
Demand�Driven Interprocedural Constant Propagation�
Implementation and Evaluation

Tito Autrey

Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology
P� O� Box ������ Portland� OR ��	��
���� USA

tito�cse�ogi�edu

June �� ����

Abstract

We have developed a hybrid algorithm for interprocedural constant propagation
combining two prior methods with a new demand�driven approach� We modi�ed a
prior intraprocedural constant propagator to use incrementally in a demand�driven
interprocedural framework� We compare our algorithm to three prior interproce�
dural methods�

Burke and Cytron solve the interprocedural constant propagation problem with
an algorithm that uses a pessimistic incremental intraprocedural constant propaga�
tor to iterate forward and backward over the call graph until no new information
is discovered �BC����

Wegman and Zadeck solve the intraprocedural constant propagation problem
with an optimistic algorithm �WZ	
�� Their algorithm solves the sparse conditional
constant problem� The interprocedural version of their algorithm links the Static
Single Assignment graphs of all procedures together and runs their intraprocedural
algorithm over the single SSA graph�

Grove and Torczon performed experiments that show Jump Functions combined
with procedure summary blocks as described by Callahan et� al are e�ective at
�nding interprocedural constants �CCKT��� GT	
��

We show that our interprocedural algorithm� Demand�driven With Incremental
Modi�cation �DWIM�� is fast and �nds the same number of constants as the best
interprocedural constant propagator in use today� We know of no implementations
of either interprocedural Wegman�Zadeck or Burke�Cytron algorithms� Over a set
of standard benchmarks we �nd ����� more interprocedural constants compared
to intraprocedural constants�



� Introduction

Constant propagation is a compiler optimization that identi�es which uses of variables
in a procedure have a constant value and what that value is� This is done by taking
initial values which are literal constants and propagating them through the computation
of the procedure� Constant folding is the optimization of computing the results of
builtin operations 
those without side
e�ects� on constants at compile
time� Folding
uses propagation results as input and propagation uses folding results as input� so they
can be performed concurrently�

Intraprocedural constant propagation has two limitations� First� at call sites� due
to the possibility of side
e�ects� the values of global variables as well as reference and
pointer parameters may change� Second� on entry into a procedure the values of for

mal parameters and global variables are also unknown� Interprocedural analysis and
constant propagation seek to solve these problems� Computation of interprocedural
side
e�ect information of a procedure� called MOD sets� tells which actual arguments
and which globals may be modi�ed� the rest remain unchanged across the call site� In

terprocedural constant propagation identi�es formals and globals with constant values
on entry to a procedure� It may also �nd that the side e�ect on them is a function of
formal parameters� global variables and constants that can be evaluated at compile
time�

We develop a new algorithm� Demand
driven With Incremental Modi�cation 
DWIM�
for performing interprocedural constant propagation� describe its implementation and
evaluate it over a set of benchmark programs� We will proceed to describe� constant
propagation 
 Section 	� interprocedural analysis in support of constant propagation 

Section �� interprocedural constant propagation in general and DWIM in particular 

Section �� our evaluation experiments and results 
 Section �� related work 
 Section ��
future work 
 Section �� and we summarize in Section ��

� Constant Propagation

It is well
known that the general constant propagation problem is undecidable �KU����
Solutions to the restricted decidable sub
problem still yield useful results� Constant
propagation has several direct e�ects� It may mark edges as non
executable in the con

trol �ow graph 
CFG� by compile
time 
static binding time� predicate evaluation� Dead
code elimination removes non
executable edges and code from the CFG of a procedure��
Dead code elimination uses propagation results as input and propagation uses the fact
that nodes in the CFG have been eliminated as input� so they can be performed con

currently� Induction variable analysis uses propagation results as input� and folding
and propagation use induction expressions as input� so they can all be performed con

currently� Most constants are small integers �HP���� This allows for a more compact
encoding of a program by placing constants in an instruction immediate �eld rather
than loading them explicitly from memory� Constant propagation makes other analyses
simpler and more exact which leads to useful indirect e�ects� For example� constant

�There are two forms of dead code� This form of dead code is called unreachable code� The other
form is code whose results are not used� called unused code �All����

�



loop limits enhance dependence analysis� enhance parallelization heuristics �EB���� and
may remove run
time range checks �Kol���� It may also make subscript expressions
linear which speeds analysis and can enable loop transformations �SLY���� It may make
array section analysis simpler �MS����

Constant propagation is generally only performed on integer and logical values� This
is because they produce the biggest payo�s in terms of loop bounds� array subscripts
and predicate values� Floating point 
FP� constants are generally ignored because
representations may be di�erent between the architecture the compiler is running on
and the one it is targeted to� and the IEEE rounding mode may be dynamic� The
Convex Application Compiler does perform FP constant propagation by assuming the
compiler and target architectures are the same and tracking when the rounding mode is
not known to be important �MS���� Tracking constant array element values is a fruitful
area of current research� Other datatypes� such as structures� bit and string constants
could all be done� but folklore holds that they do not occur frequently enough to be
worth the e�ort�

Constant propagation is computed on a data
�ow graph representation of a proce

dure� frequently classic use
def and def
use chains �ASU���� A lattice is used to cast
constant propagation as a global data
�ow problem� Each variable use or de�nition is
represented by a value from Kildall�s three
level constant propagation lattice �Kil����
Top� �� represents an as yet unknown constant value� Bottom� �� represents a non

constant value� The constant values constitute the middle layer of the lattice� The
lattice meet operator� u� is de�ned in the usual way�

An optimistic propagator initially assumes all uses are an as yet undiscovered con

stant� represented by �� It then iterates over the data
�ow graph to determine LHS
lattice values by evaluating RHS expressions and lattice values which are propagated
along the graph edges� Each use can be lowered at most twice� once to a constant� and
once more to ��

A pessimistic propagator initially assumes all uses are non
constant� represented by
�� It then iterates over the data
�ow graph the same as for an optimistic propagator�
Each use can be raised at most once� to a constant value�

The advantage of an optimistic algorithm is that it can �nd constants in the presence
of loops in the data
�ow graph� A pessimistic algorithm cannot because the initial �
will �ow around the loop� consequently the meet is always �� The disadvantage of an
optimistic algorithm is that it must always be run to completion� otherwise a � lattice
value may fail to be propagated� leading to an incorrect result� A pessimistic algorithm
can terminate at any point leaving a correct� but conservative result� as it will only
mark uses as constant that have been proved as such�

Modern approaches to constant propagation are performed on sparse graphs� One of
the most common sparse graphs is the Static Single Assignment 
SSA� form �CFR�����
The Wegman
Zadeck Sparse Conditional Constant propagator 
WZ
SCC� is a worklist
algorithm �WZ���� It has two lists� one of variable uses and the other of edges in the
CFG� All edges from executable basic blocks are added to the edge list unless they come
from a predicate with a known constant value� in which case only the possible �ow edge
is added� Uses are added when their reaching def is lowered�

	



A demand
driven� constant propagator is a backward algorithm� Starting anywhere
in the data
�ow graph� each variable de�nition demands the lattice values used to
compute it and takes the meet of their values� Each use obtains its value from the meet
of the reaching defs� In SSA graphs there is only one reaching def� except at � nodes�
Stoltz has shown that demand
driven constant propagation solvers with Gated Single
Assignment are faster than WZ
SCC �SW����

� Interprocedural Analysis

Various interprocedural analyses are needed to enable interprocedural constant propa

gation� We implemented the following four analyses to support our study of interproce

dural constant propagation� Call Graph Construction� Alias Analysis� MOD and REF
Analysis� and Jump Function identi�cation� The analyses store some of their results
in a procedure summary block which is referenced by later analysis and optimization
stages �CCKT���� A brief description of the algorithms we use and comments on their
implementations are given below�

�� � Procedures
�� Parse
�� Collect call site information

�� Call graph construction
�� Alias analysis
�� MOD and REF analysis
�� Apply MOD and REF information to IL

	� � Procedures

� Add SSA links

��� Add def�use links
��� Induction variable analysis
��� Sparse conditional constant propagation �WZ�SCC�

��� Demand�driven walk of call�graph for interprocedural
��� constant propagation using incremental propagator�

Figure �� Compiler Phase Order

The original design of Nascent� was strictly as an intraprocedural compiler� it dis


�Demand�driven in this case has nothing to do with lazy evaluation� Constant propagation is in�
herently eager� It refers to demanding the solution to a given data�	ow problem at predecessor nodes
before computing the current node�

�Nascent is the name of the Fortran compiler being developed by the Sparse group at OGI under
the supervision of Michael Wolfe�

�



carded the body of each procedure before it started the next one� A number of en

hancements were made to support interprocedural analysis and optimization� First we
changed it to preserve the body of all procedures� This involved adapting the memory
management layer to generate a new private heap space for each procedure� Now by
reloading the heap context for a procedure the compiler can revisit it as many times as
desired� Nascent has been restructured so that lists of intraprocedural phases are alter

nated with lists of interprocedural phases� Any particular list may be empty� For inter

procedural constant propagation the phase order goes as in Figure �� Because Nascent
did not use any interprocedural information� new types of intermediate language con

structs were added to convey MOD and REF information about actual arguments and
global variables� Each actual argument at each call site is now identi�ed as an in� out� or
in�out parameter depending on whether it is used or�and modi�ed directly or indirectly
by the called procedure� Global variables are also attached to each call site now because
they are implicit arguments� They are identi�ed similarly to actual arguments� This
enhances the completeness of the information available at the intraprocedural level�

��� Call Graph Construction

First we must construct the call multi
graph� It is a true multi
graph because a proce

dure may call another one multiple times� For simplicity we will refer to it as the call
graph� In Fortran� the construction would be straight
forward except for the presence of
procedure formals� Procedure formals are formal parameters that are bound to actual
arguments which are procedure constants or procedure formals� as opposed to proce

dure variables which can be assigned procedure values at any point in the program� We
implemented the algorithm described by Hall and Kennedy �HK�	� which is complete
and fast for languages with procedure formals� It �nds the maximal Boundto
pf� �
fc � c is procedure constant bound to pf along some possible execution pathg set for all
procedure formals� The algorithm initializes a worklist with bindings from procedure
constants� pc� to formal parameters� fp� When an element pc � fp is removed from
the list� if pc �� Boundto
fp� then pc is added to Boundto
fp�� For each call site cs�
three cases are considered�

�� fp is not an actual parameter�
do nothing

	� cs does not invoke fp but fp is an actual parameter�
�x � Boundto
fp� add elements to the worklist binding x to the formal
s�
corresponding to fp

�� cs does invoke fp and fp is an actual parameter�
�x � Boundto
fp� add elements to the worklist binding x to the formal in x
corresponding to fp

The last case is an optimization that prevents spurious bindings from being gener

ated� This algorithm extends readily to handle procedure variables which are found in
imperative languages such as C� The psuedo
language used in the examples uses the

�



call
by
reference parameter passing mechanism�

proc A proc C �P�


call B �C� �� D
 � call P� �P�


call B �C� �� E
 end C

end A proc D �P�


proc B �P�� L� P�
 end D

if L � �� then proc E �P�


� P� � F end E

endif proc F �P�


call P� �P�
 end F

end B

Figure 	� Call Graph Construction Example

In Figure 	� the line marked with a ��� is not valid in Fortran� but it is valid in C�
P� is a procedure variable� and has a new value assigned to it directly rather than as a
consequence of a procedure call� Allowing arbitrary altering of the BoundTo sets means
that more complicated analysis is required� Discounting the ���ed line� the algorithm
will identify that A calls B� B calls C� and C calls D and E� Without call graph analysis
the optimizer would have to assume that B and C could call any other procedure� The
statement marked with an ��� triggers case � in the algorithm� P� is bound to D and
E� but when D is called� D is the only value that can be passed on to P�� and the same
for E with respect to P��

��� Alias Analysis

Aliases occur when one storage location can be accessed by more than one name� They
make it hard for compilers to detect when a particular storage location is modi�ed�
There are two types of aliases for formal arguments� Type I are formal
global aliases
which are created by passing globals and formals as actuals� and Type II are formal

formal aliases which are created by passing the same local� formal or global in more
than one position at a call site� Much of the original work we draw upon was performed
by Keith Cooper at Rice �Coo��� CK��� CK���� The analysis uses two data structures
which are built on top of the call graph� The algorithm for computing the formal
global
binding graph� �� is initialized by examining all call sites in all procedures� Where a
formal is bound to a global it adds a node to �� and places the global in the Alias set
of the formal� Where a formal is bound to a formal� it adds one node for each formal
and places an edge between them� Procedure
valued formals are ignored because they
were processed �rst in precisely the same fashion in order to construct the complete
call graph which is needed this analysis� Type I alias analysis is solved as a data
�ow
problem on �� The algorithm for computing the pair binding graph� �� is initialized by
examining all call sites in all procedures� Where two actuals are aliases of one another

