions about Ω�x�
or g���, we have the upper bound
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1Note that (2) is not just one integral, but actuallyO�Dm� integrals, since the norm of the operator �m��xm has O�Dm� terms.
This is extremely expensive to compute for large D or large m.

2Throughout, we use small letter boldface to denote vector quantities.



which follows from the inequality
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function Ω�x�. One is to require global smoothness, in which case Ω�x� is a very wide function that covers all relevant
parts of the input space (e.g. a very wide gaussian distribution or a constant distribution). The other option is to require
local smoothness, in which case Ω�x� approaches zero outside small regions around some reference points (e.g. the
training data).

In a longer paper (Moody & Rögnvaldsson 1996), we consider two general families of transfer functions g���, namely
projective basis and radial basis representations. In this paper, we focus on projective basis functions.

2.1 Projective Basis Representations

Projective basis functions (PBFs) are of the form g��j �x� � g
�
x
T
vj � vj0

�
� where �j � fvj � vj0g, vj =

�vj1� vj2� � � � � vjD� is the vector of weights connecting hidden unit j to the inputs, and vj0 is the bias, offset, or
threshold.

For PBFs, expression (4) simplifies to
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and zj�x� � x
T
vj � vj0.

Although the most commonly used g����s are sigmoids, our analysis applies to many other forms, for example flexible
fourier units, polynomials, and rational functions.3 The classes of PBF transfer functions g��� that are applicable (as
determined by Ω�x�) are those for which the integral (5) is finite and well-defined.

2.2 Global weighting

For the global case, we select a gaussian form for the weighting function
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and require � to be large. The gaussian simplifies evaluation of the smoothing integral considerably, since it is both
separable and spherically symmetric. Integrating out all dimensions, except the one associated with the projection
vector vj , we are left with
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If �dmg�z��dzm�2 is integrable and approaches zero outside a region that is small compared to �, we can accurately
bound (7) by setting the exponential in the integrand equal to unity. This implies
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Defining the global regularizer to be

RG�W�m� �
NX
j�1

u2
jkvjk2m�1 � (9)

the bound of equation (5) becomes
S�W�m� � NI�m�RG�W�m� � (10)

where the subscript G emphasizes the fact that this is an upper bound in the global limit of large �. Since 	 absorbs
all constant multiplicative factors, we need only weigh expression (9) into the training objective function.

3See for example Moody & Yarvin (1992).



2.2.1 Local weighting

For the local case, we consider weighting functions of the general form
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where x
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function. Thus, when the x�i� are the training data points, the limiting distribution of (11) is the empirical distribution.

In the limit � � 0, equation (5) becomes
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In theory, we could compute the expression within parenthesis in (12) for each input patternx�i� during training and use
it as our regularization cost. However, this requires explicit design for each transfer function form and also becomes
increasingly complicated as we go to higher m. To construct a simpler and more general form, we instead assume that
the mth derivative of the transfer function is bounded and define the constant

CL�m� � max
z
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and the local smoothing regularizer

RL�W�m� �
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This gives the bound
S�W�m� � NCL�m�RL�W�m� (15)

for the maximum local curvature of the function (the subscript L emphasizes that it is an upper bound in the local
limit).

3 Empirical Example

We have done extensive simulation studies that demonstrate the efficacy of our new regularizers for PBF networks
on a variety of problems. A full account will be given in Moody & Rögnvaldsson (1996). Here, we demonstrate the
value of using smoothing regularizers on a simple problem which illustrates a key difference between smoothing and
quadratic weight decay, the two dimensional bilinear function

t�x1� x2� � x1x2� (16)
This example was used by Friedman & Stuetzle (1981) to demonstrate projection pursuit regression. It is the
simplest example of a function that has interactions between the input variables. The function can be well-fitted
by a one hidden layer network with four sigmoidal hidden units by expressing the function in the form t�x1� x2� �
0�5�x1 � x2�2 � 0�5�x1 � x2�2 and approximating the quadratic functions with a superposition of two sigmoids.

We have run nine different versions of this experiment with training sets of sizesM � f20� 40� 100g, randomly sampled
from the space �1 � fx1� x2g � 1, and additive gaussian noise with standard deviation s � f0�1� 0�2� 0�5g, which
corresponds to signal-to-noise ratios (SNR) of f3�33� 1�67� 0�67g. The student networks have 8 hidden tanh��� units
and one linear output. Figure 1 illustrates, for the special case of s � 0�2 and a training set with 40 data points, how the
generalization performance improves when higher order smoothing regularizers (m � 2 and m � 3) are used instead
of weight decay or first order smoothers, which yield inferior solutions.

Over the nine sample size and SNR cases, we find that both the global and local smoothing regularizers with (m � 2
and m � 3) outperform weight decay (whether bias weights are included or not), that the local m � 1 case performs
similarly to weight decay. Only in the global m � 1 case does weight decay have the edge. This is not surprising,
though, since the target function is quadratic. Weight decay performs poorly relative to the m � 2 and m � 3
smoothing regularizers, because it lacks any form of interaction between the input layer and output layer weights v j
and uj .
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(a) Global smoother of different order
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Global smoother, m=3
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(b) Weight decay vs. global smoother

Weight decay
Global smoother, m=3

Figure 1: (a) Generalization errors on the x1x2 problem, with 40 training data points and a signal-to-noise ratio of 2/3,
for different values of the regularization parameter and different orders of the smoothing regularizer. For each value of �,
10 networks have been trained and averaged (geometric average). The best generalization error decreases with increasing
order of the smoothing regularizer. The shaded area shows the 95% confidence bands for the average performance of
a linear model on the same problem. (b) Similar plot for the m � 3 smoother compared to the standard weight decay
method. Error bars mark the estimated standard deviation of the mean generalization error of the 10 networks.

