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Abstract:

Smoothing regularizers for radial basis functions have been studied extensively, but no general smoothing
regularizers for projective basis functions (PBFs), such as the widely-used sigmoidal PBFs, have heretofore
been proposed. We derive new classes of algebraically-simple 1 "-order smoothing regularizers for networks
of projective basis functions f(W, z) = 23\/:1 ujg [x"v; + vjo] + uo, with general transfer functions g[-].
These regularizers are:
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With appropriate constant factors, these regularizers bound the corresponding m !"*-order smoothing integral
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In the above expressions, {v ; } are the projection vectors, T¥ denotes all the network weights {w ;, uo, v, vo},
and Q(x) is a weighting function (not necessarily the input density) on the D-dimensional input space. The
global and local cases are distinguished by different choices of Q(«).

These simple algebraic forms R(W, m) enable the direct enforcement of smoothness without the need for
costly Monte Carlo integrations of S(W, m). The regularizers are tested on illustrative sample problems and
compared to quadratic weight decay. The new regularizers are shown to yield better generalization errors than
weight decay when the implicit assumptions in the latter are wrong. Unlike weight decay, the new regularizers
distinguish between the roles of the input and output weights and capture the interactions between them.
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1 Introduction: What istheright bias?

Regularization is a technique for reducing prediction risk by balancing model bias and model variance. A
regularizer R(W') imposes prior constraints on the network parameters W. Using squared error as the most
common example, the objective functional that is minimized during training is
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where y(?) are target values corresponding to the inputs ?), M is the number of training patterns, and
the regularization parameter A controls the importance of the prior constraints relative to the fit to the data.
Several approaches can be applied to estimate A (see for example Eubank (1988), Hastie & Tibshirani (1990)
or Wahba (1990)) in order to minimize the prediction risk by optimizing the bias/variance tradeoff.

Regularization reduces model variance at the cost of introducing some model bias. An important question
arises: What is the right bias? (Geman, Bienenstock & Doursat 1992). A good choice of the regularizer
R(W) will result in lower expected prediction error than will a poor choice.?

Weight decay is often used effectively, but it is an ad hoc technique that controls weight values rather than
the fit to the data directly. It is thus not necessarily optimal. Weight decay is not appropriate for arbitrary
function parameterizations, since it will give very different results, depending upon whether a function is
parameterized, for example, as f(w, ) or as f(w 1, z).

Since many real world problems are intrinsically smooth, we propose that an appropriate bias to impose
is to favor solutions with low m!"-order curvature. Direct penalization of curvature is a parametrization-
independent approach. The desired regularizer is the standard D dimensional curvature functional of order
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Here || || denotes the ordinary euclidean tensor norm and 9™ /0= denotes the 12 *" order differential operator.
The weighting function Q(z) ensures that the integral converges and determines the region over which we
require the function to be smooth. Q(z) is not required to be equal to the input density p(x), and will most
often be different.

The use of smoothing functionals .S(1V) like (2) has been extensively studied for smoothing splines
(Eubank 1988, Hastie & Tibshirani 1990, Wahba 1990) and for radial basis function (RBF) networks (Powell
1987, Poggio & Girosi 1990, Girosi, Jones & Poggio 1995). However, no general class of smoothing
regularizers that directly enforce smoothness S(W, m) for projective basis functions (PBFs), such as the
widely used sigmoidal PBFs, has hitherto been proposed.

Since explicit enforcement of smoothness using (2) requires costly, impractical Monte-Carlo integrations,*
we derive new, algebraically-simple regularizers R(W,m) that tightly bound S(W,m). In this paper, we
focus on the ubiquitous PBF networks. We derive and test the corresponding regularizers for RBFs in the
companion paper (Moody & Rognvaldsson 1996).

S3Regularizers can be viewed as being part of a more general class of biases called “hints” (Abu-Mostafa 1995). Hints can include
soft or hard constraints that enforce symmetries, positivity, monotonicity, smoothness, and so on.

4Note that (2) is not just one integral, but actually O(D™) integrals, since the norm of the operator 9™ /9« has O(D™) terms.
This is extremely expensive to compute for large D or large m.



2 Derivation of Simple Regularizers from Smoothing Functionals

We consider single hidden layer networks with D input variables, /N, nonlinear hidden units, and NV, linear
output units. For clarity, we set N, = 1, and drop the subscript on N, (the derivation is trivially extended to
the case IV, > 1). Thus, our network function is
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where g[-] are the nonlinear transfer functions of the internal hidden units, z € R” is the input vector® , ¢;
are the parameters associated with internal unit 7, and W denotes all parameters in the network.

