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Abstract

Recently� Olivier Danvy��� introduced a new� simple
method for implementing powerful partial evaluators�
Type�directed partial evaluation� While type�directed
partial evaluators are simple to construct� small in size�
elegant� and need no analysis other than type inference�
Danvy	s implementation technique had several draw�
backs
 it could not handle polymorphic functions� terms
with free variables� the residualization of recursive func�
tions� or the residualization of inductive datatypes�

This paper introduces a type�directed� on�line� par�
tial evaluator� for a polymorphic lambda calculus with
products� sums� and �xed points �recursion over both
values and types which �xes all these drawbacks� It
introduces a novel� new implementation technique that
embeds types in values� which enables these extensions�
This implementation technique makes type�directed par�
tial evaluators practical for �real� languages�

The paper also introduces a new way of thinking
about type�directed partial evaluators as expansion�
reduction systems� This analogy clari�es many of the
subtleties inherent in type�directed partial evaluation�

� Introduction

We have constructed a type�directed� on�line partial
evaluator for a strongly typed functional language with
all of the features functional programmers have come
to expect� such as polymorphism� inductive datatypes�
and recursion� Type�directed partial evaluation uses
a simpler strategy than earlier systems� yet still pro�
vides much of the same power
 including polyvariant
specialization� higher order functions� partially static
data structures� and automatic propagation of static
contexts over dynamic branches��

Simple implementations of e�ective partial evalua�
tors are important because many systems with �small�
embedded languages could bene�t from the use of par�
tial evaluation technology� Until now� the e�ective use
of a partial evaluator meant integrating one of the avail�
able� state of the art� o��the�shelf partial evaluators
with the embedded language� Writing an e�ective par�
tial evaluator for even a small language was beyond the

�No manual binding time improvements are necessary�

reach of most embedded language implementors� This
no longer need be the case�

Partial evaluation is a transformation that takes as
input a �source program plus some of that program	s
inputs� and produces another �residual program that
is an e�cient version of the source program specialized
to the given input� It is traditionally implemented by
encoding the source program and its input in a data
structure� and performing a symbolic evaluation of the
this data structure taking advantage of the known in�
puts to produce the residual program�

Type�directed partial evaluation� on the other hand�
achieves similar results� only in new and novel ways�
Type directed partial evaluators can be implemented
by rei�cation� A semantics provides a meaning to a
syntactic program� In its purest sense� rei�cation trans�
lates from the semantic domain back to an equivalent
expression in the syntactic domain� Such a mechanism
supplies the most important part of a partial evalua�
tor� Any curried function of two or more arguments
can be partially evaluated by applying it to its known
argument�s then reifying the resultant semantic value
to get a syntactic representation of the specialized func�
tion as the residual program�

Our system can be explained as an expansion�reduction
system� Reduction takes a term to a smaller� simpler
form� Expansion takes a term to a larger� potentially
more complex term� The utility of such systems is that
sometimes� a tiny amount of expansion will make pos�
sible a much larger reduction� driving the term to a
much simpler form� Unfettered expansion can lead to
non�termination� so determining when to expand is the
key to implementing e�ective expansion�reduction sys�
tems�

The contribution of this paper is that e�ective par�
tial evaluators for realistic languages can be built as
expansion�reduction systems� and that the type�directed
strategy of Danvy ��� is exactly the mechanism needed
to determine when expansion is necessary� The expan�
sion used is a generalization of ��expansion�

Using this strategy the reduction mechanism is im�
plemented as a function that maps an abstract syntax
object of type exp to a simpler type called a value� The
beauty of this system is that the operational semantics
of the language is the reduction part of the expansion�
reduction system� Partial evaluation is implemented�
in part� as a function that takes a value back to an
equivalent exp�



We use a novel implementation technique in which
types are embedded in values� A disadvantage of this
technique is that type information in the form of type
tags must continually be passed around by the imple�
mentation �but only at partial evaluation�time� An
advantage of this technique is that every value embeds
its own type� and this allows our implementation to ex�
tend the work of Danvy by handling�

� polymorphically typed functions�

� free variables in terms�

� an explicit �xed�point operator� and

� inductive datatypes�

In summary� this paper illustrates a new� simple
method of implementing powerful partial evaluators for
rich languages�

� Type Based Rei	cation

This paper explains type�directed partial evaluation by
providing implementations for a sequence of lambda cal�
culus variants of increasing complexity� In each variant
we will construct a domain of types �typ� a syntactic
domain �exp� and a semantic domain �value��

The meaning function� eval� provides the reduction
engine of the expansion�reduction system� as well as the
operational semantics of each calculus� Two mutually
recursive �type�directed functions reify and reflect
aid in the implementation of partial evaluation� The
function reify maps from values back to equivalent
exps� This is possible because our implementation ex�
pands the notion of a value to include additional in�
formation� such as types and a mechanism for embed�
ding syntactic terms in semantic values� The func�
tion reflect implements the expansion portion of the
expansion�reduction system� mapping from simple exp	s
to more complex values�

Our �rst calculus is a simply typed lambda calculus
with integer constants� Danvy describes a type�directed
partial evaluator for this calculus where the domain of
syntax is Scheme� the meaning function is the Scheme
compiler� and the rei�cation algorithm is type directed�
having an explicit type parameter� In Figure � we repro�
duce this work by exhibiting an SML implementation
for the �rst lambda calculus in our sequence�

In this calculus there are only integer types �tint
and function types �tarrow �though other base types
other than integer would work just �ne as well� There
are four kinds of elements in the syntactic domain� in�
teger constants �eint� function application �eapp� ab�
stractions or function construction �eabs� and vari�
ables �evar�

The domain of values contains constructors for inte�
gers �vint and functions �vfun corresponding to the
types tint and tarrow� In addition� the domain of
values must also contain the coercion���� vdyn� This