4 Quality of the Regularizers: Approximations vs Bounds

With appropriate multiplicative factors, eqs. (9) and (14), are strict upper bounds to the smoothness functional
S�W�m�, eq. (2), in the global and local limits, � � � and � � 0. However, questions arise as to how tight the
bounds are and how well the regularizers R�W�m� track the curvature functional S�W�m�. If the bounds are not
sufficiently tight, then penalizing R�W�m� might not have the effect of penalizing S�W�m�.

In this section, we present approximations to S�W�m� that are proportional to the bounds, and present empirical
results that demonstrate that penalizing R�W�m� does in fact have the effect of penalizing S�W�m� for networks of
PBFs. Note that for the proposed regularizers R�W�m� to be effective in penalizing S�W�m�, we need only have an
approximate monotonic relationship between them. In fact, we argue and demonstrate empirically that an approximate
linear relationship between R and S holds.

We first observe that the bound (4) should not introduce significant error for problems in which the mth derivatives of
the internal unit activities are uncorrelated. Under the uncorrelated internal unit assumption, therefore, the bounds of
equations (10) and (15) can be replaced by the approximations:

SG�W�m� � IG�m�RG�W�m� (17)
SL�W�m� � CL�m�RL�W�m� � (18)

using
�PN

i�1 ai
�2

� PN
i�1 a

2
i � Note that the right hand sides differ from those in equations (10) and (15) only by a

factor of N , so these approximations are proportional to the bounds.

For our regularizers, the constant factor N doesn’t matter, since it can be absorbed into the regularization parameter
	 (along with the values of the factors IG�m� or CL�m�). Since 	 is selected on a case by case basis anyway, such
constant factors are irrelevant. In practical terms then, there is no difference between using the upper bounds (10) and
(15) or the uncorrelated approximations (17) and (18).

Our empirical results presented below indicate the uncorrelated hidden unit assumption yields a good approximation for
both the global and the local cases, especially when the dimensionality of the input space gets large. The probability of
having significant correlation between two internal units decreases exponentially with the input space dimension, and
is very small already for moderate numbers of variables. Furthermore, even in low dimensions, the possible positive
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Figure 2: Linear correlation between S�W�m� and R�W�m� for a neural network with 10 input units, 10 internal tanh���
PBF units, and one linear output. The left column shows results for first order smoothing �m � 1� and the right column
shows results for second order smoothing �m � 2�. The top row shows the global form of the regularizer RG�W�m�
and the bottom row shows results for the local form RL�W�m�. Note that the correlation coefficients are very close to
1.0, confirming that penalizing R�W�m� effectively penalizes the curvature functional S�W�m�.

overlap between internal units decreases for many transfer functions (e.g. sigmoids) with increasing order of the
derivative. The accuracies of the approximation thus improves with increasing input dimension, and with increasing
m. This is a very nice effect, since many real problems deal with many (10 or more) input variables.

4.1 Empirical Comparisons of R�W�m� vs S�W�m�

For the regularizers R�W�m� to be effective in penalizing S�W�m�, an approximate monotonically-increasing rela-
tionship must hold between them. The uncorrelated internal unit assumption implies that this relationship is linear.

To test for such a linear scaling, we generated a large number of randomly selected networks. For each such network, we
computed the values of R�W�m� and performed Monte Carlo integrations to compute S�W�m�. For each experiment,
we fit a linear model R�W�m� � � � �S�W�m� to the data, estimating the parameters � and �. The accuracy of the
linear scaling is measured by the linear correlation hRSi�

p
�hR2ihS2i�. Under the assumption of a linear relationship,

the quality of the regularizers can thus be measured. If the linear correlation is high, using the regularizer R�W�m�
effectively penalizes the smoothing functional S�W�m�.

Figure 2 shows the correlation between the value of the true functional (2) and our regularizers for networks with 10
input units (D) and 10 internal units (N ). The value of S�W�m� is estimated through Monte Carlo integration. That
is, we sample 105 input data patterns from a gaussian distribution with zero mean and unit variance, and replace the



integration with a summation over these points. This is repeated 500 times, picking new random weights each time
but keeping the network architecture constant.

The correlation is very high for both the global and local forms, although the global form is slightly better. To verify
that this finding is not spurious, we repeat our Monte Carlo simulations for many different network architectures with
varying D and N , using the same method for sampling weights. These results (presented in Moody & Rögnvaldsson
(1996)) show that the same conclusions hold as the number of hidden or input units increase or decrease. As anticipated,
the regularizers are better estimates of S�W�m� when the number of inputs grows or when the order m is increased.

5 Discussion

Our regularizersR�W�m� are the first general class of mth–order smoothing regularizers to be proposed for projective
basis function networks. The forms of the regularizers differ fundamentally from quadratic weight decay, in that they
distinguish the roles of the input weights vj and output weights uj , and capture the interactions between them. Our
regularizers apply to PBFs with large classes of transfer functions g���, including sigmoids.

Our approach differs from that developed for smoothing splines and smoothing radial basis functions, in that we derive
smoothing regularizers for given classes of units g��� x�, rather than derive the forms of the units g��� by requiring them
to be Greens functions of the smoothing operator S���. Our approach thus has the advantage that it can be applied to
the types of networks most often used in practice.

In a longer paper (Moody & Rögnvaldsson 1996), we present the application of our approach to radial basis function
networks and present extensive simulation results for both PBFs and RBFs.
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