For regularizers R(W), we will derive strict upper boundsfor S(W, m). We desire the regularizers to be
as general as possible so that they can easily be applied to different network models. Without making any
assumptions about Q(zx) or g(-), we have the upper bound
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which follows from the inequality (Z;N:l ai) < NN, 2. We consider two possible options for the

weighting function Q(x). One is to require global smoothness, in which case Q(x) is a very wide function
that covers all relevant parts of the input space (e.g. a very wide gaussian distribution or a constant distribution).
The other option is to require local smoothness, in which case Q(z) approaches zero outside small regions
around some reference points (e.g. the training data).

2.1 Projective Basis Representations
Projective basis functions (PBFs) are of the form
g[(?]‘, IB] =g [J}T’U]‘ + Uj()] s (5)

where 0; = {v;,vjo}, vj = (vj1,vj2,...,v;p) is the ;' projection vector, the vector of weights connecting
hidden unit j to the inputs, and v ;o is the bias, offset, or threshold. Denoting z;(z) = = v; + vjo, the most
commonly used PBFs g[z] are sigmoids, such as tanh[z] and the logistic function g[z] = (1 + exp(—=z)) ~%.
Other nonlinear transfer functions g[z] include erf|z], cos[z], and monomials >7.®

For PBFs, expression (4) simplifies to
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5Throughout, we use small letter boldface to denote vector quantities.
6Some examples of the practical application of non-sigmoidal g[=] are presented in Moody & Yarvin (1992). Nonsigmoidal PBFs
can perform better than sigmoids for some highly nonlinear problems.



2.2 Global weighting
For the global case, we select a gaussian form for the weighting function
Y R b 1
Qu(x) = (V2ma) ~exp ®)
202
and require o to be large. The gaussian simplifies evaluation of the smoothing integral considerably, since it

is both separable and spherically symmetric. Integrating out all dimensions, except the one associated with
the projection vector v ;, we are left with
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If (d™g[2]/d="")? approaches zero outside a region that is small compared to &, we can bound (9) by setting
the exponential in the integrand equal to unity. This implies
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where equality holds in the global limit « — oo. Definining the global regularizer to be
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the bound of equation (6) becomes
S(W,m) < NI(m)Rg(W,m) , (12)

where the index G emphasizes the fact that this upper bound is used in the global case of large o. Since A
absorbs all multiplicative factors, we need only weigh expression (11) into the training objective function.

2.3 Local weighting

For the local case, we consider weighting functions of the general form
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where (! are a set of points and Q(z'?), ¢) is a function such as (V2o ) =P exp [~ ||z — =?||?/20?] that
decays rapidly for large || — (") ||. We require that lim, o Q(z'", o) = §(z — "), where 4(-) is the delta
function. Thus, when the «(?) are the training data points, the limiting distribution of (13) is the empirical
distribution.

In the local limit ¢ — 0, the integral ; (W, m) of (7) simplifies, and (6) becomes
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In theory, we could compute the expression within parentheses in (14) for each input pattern ") during
training and use it as our regularization cost. However, this requires explicit design for each transfer function
form and also becomes increasingly complicated as we go to higher m. To construct a simpler and more
general form, we instead assume that the m'" derivative of the transfer function is bounded and define
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This gives the bound
S(W,m) < NCpp(m)R,(W,m) 7

for the maximum local curvature of the function (the additional index I emphasizes that it is an upper bound
in the local limit). We propose using expression (16) as the smoothing regularization term.

3 Simulation Studies

In this section we demonstrate the value of using smoothing regularizers on two simple problems which
illustrate two key differences between smoothing and quadratic weight decay. Both problems have few
input variables and more internal units than inputs, and are thus not examples of cases where we expect our
regularizers to work optimally. However, considering low dimensional problems enables us to do extensive
simulation studies.

We use standard sigmoidal PBF networks for both problems, and study the effects of additive noise, sparse
data sets, and the choice of order of the smoother. We train the networks using the RPROP algorithm
(Riedmiller & Braun 1993), which was empirically found to be the learning algorithm that converged quickest
and reached the lowest errors. The training data are i.i.d. for both the inputs and the additive noise in the
targets. The input variables are sampled separately, and are hence uncorrelated with each other, and are
normalized to have zero mean and unit variance.

The experimental procedure is as follows: First, we scan 8 orders of magnitude of A, in steps of Alog 10(\) =
0.5, in order to find the X value that gives the lowest geometric’ mean generalization error. For each value of
A, the mean is computed over 10 networks with different initial conditions and different randomly-generated
training sets. An example of suchatrace is showninfig. 1. The generalization error is computed by integrating
over a lattice of 2017 points of the noise-free target function. Secondly, we train 100 networks with different
initial weights and different training sets, using the A value that resulted in the lowest generalization error.