�We adhere to the convention that the initial letter of each con�
structor function is one of the letters� t� e� or v indicating to which
one of these domains the constructors belongs� t for types� e for
expressions �the syntactic domain�� and v for values �the semantic
domain��

datatype typ � �� domain of types ��
tint

� tarrow of typ � typ�

datatype exp � �� syntactic domain ��
eint of int �� e�g� 	 ��

� eapp of exp � exp �� f 	 ��
� eabs of string � exp �� fn x �
 x ��
� evar of string� �� x ��

datatype value � �� domain of values ��
vint of int

� vfun of �value �
 value�
� vdyn of exp�

fun eval env e � �� the interpreter ��
case e of

�eint n� �
 vint n
� �eapp�x�y�� �


�case �eval env x� of
vfun f �
 f�eval env y��

� �eabs�x�body�� �

let fun F v � eval �extV x v env� body
in vfun�F� end

� �evar s� �
 �getV s env�

fun reify tint �vint n� � eint n
� reify �tarrow�t�t��� �vfun f� �
let val s � gensym �x�

fun g x � reify t� �f �reflect t x��
in eabs�s�g �evar s�� end

� reify � �vdyn e� � e

and reflect �tarrow�t�t��� e �
vfun�fn v �
 reflect t�

�eapp�e�reify t v���
� reflect �tint� e � vdyn e

Figure �� First Lambda Calculus Version

constructor is crucial to implementing rei�cation in a
typed language such as SML� It allows the syntactic
domain to be embedded in the semantic domain� Dy�
namic values are transparent at the programmer level
interface and are used only by the rei�cation process�

The evaluation function is completely standard� It
uses an environment� env� to map variables to values
and has type� env �
 exp �
 value� It uses two aux�
iliary functions getV to apply the environment to a vari�
able� and extV to extend an environment at a particular
variable to a new value�

In this calculus rei�cation works over values pro�
duced by eval from closed terms� and is implemented
by the mutually recursive functions reify and reflect�

�
� How does Rei	cation Work�

The functions reify and reflect are used to map val�
ues back to expressions� Reifying an integer value is
trivial� Reifying a function is more di�cult� We must
somehow build an exp when all we have is a func�
tion from value to value which implements it	s be�



havior� As strange as this may seem� if the function
was produced by eval from a closed term then this is
possible��� ���

Correctly reifying such a function can be done if one
knows the type of the function
 this is why both reify
and reflect take an initial typ parameter�

A key to this process is the reflect function� A
value to value function� f� expects an argument with
a particular shape
 i�e� constructed in a particular way
from the constructors vint and vfun� If it is applied
to a value with the wrong shape an error will occur�
Normally type correctness �lters out programs in which
such errors may occur� but in rei�cation we may apply f
to a vdyn value� We must expand such a dynamic value
to have the additional shape f demands� Without this
expansion we cannot proceed� since application of the
function f could fail� Expansion at precisely this place
is the key to making this strategy work� The types
indicate exactly how the expansion is to proceed�

To reify vfun�f�� with type tarrow�t�t��� an ab�
straction whose bound variable is a new fresh variable s
is constructed� This variable is expanded� by reflect
into a value with the proper shape� The �semantic�
function f is applied to this dynamic value and the
function reify is applied to the result to obtain the
body of the abstraction�

If vfun�f� was constructed by eval from a closed
term then all f can do is �push its argument around��
Thus if the dynamic value constructed has the correct
shape then nothing can go wrong� For example consider
the identity function at the type tarrow�tint�tint��

reify �tarrow�tint�tint��
�eval sigma �eabs��x��evar��x�����

� reify �tarrow�tint�tint��
�vfun�fn v��eval �extV �x� v sigma� �evar �x����

� reify �tarrow�tint�tint��
�vfun�fn v��v��

� eabs ��d���reify tint
��fn v��v� �reflect tint �evar �d������

� eabs ��d���reify tint ��fn v��v� �vdyn �evar �d������
� eabs ��d���reify tint �vdyn �evar �d�����
� eabs ��d����evar �d����

In reflect� the proper shape of an integer �or any
other base type is obtained simply by using the vdyn
injection� The proper shape of a function is a vfun
value whose body is constructed by fully eta�expanding
the argument e�

As we progress through our sequence of lambda cal�
culi the trick will be to adjust reify to construct ex�
pressions from values with ever richer structure and
for reflect to construct fully expanded values from
expressions� Expansion���� is a generalization of eta�
expansion denoting that any exp can be made into a
value that has the full structure that its type demands�

� An Important Contribution of this Work

An interesting observation about the behavior of the
function reify leads to a signi�cant improvement in the
implementation of rei�cation based partial�evaluators
by enabling extensions that �x the drawbacks of Danvy	s
original paper�

Note that the structure of values �i�e� the di�erent
constructors vint and vfun contain partial informa�
tion about the types of a value� By embedding a small�

additional amount of type information in vfun values
it is possible to provide all the type information neces�
sary for rei�cation completely internal to a value� This
change in the implementation allows the function reify
to no longer need a separate typ input� and directly
supports the extensions that follow�

datatype exp � ���
� eabs of typ � string � exp

datatype value � ���
� vfun of typ � �value �
 value�

fun eval env e �
case e of ���
� �eabs�t�x�body�� �


let fun F v � eval �extV x v env� body
in vfun�t�F� end

fun reify �vint n� � eint n
� reify �vfun�t�f�� �

let val s � gensym �x�
fun g x � reify �f �reflect t x��

in eabs�s�g �evar s�� end
� reify �vdyn e� � e

and reflect �tarrow�t�t��� e �
vfun�t�fn v �


reflect t �eapp�e�reify v���
� reflect �tint� e � vdyn e

Figure �� Version with Embedded Types

The extra information necessary is the type of the
domain of a vfun value� Since vfun values are con�
structed from eabs expressions by eval� we will need
to annotate eabs� with type information as well� This
is not an undue burden because the concrete syntax
need not carry this information
 instead it can be added
to the abstract syntax by a type inference mechanism�
In addition when we move from the simply�typed to
the polymorphically�typed lambda calculus we will need
this information anyway�

These changes are outlined in Figure �� In this �gure
the dots ���� indicate elided segments which are iden�
tical to those in Figure �� Note the additional typ com�
ponent of the constructors eabs and vfun� and how this
type is propagated into vfun values by the eval func�
tion and used by reify to direct the expansion process
by being passed as the parameter to reflect�

Note that rei�cation is still type�directed� even though
a typ is no longer an explicit parameter to reify�

� Adding Products and Sums

Finally� products and sums are also handled by Danvy	s
system� Incorporating them into our implementation
is straight forward� We need only to ensure that our
extensions for products and sums enforce the invariant
that values embed their own types�

In Figure � we provide the datatype declarations nec�
essary for adding sums and products� Products are im�



datatype typ � ���
� tpair of typ � typ
� tsum of typ � typ�

datatype tag � left � right�

datatype exp � ���
� epair of exp � exp
� epabs of string � string � typ � exp
� esum of tag � exp
� esabs of typ � string � exp � string � exp�

datatype value � ���
� vpair of value � value
� vsum of tag � value�

Figure �� Type Additions for Sums � Products

plemented as a pair of values� Sums are implemented
by tagging a value with one of the constructors left or
right of the tag datatype�

In the syntactic domain we must provide abstract
syntax for both the introduction and eliminationof prod�
ucts and sums� Here we explain our choice of abstract
syntax by appealing to a �hopefully familiar �though
imaginary concrete syntax which has a direct mapping
into the constructors we have added to the datatype
exp�

The introduction of products �epair uses the tra�
ditional parentheses comma notation to pair two ex�
pressions� e�g� ���x�� The elimination of products
�epabs uses a pattern matching abstraction with two
bound variables with an explicit annotation denoting
the domain of the abstraction� For example one might
write� �fn �t � t�� �x�y� �
 x� for the �rst pro�
jection function� Here �t � t�� is the type annota�
tion� �x�y� indicate the bound variables� and the body
of the abstraction is just x�

Sums are introduced �esum by tagging an expres�
sion with one of the sum injection tags� For exam�
ple �left x� or �right 	�� The elimination of sums
�esumabs uses a pattern matching abstraction with two
clauses� For example� �fn �t � t�� left x �
 � �
right y �
 �� denotes the constant � function� Note
again� the explicit annotation� �t � t��� denoting the
domain of the abstraction�

In Figure � we give the semantic evaluation function
eval and the rei�cation functions reify and reflect�
Again the dots ���� indicate elided clauses which are
identical to those in previous �gures� The evaluation
function is again completely standard� It is interesting
to note� though� that the evaluation of product elimi�
nation �epabs and sum�elimination �esabs build ML
functions �F and G� which use the pattern matching
capabilities of the underlying implementation language
to decompose their value arguments� Note that these
functions will cause an SML match exception if they
are applied to non�pairs or non�sums� This is one place
where the errors discussed in Section ��� originate� In
well�typed programs� without rei�cation� this will never
occur� The expansion properties of reflect ensure that
these errors do not occur while reifying�

In Figure � the reify function over a function value
�vfun�t�f� must construct one of the three kinds of
abstractions� i�e� product elimination� sum elimination�
or ordinary lambda abstraction� By inspecting the do�
main t this choice can be made� It builds an appropriate
abstraction with �fresh� bound variables� and uses Fil�
inski	s reset control operator���� ��� to delimit a new
dynamic context� This context may be abstracted by a
shift control operator in the reflect function�

The function reflect expands its exp argument to
have the shape of its typ argument� For a product it
returns a vpair where the components are the �rst and
second projection functions applied to e� Here

fun efst t e � eapp�epabs��x���y��t�evar �x���e�
fun esnd t e � eapp�epabs��x���y��t�evar �y���e�

Functions are expanded using eta�expansion� and re�
�ect over a sum constructs a case statement which cap�
tures the current delimited context using shift in the
abstracted variable k� and pushes this context into the
clauses of a case expression� Note that a case expression
over a term e is simply syntactic sugar for application
of a sum abstraction to e� I�e� case x of C x �
 e �
D y �
 f is the same as �fn C x �
 e � D y �
 f�
x�

At this point we have completed an implementation
of the same material found in Danvy	s paper which he
implemented using Scheme� The only di�erence is that
we use a novel implementation technique in which types
are embedded in values� A disadvantage of this tech�
nique is that type information in the form of type tags
must continually be passed around� An advantage of
this technique is that every value embeds its type� This
allows our implementation to handle several important
extensions�

 Adding Polymorphism

Polymorphism is an important feature used extensively
in modern functional languages�

To add polymorphism to our partial evaluator we
need to add universally quanti�ed types in the domain
of types� and type abstraction and type application in
the syntactic domain� In the semantic domain we need
to add type functions which when given a type return
a value specialized to that type�

datatype typ � ���
� tuniv of string � typ
� tvar of string�

datatype exp � ���
� etapp of exp � typ �� Ex� len �int� ��
� etabs of string � exp�

�� Ex� Fn alpha �
 fn �alpha� x �
 x ��

datatype value � ���
� vtypfun of typ �
 value�

Figure �� Type Additions for Polymorphism



fun eval env e �
case e of
epair�x�y� �
 vpair�eval env x�eval env y�

� epabs�x�y�t�body� �

let fun F �vpair�v�v��� � eval �extV x v �extV y v� env�� body
in vfun�t�F� end

� esum�tg�e� �
 vsum�tg�eval env e�
� esabs�t�x�e�y�e�� �
 let fun G �vsum�left�v�� � eval �extV x v env� e

� G �vsum�right�v�� � eval �extV y v env� e�
in vfun�t�G� end

� ���

fun reify �vpair�a�b�� � epair�reify a� reify b�
� reify �vsum�tg�v�� � esum�tg�reify v�
� reify �vfun�t�f�� �

�case t of
tpair�t�t�� �


let val s � gensym �y� val s� � gensym �z�
val p � epair�evar s� evar s��

in epabs�s�s��t�reset �fn �� �
 reify �f �reflect t p���� end
� tsum�t�t�� �


let val s � gensym �m� val s� � gensym �n�
fun clause tag t s �� � reify �f �vsum�tag�reflect t �evar s����

in esabs�t�s�reset �clause left t s��s��reset �clause right t� s��� end
� � �
 let val s � gensym �x�

in eabs�s�t�reset �fn �� �
 reify �f �reflect t �evar s����� end�
� reify ���

and reflect �t as tpair�t�t��� e �
vpair�reflect t �efst t e��reflect t� �esnd t e��

� reflect �t as tsum�t�t��� e �
let val s � gensym �l� val s� � gensym �r�

fun clause k tag t s �� � k�vsum�tag�reflect t �evar s���
in shift �fn k �
 eapp�esabs�t�s�reset �clause k left t s��

s��reset �clause k right t� s���
e��

end
� reflect ���

Figure �� Additions to Eval� Reify and Re�ect for Sums and Products

The evaluation function becomes more complex be�
cause the environment must now map both value vari�
ables to values and type variables to types� The type
mapping is extended when evaluating type abstractions
and it is used to perform type substitution on the types
in type application as well as the explicit domain type
annotations present in abstractions� Figure � provides
the details of this process� Here extT extends the type
mapping in the environment� and getT uses the type
environment to instantiate the type variables over its
typ argument�

All the di�culties in handling polymorphism are in�
herent in constructing values with the correct type� The
eval function does this quite elegantly� Only the cases
which deal with types di�er from our previous version�
When constructing a function value vfun�t�f�� we must
be sure that t is fully instantiated using the type map�
ping environment� This ensures that the embedded
types in vfun values correctly describe the type of their
function �f counterparts� Note that this implies that
every vfun function ever created is monomorphic� Type

instantiation must also be done when an expression is
specialized using type application�

Rei�cation for a polymorphic language where the
types are explicitly contained in the values becomes al�
most trivial� Rei�cation of a type function is a type
abstraction in the syntactic domain� Re�ection over a
term with a universal type constructs a type function�
but we must �rst replace all occurrences of the univer�
sally bound type variable with the argument of the type
function� reflect expands a type variable in the same
way it expands a base type� by using the vdyn injec�
tion� This is always safe because if the function is truly
polymorphic then it makes no assumption about the
�shape� of its argument� and will thus never �probe� a
value	s structure in a way that will cause an error�

� Handling Non�Closed Terms

One of the restrictions in Danvy	s work was the inabil�
ity to handle terms with free variables� In the imple�



fun eval env e �
case e of ���
� �eabs�t�x�body�� �


let fun F v � eval �extV x v env� body
in vfun�getT t env�F� end

� �epabs�t�x�y�body�� �

let fun F �vpair�v�v��� � eval

�extV x v �extV y v� env�� body
in vfun�getT t env�F� end

� �esabs�t�x�e�y�e��� �

let fun F �vsum�left�v�� �

eval �extV x v env� e
� F �vsum�right�v�� �

eval �extV y v env� e�
in vfun�getT t env�F� end

� �etabs�s�e�� �

vtypfun�fn t �
 eval �extT s t env� e�

� �etapp�e�t�� �

�case eval env e of

vtypfun f �
 f �getT t env���

fun reify x �
case x of ���
� �vtypfun f� �

let val t � gensym �t�
in etabs�t�reify �f �tvar t��� end

and reflect t e �
case t of ���
� �tuniv�s�t�� e �

vtypfun�fn t� �

reflect �typsub ������s�t���� t� e�

� �tvar �� e � vdyn e

Figure �� Polymorphic Eval� Reify � Re�ect

mentation above every value embeds its own type� Free
variables in terms no longer cause problems� The mean�
ing of a term with free variables is parameterized by the
values assigned to those variables in the initial environ�
ment� These values �like all values embed their own
types so rei�cation of these values is handled by the
existing system�

� Handling Primitives and Constants

Practical systems supply primitive operations on base
types� These operations usually appear as additional
constructs in the syntactic domain� or as constants in
the initial environment� Because rei�cation may in�
troduce dynamic values �constructed with vdyn every
primitive function needs to know how to react when it
is applied to such a value�

Consider an addition function present in the initial
environment� It might be encoded as a function value
as follows�

vfun�tpair�tint�tint��
fn vpair�vint n�vint m� �
 vint�n�m�
� vpair�vdyn e� x� �


vdyn�eapp�evar �plus��
epair�e� reify x���

� vpair�x� vdyn e� �

vdyn�eapp�evar �plus��

epair�reify x�e���
� vdyn e �
 vdyn�eapp�evar �plus��e��
� � �
 error �ill�typed��

This function is smart� When it is applied to a dynamic
argument� it knows how to reconstruct its syntactic rep�
resentation� This solution is present in Danvy	s paper�
but can cause additional problems which must be ad�
dressed�

�
� Primitives Force Additional Machinery

Without primitives� functions created by eval� in a type
correct program� are never applied to values with the
wrong shape� In the rei�cation process� the use of the
reflect expansion guarantees that enough �structure�
is wrapped around vdyn values to make them �invisi�
ble� to the functions which are applied to them� When
primitives propagate dynamic values� this is no longer
the case� Now� functions created by eval must also be
designed to handle syntactic� dynamic values as well as
ordinary semantic values� Consider the expression�

fn x �

case �inteq�x���� of True �
 	 � False �
 �

Here� inteq is a smart primitive as outlined above� and
True and False are shorthands for elements of the type
int � int used to denote booleans� namely� True �
left � and False � right �� The expression above
has the following abstract syntax�

eabs�tint��x��
eapp�esabs�tsum�tint�tint��

�y��eint 	��z��eint ���
eapp�evar �inteq��

epair�evar �x��eint �����

Because one of the arguments to the primitive inteq is
dynamic� the application�

eapp�evar �inteq��epair�evar �x��eint ���

returns a dynamic value� This causes the the sum ab�
straction to be applied to a dynamic value� But func�
tions created from sum abstractions �see the esabs clause
of eval in Figure �� do not handle dynamic values�

The evaluation function must be modi�ed so that
when a function value is applied to a dynamic value
we re�ect over this value to give it the shape that the
function expects� In eval� functions are applied in only
one place� in the clause for application �eapp�

��� eval env �eapp�x�y�� �
�case �eval env x� of

vfun���f� �
 f�eval env y��

This clause is replaced with an application to a new App
function which checks for and handles this contingency�

��� eval env �eapp�x�y�� �
App�eval env x� eval env y�

fun App �vfun�t�g��vdyn e� � g �reflect t e�
� App �vfun���g��x� � g x
� App �vdyn e�x� � vdyn�eapp�e�reify x��



It is also possible that the function part of an appli�
cation can be a dynamic value� The App function also
handles this by reifying the argument and constructing
a dynamic application�

The ability to opportunisticly expand dynamic val�
ues which are the arguments of function application is
crucial to handling primitive functions in systematic
way� We consider this a second important contribu�
tion of paper� With out this ability� a system is forced
to either do without primitives� drastically reducing its
utility� or to handling them in a non�uniform and ad�hoc
manner�

�
� A Subtle Distinction

Is it always necessary to re�ect over a dynamic argu�
ment before applying a function value� The answer to
this question is no� but the reasoning necessary to an�
swer it is quite subtle� If the function was constructed
by eval then the rei�cation must be performed� oth�
erwise an SML match exception may occur� But� if
the function is a smart primitive� then rei�cation is not
necessary as such a function is designed to handle dy�
namic values� Thus� the correct action depends upon
being able to distinguish smart primitives from ordi�
nary functions� In fact� being able to distinguish be�
tween functions by their origin� will be essential for our
treatment of recursive functions as well�

To make this choice vfun values must be tagged to
distinguish their ability to handle dynamic values�

datatype IQ � dumb � smart�

datatype value � ���
� vfun of IQ � typ � �value �
 value�

fun eval env e �
case e of ���
� �eapp�x�y�� �
 App�eval env x�eval env y�

and App �f�x� �
case �f�x� of
�vfun�dumb�t�g��vdyn e� �
 g �reflect t e�

� �vfun�����g��x� �
 g x
� �vdyn e�x� �
 vdyn�Eapp�e�reify x��
� �a�b� �
 vdyn�Eapp �reify a�reify b��

and reify v �
case v of ���
� reify �vfun�smart�t�f�� �

let val s � gensym �x�
in eabs�t�s�reset
�fn �� �
 reify �f �vdyn �evar s�����

end

and reflect t e � ���

Figure �� Smart Function Application

In Figure � an implementation of this is provided� A
new datatype� IQ� is added which is used to tag vfun
values� The App function uses this information to choose

whether or not a dynamic value needs to be re�ected
before function application�

One other optimization is now possible� when reify�
ing a smart function it is no longer necessary to re�ect
over the fresh newly bound variable to construct a value
with the proper shape� Smart functions are designed to
handle dynamic values� The clause for smart functions
in reify is added to take advantage of this fact�

� Recursive Functions

Handling recursive functions is problematic for partial
evaluators� Should a recursive function be unfolded�
or should it be specialized and then residualized� In
a type�directed partial evaluator unfolding and special�
ization are handled simply by application followed by
rei�cation� But� what if a recursive function needs to
be residualized because the recursion is controlled by
dynamic arguments�

In our system we have a simple solution that works
some of the time� a recursive function should be spe�
cialized if it is applied to a dynamic value� otherwise it
is unfolded� This has turned out to be quite e�ective
in the programs we used our system on� but is also far
from optimal�

We accomplish this by introducing an explicit �xed�
point combinator into the syntactic domain� A con�
crete syntax using this combinator is� Y f �
 fn x �

e� This is equivalent to� let fun f x � e in f end�
But we prefer the former as it is closer to the abstract
syntax introduced in Figure �� Because the language is
given a strict semantics� Y must only be used to con�
struct functions� The evaluation mechanism constructs
a vfun value from a Y expression�

The key idea to handling recursion is to capitalize
on the idea that values should carry additional infor�
mation� Previously we argued that values should carry
type information� and that functions values should carry
information indicating their source� We will extend this
idea by making recursive functions �smart� by endow�
ing themwith the ability to residualize themselves� This
can be seen from the implementation� in that the recur�
sive functions returned by eval when operating on a
Y combinator have an additional clause indicating how
they behave when applied to a dynamic argument�

In Figure � the syntactic combinator ey�t�s�e� is
introduced� which represents fix�� s � t � e� It binds s
inside e to the value of the whole expression� which is
also returned as its value�

The eval function gives meaning to this expression
by tying a recursive knot using the recursive function
capability of the meta language ML to de�ne a function
F which is then embedded in a vfun value� The �rst
clause of F de�nes how it behaves on dynamic values
and is described later� The second clause of F gives
meaning to the ey combinator� F is de�ned in terms
of the evaluation of the body of the combinator in an
extended environment which binds the variable� x of
the combinator to a vfun which embeds F� The body is
evaluated� this should return a function� which is then
applied to the argument v� Thus the recursive knot is
tied�

The �rst clause makes F smart� F reconstructs itself
if applied to a dynamic value� This is done by con�



datatype exp �
���

� ey of typ � string � exp �� Y s �
 e ��

fun eval env e �
case e of
���

� ey�t as tarrow�tarrow�d�r�����x�body� �

let
fun F �vdyn e� �

let val s� � gensym x
val body� � reify
�eval �extV x

�vdyn �evar s���
env�

body�
in vdyn�Eapp�ey�typ�s��body���e�� end

� F v � Apply�eval
�extV x

�vfun�smart�
getT d env�
F��

env�
body�v�

in vfun�smart�getT d env�F� end

Figure �� Recursive Functions

structing a new ey term with a fresh bound variable
s�� The body of this term is the old body evaluated
under a new environment binding x to s�� We can il�
lustrate this with the following example� It applies a
recursive implementation of addition using increment
and decrement to a constant ��

�Y F �

fn x �


fn y �

case inteq�x��� of
True �
 y

� False �
 plus��F �minus�x��� y��
	

The evaluation of the Y combinator returns a smart
function� Because this is applied to a real value �vint
	� the function unfolds itself until x is equal to �� Since
y is dynamic the smart plus function reconstructs it�
self returning a dynamic value for each recursive call�
�nally returning the dynamic value� �fn�int� x �

plus��plus��plus��plus��plus��x�������

Note that this implementation of recursive functions
can cause evaluation under a lambda� and in general
this is unsafe as it may lead to non�termination� See
section �� for details�

� Inductive Types

Inductive types are problematic for similar though slightly
di�erent reasons than recursive functions are problem�
atic� They potentially cause in�nite unfoldings� Such
in�nite unfoldings will occur in the reflect function
when an expression with an inductive type is coerced

into a value with an inductive �shape�� The value con�
structed will be in�nite� Our solution to this is to re�
�ect an expression into a value with only one level of
unfolding over an inductive type� and to rely upon the
smart reconstruction abilities of recursive functions in
general �as outlined above to drive partial evaluation
of recursive functions over inductive types�

datatype typ � ���
� tmu of string � typ�

datatype value � ���
� vin of value�

datatype exp � ���
� ein of exp
� einabs of typ � string � exp�

fun eval env e �
case e of ���
� �ein x� �
 vin�eval env x�
� �einabs�t�x�body�� �


let fun F �vin v� �
eval �extV x v env� body

in vfun�dumb�getT t env�F� end

and reify �vfun���t�f�� �
case t of ���
� tmu�s�t� �


let val s � gensym �y�
in einabs�t�s�

reset �fn �� �

reify �f �vin

�reflect t �evar s������
end

and reflect �t as tmu�s�t�� e �
vin�reflect t �eout t e��

and eout t �ein x� � x
� eout t e �

let val z � gensym �z�
in Eapp�einabs�t�z�evar z��e� end

Figure �� Extensions for Inductive Types

Figure � introduces the additional machinery neces�
sary to handle inductive types� A new type constructor�
tmu� used to construct inductive types is added to typ�
Two additional operators in the syntactic domain are
added� ein to introduce values of an inductive type
and einabs to eliminate them� The syntax �In x�
takes a value x with type T�Mu s �
 T s� and returns
a value with type Mu s �
 T s� The syntax �fn In x
�
 e� creates a function whose domain is �Mu s �
 T
s�� and which binds x with type T�Mu s �
 T s� inside
e� The evaluation of these syntax constructs is straight
forward� Evaluation either adds or subtracts the new
semantic constructor vin�

For example some functions over lists of integers
could be de�ned as follows�

type IntList � Mu x �
 unit � �int � x��



val nil � In �left ����
val cons � fn �x�y� �
 In�right �x�y���
val hd � fn �In x� �


case x of left x �
 error � right�a�b� �
 a�

Rei�cation of a function with an inductive domain
introduces an inductive abstraction �einabs� A fresh
variable s with type T�Mu s �
 T s� is re�ected over
to obtain a value� This value is then injected into the
type Mu s �
 T s by the vin constructor� f is then
applied to this value and the result rei�ed to obtain the
body of the abstraction�

Re�ection of an expression� e� over inductive type
tmu�s�t� creates a value with only one level of the
unwinding� First e is projected out of the inductive
domain using eout and then the body t of the tmu is
used�

�
� Nested Patterns and Lazy Expansion

What happens if we have a function over an inductive
type that is non�recursive� but because of the use of
nested patterns� demands more than one level of un�
rolling in the expansion phase� Consider the cadr func�
tion below with type list of integer to integer� which
returns the head of the tail of a list if it has at least two
elements and returns zero otherwise�

fun cadr �In xs� �
case xs of
Nil �� �� 	


 Cons�y�In ys� ��
�case ys of Nil �� �� 	 
 Cons�z�zs� �� z��

Rei�cation of cadr causes the re�ection of the ab�
straction variable at an inductive type� Unrolling this
type just once leaves the tail of the list as a dynamic
variable� Applying cadr to this single unrolling will fail
when the inner case is applied to this dynamic vari�
able� Fortunately� the strategy of Section ��� saves the
day� The case is a dumb function
 so when it is applied
to a dynamic variable� application re�ects this variable
forcing another level of unrolling� If a recursive func�
tion forced this kind of lazy unrolling� non�termination
would result� but because recursive functions are smart
this is not a problem�

�� Post Processing

Rei�cation is quite general� but because it is type�directed
the rei�cation of very simple functions such as the iden�
tity function and constant functions is somewhat more
complicated than it need be� For example the rei�cation
of the constant 	 function at type �int�int� �
 int is�
�fn �int�int� left x �
 	 � right y �
 	� rather
than the simpler �fn x �
 	�� We have found that a
simple post processing phase after rei�cation has been
completed makes the rei�ed code muchmore presentable�
The following transformations rules are quite useful�
an explicit product rewrites from ��fn �x�y� �
 x�
z��fn �x�y� �
 y�z� to z� The other transformation
we �nd useful is the rewriting of an abstraction over
a sum where each clause of the sum�abstraction con�
tains an identical context where the hole in the con�
text is a tagging of the pattern variable� For exam�
ple� �fn �t�t�� left x �
 f �left x� � right y

�
 f�right y�� rewrites to �fn x �
 f x�� Experi�
ence may show that additional rules are also useful�

�� An Example

We have built a type�directed partial evaluator imple�
mentation based upon the ideas outlined above� Our
implementation is for a richer language including n�
ary products and n�ary sums� Our system uses a sim�
ple read�eval�print loop interface� and incorporates a
Hindley�Milner type inference system which automat�
icly adds the necessary type annotations� The partial
evaluator can handle a richer type system than the type
inference engine actually constructs�

As an illustration of the power of such a system we
have included the complete code of an example in Figure
�� in the appendix� This example implements a rewrite
system over an expression language� A rule has the form
lhs � rhs where all the variables in rhs must appear
in lhs� For example the rule �x� y � z � x� �y� z
speci�es a program which when applied to a subject
term of the form �x� y � z returns x� �y � z� If the
subject term does not have this shape the subject term
is returned unchanged�

In the appendix such a system is implemented in a
completely naive manner� Rewriting is implemented by
a function rewrite which takes a pattern� a subject
term and returns the �possibly transformed subject
term� It decomposes the pattern into left and right�
hand sides and uses the function match to build a sub�
stitution from the left�hand side and the subject term
 if
successful� it applies the substitution to the right�hand
side of the rule�

The substitution is computed by the function match�
It performs a simultaneous recursive walk over a pat�
tern term and a subject term� returning a substitution
which pairs the variables in the pattern to the match�
ing subterms of the subject term� If at any point the
subject term fails to have the �shape� of the pattern
the failure substitution is returned�

When rewrite is partially applied to a rule specify�
ing �x � y � z � x � �y � z a function from term
to term is returned� When rei�ed this function returns
the following residual program�

fn d� ��
case out d� of
Var d� �� In�Var d��


 Op �a�b�c� ��
if streq�b����

then
�case out a of

Var d� �� In�Op�a�b�c��

 Op �x�y�z� ��

if streq�y����
then In�Op �x����In�Op �z����c����
else In�Op�a�b�c��


 Int d�� �� In�Op�a�b�c���
else In�Op�a�b�c��


 Int d�� �� In�Int d���

The rei�cation has completely reduced all static com�
putations� It has performed the matching against the
pattern �left�hand side part of the rule and the substi�
tution of the right�hand side� The same program using a



more traditional partial evaluator often requires a bind�
ing time improvement� typically making the application
of the substitution an explicit continuation parameter of
match� making it harder to both understand and main�
tain�

This example illustrates the usefulness of the exten�
sions to the earlier work on type�directed partial eval�
uation� First� the source program was written in a
normal style� referencing previously de�ned functions�
and hence containing free variables� It is not necessary
to abstract over such free variables before rei�cation
can occur� Second� several of the functions are poly�
morphic �e�g� find� out� first and second� and the
implementation residualizes them without any explicit
monomorphizing annotations� Third� the residual pro�
gram contains an inductive structure� a term� The �nal
extension� the residualization of a recursive function is
not illustrated in this example�

�� Limitations

It is possible to force our type�directed� rei�cation based�
partial evaluator into an in�nite loop� Consider the
function upto�

val upto �
fix upto �
 fn low �
 fn high �


if low 
 high
then nil
else cons�low�upto �low�� high��

It has type� int �
 int �
 List int and is a total
function� it terminates on all integer input� If it is par�
tially applied to an integer� say � a function of type�
int �
 List int is returned� Rei�cation of this func�
tion causes an in�nite loop�

The function returned by a Y combinator is �smart��
but reconstructs itself only when applied to dynamic
value� The value this function is applied to � is com�
pletely known� and in each recursive call it remains
completely known� Termination of the function de�
pends upon the dynamic parameter high� which is not
known and the rei�cation in�nitely unfolds the �xed�
point combinator�

This happens whenever a function de�ned with the
�xed point combinator does not have its termination
controlled by it	s �rst argument� This is a serious im�
pediment and needs further study� Fortunately users
can control this problem and write functions that avoid
it if necessary�

As discussed by Danvy� type�directed partial evalu�
ators may also cause duplication of code� This comes
directly from splitting contexts over sum abstractions�
As discussed by Danvy� this problem can be solved by
residualizing local let expressions�

�� Related work

This work was inspired by the work of Danvy���� which
�rst demonstrated to the author the concept of rei��
cation based partial evaluation� Our use of a value
type which embeds type information is a major con�
tribution to Danvy	s work� Danvy used the Scheme
compiler as his reduction engine� This constraint did

not allow him the �exibility needed for self describing
values� Such values enable the extensions for free vari�
ables� and polymorphism� and we view this as one of
the major contributions of this paper�

The use of an injection constructor �vdyn which al�
lows the embedding of the syntactic domain into the
semantic domain has roots in earlier work in the use of
catamorphisms as structured control operators����� and
in meta programming systems where code is a �rst class
value�����

The traditional	 partial evaluation literature describes
two separate techniques which are used to control the
complexity of performing symbolic evaluation of the
source program given its static inputs� The �rst� o��
line partial evaluation���� ��� uses an initial phase� called
binding�time analysis� which uses only the fact that an
input is static� to construct an annotated program� This
annotated program is then residualized� executing the
static components and rebuilding the dynamic compo�
nents to construct the residual program�

On�line partial evaluators ���� ���� on the other hand�
use the actual values associated with the static inputs
to symbolically execute the source to build the resid�
ual program� We consider our partial evaluator on�line
since the implementation of �smart� primitives actually
probes the actual values of the static inputs�

Two of the harder problems in partial evaluation
are pushing a static context over a dynamic branch
such as an if or case� and handing higher order func�
tions� The �rst has been handled by continuation based
specialization��� ��� and the second by a closure analysis����
��� �� ��� In rei�cation based systems� higher order func�
tions are treated like any other function� and static con�
texts are handled implicitly by the use of the shift and
reset control operators which abstract the current con�
text and push it into the clauses of the case�

The delimited control operators shift and reset����
seem to be necessary to do rei�cation over sums� Both
the author and Danvy
 have experimented with reify
and reflect operators with explicit continuation pa�
rameters and have found them to be problematic� The
Implementation for shift and reset in SML used in
our implementation can be found in the literature�����

Expansion of a value to re�ect its type has been
used to perform binding�time improvements����� The
technique of using expansion�reduction systems to reach
normal forms is well known in the rewriting community�
especially the use of eta�expansion�����

Recent work has used such techniques to construct
the inverse of the evaluation functional��� and to demon�
strate that every term �in a combinator form of system
F has a normal form���� In the latter work� a construc�
tive proof is used to extract an ML program remarkably
similar to the rei�cation based partial evaluator for the
polymorphic lambda calculus�

Recent work by John Hughes���� builds another frame�
work for type based partial evaluation� Here� rather
than base the propagation of static information on the
unfolding of functions a type inference�like analysis is
used instead� This technique has been quite e�ective in
removing run�time datatype tags� when the specialized
version of a program no longer needs them�

�As opposed to type�directed�
�Private Communication�



�� Conclusion

Partial evaluators can be constructed using a new paradigm�
Type�directed rei�cation� This paradigm leads to sys�
tems that are simple to construct� small in size� and
need no analysis other than type inference� We pre�
sented a partial evaluator which extends the work of
Danvy which can handle� polymorphically typed func�
tions� free variables in terms� an explicit �xed�point op�
erator �or recursion� and inductive datatypes� It is
based upon a novel technique that embeds type and
other information in the implementationof the semantic
domain� so that every value implicitly contains enough
type information to reify itself� The implementation
passes around type tags at partial�evaluation time but
need not do so when all partial evaluation is concluded�
We consider type�embedding values� and the ability to
handle primitive functions in a systematic way� two im�
portant contributions of this paper�

Of course� we could have viewed partial evaluation
as an expansion�reduction system performing normal�
ization in the syntactic domain alone� using symbolic
evaluation �under the lambda� to reach normal forms�
The expansion�reduction properties become clearly ev�
ident in such a view� Expansion is necessary whenever
� reduction cannot proceed because an abstraction is
applied to expression of the wrong shape�

The most important reason not to base an imple�
mentation on this view is that it requires complicated
machinery to deal with environments� bound variables
and substitutions� The beauty of our implementation
strategy is that all these problems are encapsulated in
the eval function and are handled in a completely stan�
dard and elegant manner and never need be considered
again� In addition� by using two domains we make pre�
cise the distinction between values and terms� This dis�
tinction helped clarify for us many of the subtleties in
Danvy	s paper where both values and expressions are
just s�expressions in Scheme�

One of the elegant features of implementing a partial
evaluator in this fashion is that the symbolic reduction
mechanism is the operational semantics� There is no
question if the semantics and the behavior of the sym�
bolic execution mechanism coincide�
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A Appendix

This appendix contains the complete example referenced
in Section ��� The code for the example appears in
Figure ��� We de�ne two datatypes which along with
the List datatype of Section � are used to implement
terms and substitutions� A term is either a variable�
an integer constant or in in�x operator� A term is en�
coded as the �xed�point of the sum type T� i�e� term �
�Fix x �
 T x�� The M a type encodes a maybe type�
with either a single a element or nothing� Substitutions
are implemented as maybe lists of string cross terms�
M�List �string�Fix x �
 T x��� nothing indicates
the failure substitution�

The polymorphic function find searches a list of
�string�a� pairs for one whose �rst component is s�
and returns just�a� if it is found� and nothing oth�
erwise� Note that the de�nition of find uses the rfun
�recursive�function syntactic sugar� Using this nota�
tion rfun find s �In x� � ��� is equivalent to val
find � fn s �
 fix find �
 fn �In x� �
 ��� �

The function termeq tests two terms for equality�
and subst applies a substitution to a term� Both match
and rewrite were described earlier�

The residual program of Section �� was constructed
in the following manner� The program in Figure ��
was loaded into the system� A term representing �x �
y � z � x � �y � z was constructed� The curried
function rewrite was applied to this term� A function
with type� term �
 term was returned� This function
was rei�ed producing the residual function displayed�

sum T a � Var string

 Op �a � string � a�

 Int �int��

sum M a � Nothing unit 
 Just a�

val find � fn s �� fix f �� fn �In x� ��
rfun find s �In x� �
case x of

Nil�� �� Nothing��

 Cons��a�z��b� ��

if streq�a�s� then Just z else find s b�

fun out �In x� � x�
fun first �x�y� � x�
fun second �x�y� � y�

rfun termeq �In t�� �In x� �
case t� of

Var s �� �case x of Var t �� streq�s�t�

 � �� false�


 Op�m�s�n� ��
�case x of Op�a�b�c� ��

if streq�s�b�
then if termeq m a

then termeq n c else false�
else false


 � �� false�

 Int n �� �case x of Int m �� n�m


 � �� false��

rfun subst sig �In t� �
let val f � subst sig in
case �t� of

Var v �� �case find v sig of
Nothing � �� �In �Var v��


 Just w �� w�

 Op �t��s�t�� �� In �Op �f t�� s� f t���

 Int i �� In �Int i�
end�

rfun match pat msigma term �
case �msigma� of

Nothing �� �� Nothing ��

 Just �sigma� ��

�case �out pat� of
Var u ��
�case find u sigma of

Nothing�� ��
Just �cons��u�term��sigma��


 Just w �� if termeq w term
then Just sigma
else Nothing���


 Op �t���s��t��� ��
�case �out term� of

Op �t���s��t��� ��
�if streq�s��� s���

then �match t�� �match t�� msigma t��� t���
else Nothing ���


 � �� Nothing ���

 Int n ��

�case �out term� of
Int u �� if u�n

then msigma
else Nothing ��


 � �� Nothing �����

fun rewrite rule term �
let val lhs � first rule

val rhs � second rule
val ms � match lhs �Just ��� term

in
case ms of

Nothing �� �� term

 Just �sigma� �� subst sigma rhs

end �

Figure ��� Full Pattern Matching Code