The procedure is repeated for each regularization method (local/global smoothers of different orders and
weight decay with or without including bias weights). Generalization performances of the different regulariza-
tion methods are then compared pairwise, using a Wilcoxon rank test® (Kendall & Stuart 1972). Two methods
are considered significantly different if the null hypothesis (equal average generalization performance) is
rejected at the 95% confidence level.

As a base-level comparison, we also fit 100 linear models and 100 unregularized neural networks to test
if our regularized networks perform significantly better. In all experiments reported here, the regularized

"The generalization errors seem log-normally distributed, which is why we consider the geometric mean.
8We also did a paired t-test on the log of the generalization errors. This gave the same results as the Wilcoxon test, and we report
only the latter.



networks do significantly better than both a linear model or an unregularized model (using the test criteria
described above).

3.1 Sigmoidal Bump

The first problem is the one dimensional “bump problem” suggested by Wu & Moody (1996). The target
function is
t(z) = 0.5tanh [(z + 5)/2] — 0.5tanh [(x — 5)/2] , (18)

which can be realized with a linear output neural network with one hidden layer of at least two logistic or tanh
hidden units. For this problem, we generate training sets {(x;,y;);i = 1,..., M} of sizes M € {11,21,41}
with noisy targets y; = t(x;) + ¢;, randomly sampled from —10 < = < 10, and add gaussian noise e of
variance s> € {0.1.0.5,1.0}. These noise levels correspond to signal-to-noise ratios of {1.2,0.55,0.39},
defined as the ratio of the standard deviation of the target function, evaluated over the sampling region, and
the standard deviation of the gaussian noise.

Table 1 summarizes our results on this problem using networks with four hidden sigmoidal units (four
internal units avoids some problems with local minima that occur when using only two internal units). The
smoothing regularizers do significantly better than weight decay when the problems are noisy. However,
when the bias weights are excluded from the weight decay, the difference essentially disappears.

3.2 Bilinear Function
The second problem is the two dimensional bilinear function
tH(w1, w2) = w122 (19)

This example was used by Friedman & Stuetzle (1981) to demonstrate projection pursuit regression. It is the
simplest example of a function that has interactions between the input variables. The function can be well-
fitted by a one hidden layer network with four sigmoidal hidden units by expressing the function in the form
t(x1,72) = 0.5(z1 + 72)? — 0.5(x1 — 22)? and approximating the quadratic functions with a superposition
of two tanh sigmoids.

We generate training sets of sizes M € {20, 40, 100}, randomly sampled from the space —1 < {x1, 22} < 1,
and add gaussian noise with standard deviation s € {0.1, 0.2, 0.5}, which corresponds to signal-to-noise ratios
of {3.33,1.67,0.67}. The student networks have 8 hidden tanh units and one linear output. Figure 1 illustrates,
for the special case of s = 0.2 and a training set with 40 data points, how the generalization performance
improves when higher order smoothing regularizers are used instead of weight decay or first order smoothers,
which yield inferior solutions. As shown in table 2, this is true when the network is trained on few data points
with lots of noise, as well as when it is trained on many data points with little noise. In contrast to the previous
problem, excluding bias weights from the quadratic weight decay term does not help.

3.3 Discussion

Weight decay performs poorly on the sigmoid bump problem because the magnitudes of the required bias
weights are very different from the magnitudes of the other weights. The target network function thus fits
poorly into the assumption that bias weights and non-bias weights all have the same gaussian prior. However,
if weight decay is not applied to the bias weights, the problem fits weight decay much better, and the



Smoothing Size of Weight decay w/out bias
regularizer training Signal/Noise Signal/Noise
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Global, m =1 | 41 + 0
21
11
Local, m =1 41
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11
Global, m =2 | 41
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11
Local, m =2 41
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11
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21
11
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Table 1: Pairwise performance comparisons on the one dimensional bump problem defined in eq.(18). A “+’
means that use of the smoother results in significantly lower generalization error than weight decay (with or
without bias weights). A ‘=" means that the smoother results in significantly higher generalization error than
weight decay. A ‘0’ means that the difference is insignificant (i.e. less than required for rejection of the equal
means hypothesis at a 95% confidence level).

performance is improved. The equivalent treatment of bias and non-bias weights is thus not always the proper
thing to do (whereas it is often quite reasonable to expect a function to be smooth).

Simply removing the bias weights from the weight decay cost is no “cure for all ills”. This is demonstrated
in the bilinear problem, where weight decay performs poorly because it lacks any form of interaction between
the weights. To fit the bilinear problem, the resulting function must be close to quadratic, which can be done
with a neural network of the form

F(W,z) = ug + utanh[vz + vo] — utanh[va — o] (20)
by expanding it around = = 0, requiring that ug = —2vtanh[vo] and wv?tanh[vg](tanh?[ve] — 1) = 1. This
gives

FW,2) = 22 4+ O(a*?), (21)

showing that constructing a good quadratic fit from two sigmoids requires that v> — 0 and u — oo. That is,
the connections between inputs and hidden units must approach zero while the connections between hidden
units and the output must approach infinity. This is completely contrary to the weight decay assumptions,
where there is no interaction between weights in different layers.



(a) Global smoother of different order N (b) Weight decay vs. global smoother
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Figure 1: (a) Generalization errors on the x1 2, problem, with 40 training data points and a signal-to-noise ratio
of 2/3, for different values of the regularization parameter and different orders of the smoothing regularizer.
For each value of \, 10 networks have been trained and averaged (geometric average). The best generalization
error decreases with increasing order of the smoothing regularizer. The shaded area shows the 95% confidence
bands for the average performance of a linear model on the same problem. (b) Similar plot for the m = 3
smoother compared to the standard weight decay method. Error bars mark the estimated standard deviation
of the mean generalization error of the 10 networks.

4 Quality of the Regularizers. Approximationsvs Bounds

With appropriate multiplicative factors, egs. (11) and (16) are strict upper bounds to the smoothness functional
S(W,m), eq. (2), in the global and local cases. However, questions arise as to how tight the bounds are and
how well the regularizers R(W, m) track the curvature functional S(W, m). If the bounds are not sufficiently
tight, then penalizing R(W, m) might not have the effect of penalizing S(WW, m).

In this section, we discuss the nature of the bounds, present approximationsto S(W, m) that are proportional
to the bounds, and present empirical results that demonstrate that penalizing R(W, m) does in fact have the
effect of penalizing S(W, m) for networks of projective basis units.

Note that for the proposed regularizers R(W, m) to be effective in penalizing S(W, m), we need only have
an approximate monotonic relationship between them. In fact, we will argue and demonstrate empirically
that an approximate linear relationship between R and S holds.

Ignoring for a moment the effect of a nonzero and finite o, our derivation involves two steps that can
influence the tightness of the bounds. The first is the inequality (4). The second approximations are the bound
in (10) for the global form and the bound in (15) for the local form. In the global limit ¢ — oo, the bound
(10) becomes an equality.



Smoothing Sample Weight decay w/out bias
regularizer size Signal/Noise Signal/Noise
067 ]17[33]067]17]33

Global, m =1 | 100
40
20
Local, m =1 100
40
20
Global, m =2 | 100
40
20
Local, m =2 100
40
20
Global, m =3 | 100
40
20
Local, m =3 100
40
20
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Table 2: Pairwise performance comparisons on the two dimensional x12, problem defined in eg.(19). Notation
follows table 1.

4.1 TheUncorrelated Hidden Unit Approximation

The inequality (4) should not introduce significant error for problems in which the internal unit activities are
uncorrelated, since the bound can be replaced by an approximation. A set of functions « ; () is uncorrelated
if:

/dDmQ(a:)aj(x)ak(a:) =0 for j#F . (22)
This yields the following approximate relationship:
2
N N
/dDm(a;) > aj(z) | ~ /dDmQ(x)Z (a;j(z))? . (23)
j=1 j=1

Under the uncorrelated internal unit assumption, the bound of equation (12) for the global case can be replaced
by the approximation:
Sa(W,m) = I(m)Rq(W,m) , (24)

Note that the right hand sides differs from that in equation (12) only by a factor of IV, so this approximation
is proportional to the bounds.

In general, it is not always the case that the algebraic forms of an approximation and a strict upper bound
differ only by a constant factor. For our regularizers, the constant factor N doesn’t matter, since it can be
absorbed into the regularization parameter A (along with the value of the integral 7(m)). Since A is selected
on a case by case basis, such constant factors are irrelevant. In practical terms then, there is no difference
between using the upper bound (12) or the uncorrelated approximation (24).



How good is the uncorrelated internal unit assumption? Our empirical results presented below indicate
that it is a good approximation for PBFs when the dimensionality of the input space gets large. The
probability of having significant correlation between two internal units decreases exponentially with the input
space dimension, and is very small already for moderate numbers of variables. Furthermore, even in low
dimensions, the possible positive overlap between internal units decreases for many transfer functions (e.g.
sigmoids or gaussians) with increasing order of the derivative. The accuracies of the approximation thus
improves with increasing input dimension, and with increasing m. This is a very nice effect, since many real
problems deal with many (10 or more) input variables.

4.2 Quality of Other Approximations

For the global case, the bound (10) is fairly tight and approaches equality as o gets large. For the special case
of sigmoidal erf[-] units, (T, m) can be evaluated exactly, and the approximation error in bound (10) can be
shown to be O (o ~2). This analysis is presented in appendix A. Note that the numerical differences between
the popular logistic units and appropriately scaled erf[-] units are small.

For the local case, the approximation error in the bound (15) depends on whether the averages

1 (mals) @)
M 4 t dzm

for PBFs varies much with j or not. We show in appendix B that they do not vary much.® Thus, the local
forms behave well, almost as well as the global forms. This analysis is confirmed by extensive simulation
results below.

4.3 Empirical Comparisonsof R(W,m) vsS(W,m)

For the regularizers R(1V, m) to be effective in penalizing S(W, m), an approximate monotonically-increasing
relationship must hold between them. The uncorrelated internal unit assumption implies that this relationship
is linear.

To test for such a linear scaling, we generated a large number of randomly selected networks. For each such
network, we computed the values of R(W, m) and performed Monte Carlo integrations to compute S(W, m).
For each experiment, we fit a linear model

R(W,m) = a+ 3S(W,m) (26)

to the data, estimating the parameters « and 3. The accuracy of the linear scaling is measured by the linear
correlation (RS)//((R?)(S?)). Under the assumption of a linear relationship, the quality of the regularizers
can thus be measured. If the linear correlation is high, using the regularizer R(W, m) effectively penalizes
the smoothing functional S(W, m).

Figure 2 shows the correlation between the value of the true functional (2) and our regularizers for networks
with 10 input units (D) and 10 internal units (V). The value of S(W,m) is estimated through Monte Carlo
integration. That is, we sample 10° input data patterns from a gaussian distribution with zero mean and
unit variance, and replace the integration with a summation over these points. This is repeated 500 times,

9Note that for RBFs they can potentially vary a lot, due to different RBF widths. This renders the local forms for RBFs useless.
Analysis and simulations are presented Moody & Rdgnvaldsson (1996).



picking new random weights each time but keeping the network architecture constant. The network weights
are sampled from a uniform distribution of width 10. This ensures that we sample networks that can be very
nonlinear.

The correlation is very high for both the global and local forms, although the global form is slightly better.
For the RBF case, only the global form is correlated with the true functional. To verify that this finding is not
spurious, we repeat our Monte Carlo simulations for several different network architectures, using the same
method for sampling weights. These results, which are shown in figure 3, show that the same conclusions
hold as the number of hidden or input units increase or decrease. As anticipated, the regularizers are better
estimates of S(W, m) when the number of inputs grows or when the order m is increased.

The effect of a nonzero or finite o depends on the particular choice of weighting function. For a gaussian
weighting function, the limiting bounds should be correct to second order (i.e. o2 or ¢~2 depending on the
limit taken), which follows from the power series expansion of the gaussian. We show in appendix B that this
is correct for a gaussian weighting function Q(z) and sigmoidal projective basis units.

5 Weight Decay Type Approaches and Smoothing

5.1 DoesWeight Decay | mpose Smoothness?

There is no reason to expect a smoothing regularizer to be the best choice of regularizer for all problems,
as well as there is no reason to expect any other regularizer to always work better than a smoother. We
have therefore refrained from benchmark tests comparing our smoothing regularizers to the extensive list of
all hitherto proposed regularization terms, and instead chosen to compare only with quadratic weight decay.
There are, however, qualitative differences between smoothing regularization and any conventional type of
weight decay cost that are worth noting.

Quadratic weight decay (Plaut, Nowlan & Hinton 1986), which is essentially Hoerl & Kennard’s (1970a)
(1970b) “ridge regression” applied to nonlinear models, is the regularization method most often used for
both linear regression and neural networks. From a Bayesian viewpoint, weight decay imposes a zero mean,
spherically symmetric, gaussian prior on the network weights (Lindley & Smith 1972, Buntine & Weigend
1991). The appropriateness of such an ad hoc prior has been questioned in the linear regression case (Smith
& Campbell 1980), and it is equally questionable for nonlinear regression (e.g. neural networks).

As an alternative view, it is sometimes argued that quadratic weight decay corresponds to a smoothness
constraint. As illustrated in figure 4, this is a misinterpretation if smoothness is measured by functionals of
the form (2). Smoothness constraints necessarily create a coupling between the weights in different layers
of the network??, similar to the one described for the bilinear problem. No such coupling exists in quadratic
weight decay.

Variations on the theme “weight decay” that have been presented in the neural network literature are e.g.
weight elimination (Rumelhart 1988, Scalettar & Zee 1988, Chauvin 1990, Weigend, Rumelhart & Huberman
1990), Laplacian pruning (Williams 1995, Ishikawa 1996), and soft weight sharing (Nowlan & Hinton 1992).
These all build on the concept of imposing a prior distribution on the model parameters, and their motivation
vis-a-vis quadratic weight decay is that a non-gaussian prior on the parameters is more likely to be correct
than a gaussian prior. None of these variations contain any form of coupling between different parameters in
the model, and they can therefore not be said to correspond to smoothing.

10This is easily verified by constructing a neural network with sigmoidal internal units that reproduces e.g. a linear function.
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First order global smoother, projection-based tanh units
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Figure 2: Linear correlation between S(W, m) and R(WW, m) for a neural network with 10 input units, 10
internal tanh PBF units, and one linear output. The left column shows results for first order smoothing
(m = 1) and the right column shows results for second order smoothing (m = 2). The top row shows the
global form of the regularizer R (W, m) and the bottom row shows results for the local form R, (1W, m).
Note that the correlation coefficients are very close to 1.0, confirming that penalizing R(W, m) effectively

penalizes the curvature functional S(1V, m).
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Figure 3: Linear correlation between S(W, m) and R(W, ) for different network architectures, using tanh
PBF units. The left column shows results for first order smoothing (m = 1) and the right column shows
results for second order smoothing (m = 2). The top row shows the global form of the regularizer R (W, m),
and the bottom row shows results for the local form R, (W, m). In both the first and second order cases, the
linear correlations are higher for the global than for the local smoothers. In all cases, however, the regularizers
R(W, m) are highly correlated with the curvature functionals S(W,m). Thus, R(W,m) is proportional to
S(W,m), and penalizing R(W, m) effectively penalizes S(WW, m).

12



Weight decay, projection-based tanh units

Weight decay, projection-based tanh units

5.0 : \ , ; 55 : . .
Linear regression (correlation = 0.38) --- Linear regression (correlation = 0.60) -- -
R
+ * +
0460 R . w SO : ]
7 e i . ; +++ + 7 * * -~
et 4 & + + + 4, t.-
0o L R s + o w4 e
o e mmﬁ fi:3j+ N N O 451 i ++n*+*t*+g&ﬁ y oo |
> bt e s .- > P Ha o 5 o
T 421 + PR {#ﬁm*ﬁ Forr ] + oy +¢++++++fﬁ&—*¢+¢
g ' [ :H*ﬁf”tv }*&Z&;w o+ 8 o 7, P &*ﬁ i +
o L - . 2 #ﬁiﬁri ot T 40l A Jﬁgr ; i *:f# + |
p R N T g MO el
2 ag| R A " = R A
o S 5w P T (0] UL T A
2 #+*I++ s f+++*+gﬁ 2 35 "++++”4+‘:+f* P
: L i
g [ + J?rf:*i % fﬁi ﬁﬁ ++ ' g + i:ﬁ¢+++++ +++ +
n Y + N
£ 34 S e g P
15} ’ e e c 304 A |
=1 * & o =1 '
L + +
& R ©
3.0 | | . . . | 25 . . . .
0 1 2 3 4 5 6 7 0 0.5 1.0 15 2.0 25
Monte Carlo estimated value of S(W,1) [E+3] Monte Carlo estimated value of S(W,2) [E+6]
0.65 Weight decay (first order), projection based tanh units 0 8Weight decay (second order), projection based tanh units
o 4 inputs -o - 4 inputs -o -
BN 8inputs -+ - 8 inputs -+ -
b KA 12 inputs -=— 4 b 12 inputs -s— o
. . 16 inputs »— 16 inputs =—
o, ; B LN
055+ N S o 0.7} |
o ° BN LA
E [ -+ E > . |
[ ; N S A »
5 0.45 i 5 06 R ]
8 % o ¥
3 3
0.35 0.5 ,
0.25 . , , . 0.4 | , . .
0 1 2 3 4 5 0 1 2 3 4 5
N/D [# hidden/# inputs] N/D [# hidden/# inputs]

Figure 4: Linear correlation between S(W,m) and the quadratic weight decay cost, using tanh PBF units.
The left column shows results for first order smoothness (m = 1) and the right column shows results for
second order smoothness (m = 2). The top row shows the result of generating 500 random networks, with
10 input units, 10 internal units, and one linear output, and comparing the Monte Carlo estimated value
of S(W,m) to the quadratic weight decay cost. The scatterplots exhibit substantially less correlation than
those for the smoothing regularizers R(¥V,m) shown in figure 2. The bottom row shows how the linear
correlation coefficient varies with the network architecture (each point corresponds to 500 random networks).
The correlation coefficients are significantly less than those for R(W, m) shown in figure 3. It is quite clear
that the weight decay cost || |2 is not a good estimate of S(W, m).
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5.2 Other Approachesto Smoothing Neural Networks

Smoothing splines (Eubank 1988, Hastie & Tibshirani 1990, Wahba 1990) and smoothing radial basis functions
(Powell 1987, Poggio & Girosi 1990, Girosi et al. 1995) impose smoothness by requiring the forms of the
hidden units ¢[-] to be Greens functions of the smoothing operator S(-). This approach can not be extended
in a general way to networks of projective basis functions, because of the nature of Green’s functions.

Our approach is substantially different from that of smoothing splines and smoothing RBFs, since we derive
algebraically-simple smoothing regularizers for general classes of projective units ¢[¢, «]. Our approach thus
has the advantage that it can be applied to the types of networks most often used in practice.

Two proposals for smoothing regularizers in the first order case (m = 1) for PBF networks have previously
been put forth. Wu & Moody (1996) have derived a smoothing regularizer for both two layer recurrent and
feed forward PBF networks, by requiring the model to be robust with respect to small perturbations of the
inputs. Van Vuuren (1994) has proposed a form for PBF networks based on a smoothing functional that
uses the norm of the gradient, instead of the squared norm as in equation (4). Bishop (1995), Leen (1995),
and Wu & Moody (1996) independently pointed out the correspondence between first order smoothing and
training with noisy inputs. For second order smoothing (m = 2), Bishop (1991) has proposed an algorithm
for imposing smoothness on gaussian RBFs during training by using a local smoothness requirement, similar
to that discussed in section 2.3.

We are unaware of any previously presented and demonstrated methods for imposing general smoothness
requirements of any order (m = 1,2, ...and higher) for PBF networks.

6 Summary

Our regularizers (W, m) are the first general class of 1 !"—order smoothing regularizers to be proposed for
projective basis function networks. The regularizers are simple algebraic forms for smoothing functionals of
any order:

N

Re(W,m) = Y udllv;[|*"~*  Global Form
J=1
N

R (Wom) = > ulfo,|*" Local Form . (27
j=1

These regularizers R(W, m) enable the direct enforcement of smoothness without the need for costly Monte
Carlo integrations of the smoothness functional S(W, m) defined in eq. (2). The forms of the regularizers
differ fundamentally from quadratic weight decay, in that they distinguish the roles of the input weights v ;
and output weights u ;, and capture the interactions between them. Our regularizers apply to PBFs with large
classes of transfer functions g[-], including sigmoids.

Monte Carlo simulation results confirm that equations (27) are effective in penalizing the smoothness
functional S(W, m). Both the global and local forms are very good, with the global being slightly better.

In a companion paper (Moody & Régnvaldsson 1996), we derive and test corresponding regularizers for
radial basis functions.
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Appendix A: Evaluation of /(W, m) for Sigmoidal PBFs

For the special case of sigmoidal PBFs in the internal layer of the network, we can use g(z) = erf(z) to
compute the integral I; (W, ) exactly and compare the behaviour of the smoothing functional with our
bounds. With a gaussian weighting function of the form (8), some tedious but straightforward algebra yields
the expressions®!

n k+l4k+l[(2n 12 (2k + 20)! vo 2(k+1)
I(W,2n =
(I‘ , 2n + 1) M/ 1) L;O 2]1) 2[ n _ L)( n— l) <4O’2’U2 + 1) X
S S O S 1 w
£ (2 + 21— 20l 202 '
n—1 (—1)FHARHL (200 — D)2(2K + 21 + 2)! V0 2(k+1+1)
I(W,2n) = I(W1) Z 1 1 ] ! ( 2y2 ) 8
R 2E+ D120+ D n—Ek—-Dln—1—-1)! \ 40202 +1
k*ﬁfl 1 o?v?(40%0? 4 1) ]: (A2)
= (2k+ 20+ 2 — 2i)i! 205 |
where 4
[(W,1) = —————— exp[—203/(40%? + 1)]. A3
(W)= a1 P20/ ! -

In the global limit, © — oo, we make the approximations

Z 020?400 + 1)\ 1 264\ " N 1 204\ " (A)
(2n — 25 171 202 n! v3 21(n=1)! v3 ’ '

¢

1 1 n
~ 1- , A5
(4022 + 1)" (4202)n ( 402’02) ’ (A:5)
) 2 1+ 4vg )
I(IT/ 1) ~ E <1 — 8()‘2@2 ) N (A6)

which require that o202 > max(1,v3]. Inserting this into the exact expressions and keeping terms of order
(ov) 2 gives

I(W,m) =

2(2m — 3N (1 N 1— v§(6m — 10)) ./ (A7)

ToU 802v%(2m — 3)

1The index on v, is dropped.
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where the first term corresponds to the global limit regularizer (11), which is thus correct to order o 2||v|| 2.
Note that the local limit, @ — 0, can be treated in a similar manner, which gives

1(W,m) ~ exp[~20F] (P3)_y(vo) + o2o|2PSh (v0)) | (A8)

where PV (vo) and p? (vo) are two different polynomials of order n. The exponential weighting, and the
oscillatory nature of the polynomials, supports our decision to ignore the dependence on vo. Thus, the local
limit can be said to be correct to order o2||v||?.

Appendix B: Quality of the L ocal Form

To simplify the notation, we define

2
G(m,z(z)) = <%> (B:1)
i
where
zi(z) = zlv; +vj (B:2)

With this definition, the quality of the local form

N

Ry (Wom) =Y u?|lv,||™ (B:3)
j=1
depends upon how much the sum
M
1 , i
7 O Glm. () (B:4)
h =1

varies with j. If it varies very little, then the local form is a good approximation. If it varies a lot, then the
local form is a poor approximation.

To simplify the evaluation of (B:4), we work in the limit A/ — oo, such that

1M A B
i E G(m,zj(:r(l))) — /dD.rp(a:)G(m,zj(m)) = G(m,j) (B:5)
h =1

where p(x) is the input data probability density function. To avoid unnecessary complications, we also
assume that the input data follow a zero mean gaussian distribution

plz) = (ﬁ)uexp [%ﬁ”z] . (B:6)

Sigmoidal Projective Basis Functions

Instead of the usual hyperbolic tangent, we employ ¢(=) = erf(z) as our sigmoid function (tanh and erf are
quite similar functions). This simplifies the derivatives considerably and enables us to write

; 4
G(m,zj) = ;H,Z,L_l(zj) exp[—2z_§], (B:7)
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where H, (=) are Hermite polynomials of order n. Plugging (B:7) into eq. (B:5), using the gaussian p(x),
and integrating out all dimensions that are orthogonal to v ; results in

— 16 —17,2»0
G(m,j) = exp J X
wallesar O | 270, P
= JaotuilP D) e
1t H? ex J t— ) B:8
[ p[ T A P (B:8)

Evaluating the integral gives the result

Qm,j) = VATl + [—v§0<4a4||vj||4-402||vj||2_1>] )

2o, 8o, F
m—1 2 m—k—1
eu(rr) A
) e
U'o
Hy 01— J B:9
2 2"2[¢804||v_j||4+602||vj||2+1 ®9

In this form, however, the expression gives little insight as to how G(m, j) scales with the weights. If we can
assume that o'2||v;||? > 1, expression (B:9) simplifies to

m—1 2
_ ) 32 vio
G(m,j) = == exp § 4k ! ( ) Hopoi—o | —2—|.  (B:10)
w22 ||vj]| 2ffZII JII2 o?||v;|12V8

Furthermore, if vjo < o?||v;||? then the weight independent term dominates the sum, and the scaling is
(ignoring m)

Glm, j) ~ ——exp o (B:11)

r(m,gy) ~ R :
allvjll 202|v;]|?

which, as expected, resembles the scaling of the corresponding global case. Since (B:11) only depends on

the magnitude ||v;||, the expectation value of G(m. j) should vary very little with j. For instance, if the

probability density of the v;;, weights is spherically symmetric (excluding the bias weights for the moment),

we can do the transformation

2770/2
I(D/2)

where v = ||v||. The index j is dropped on v since we are here taking an expectation over the distribution
of weights. If the weight distribution is gaussian and D is large (larger than 10), then the integrand will be
sharply peaked so that (G (m, j)) =~ (G(m, j))", resulting in a small variance w.r.t. the weights v;y..

<an(m,j)> = / dPup(||v|) G (m, ||v])) = /dv’uD_lp(u)@n(m,v), (B:12)

If the bias weights v;o follow a gaussian distribution, with variance o, then we have

—n ) 1 n O_l—n”,U”l—n
(G (m,j)) = / vo EXP [ (— + )] = . (B:13)
a"|[v]l"o0v2r |"UO\/27T ag  o?lvll? [02|v]|2 + no?

Since ||v||? « D, it is likely that oq < o||v||, why the variance due to bias weights will supposedly be very
small as well. Furthermore, the variance will decrease as D ~

v3
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In summary, the local smoothing regularizer for networks with projective basis functions is an acceptable
approximation. This is mainly due to the fact that ||v;|| has essentially the same value for all hidden units.
The variation between units caused by different bias weight values will also, at least in reasonable cases, be
small.
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