�



it places nodes in the graph for the pair of actuals and the pair of formals with an edge
between them� Type II alias analysis is solved as a data
�ow problem on ��

Our implementation of Alias set computation is demand
driven� using � as the
data
�ow graph� One new optimization we use is to never place self
edges in �� These
occur when a procedure calls itself recursively with the formals used as actuals in the
same position� These edges add no information so they may be safely ignored� The
� graph turns out to be unnecessarily large and complex to compute directly �MW����
Instead we use a worklist algorithm on elements containing the pair of formals which
are aliased as described by Mayer and Wolfe�

global G�� G� proc J �F�� F�


proc H F� � �

call I �G�� G�
 Y � G� � �

end H end J

proc I �F�� F�


call J �F�� G�


call J �F�� G�


end I

Figure �� Alias Analysis Example

In Figure �� Type
I aliases are created at the call to I in procedure H� They are
passed on at the calls to J in procedure I� The �rst call to J in I also creates a Type
II
alias because F� has G� as an alias� All this information is needed so that in procedure
J the compiler does not try to load G� into a register before doing the store to F��

��� MOD and REF Analysis

MOD and REF analysis computes MOD�p� and REF�p� sets for all procedures p
�CK��� CK��� CK���� MOD represents the side e�ects or externally visible write set of
a procedure� REF represents the set of referenced formal parameters and global vari

ables� During parsing we set DMOD �p� to be all formal or global parameters that are
directly modi�ed by the body of procedure p� DREF is is constructed similarly but with
referenced formals and globals� The IMOD �p� set is DMOD �p� augmented with the
MOD �c� sets of all procedures c called directly or indirectly by p� The IREF �p� set is
constructed similarly� MOD �p� is the IMOD �p� set augmented by the Alias �v� sets of
all variables v in IMOD �p�� The REF �p� set is constructed similarly� Our modi�cation
of Cooper and Kennedy�s algorithm for computing IMOD� IREF� MOD� REF sets is to
construct them concurrently by solving the data
�ow problem on the call graph using
the DMOD� DREF and Alias sets�

In Figure �� MOD and REF analysis will determine that MOD
M� � fG�g� and
MOD
L� � fF�� G�g and REF 
L� � fF�g� The consequences of this information
in procedure K with respect to the call to L are� A is not referenced so for live
range

�



global G�� G� proc L �F�� F�� F�


proc K F� � F� � �

B � C � G� � G� call M �


call L �A� G�� C
 end L

D � C � G� � G�

end K

proc M

G� � 	

end M

Figure �� MOD and REF Analysis Example

analysis it can be ignored at the call to L� G� is modi�ed so its value must be reloaded
after the call� C is referenced and not modi�ed so its value can be retained in a register
across the call� G� is also modi�ed so its value must also be reloaded after the call�

��� Jump Functions

Jump functions� are a concise way to express the value of arguments in terms of literals
and constant �ow through a procedure �CCKT���� The �ow of constants in a procedure
p to a call site s for each actual argument and global variable 
called global argument for
this discussion� x� is expressed by a forward jump function 
FJF� Fx

s
� The formal and

global arguments that are used as input to F are represented by the set support
Fx

s
��

The FJF summarizes the e�ect on the actual x of the execution of the procedure up to
the point of call site s� The �ow of constants out of a procedure p for each formal and
global argument y� is represented by a return jump function 
RJF� Ry

p
� The formal and

global arguments that are used as input to R are represented by the set support
Ry

p
��

RJFs may be viewed as a generalization of constant folding applied to the side e�ects
of a procedure� They summarize the e�ect on the formal and global parameters of
executing the whole procedure� The type of a jump function is an element of the
constant propagation lattice�

According to Grove and Torczon there are four FJFs of interest �GT���� The literal
constant FJF 
LCFJF� identi�es actual arguments that are literal constants� In Fig

ure �� formal A in procedure R has value � and no other constants are found� Because
global variables are lexically variables and not literals� this FJF is unable to identify
globals as constant� The intraprocedural constant FJF 
IPFJF� identi�es actual argu

ments and global variables that are intraprocedural constants� In Figure �� formals B
and C in procedure R are determined by intraprocedural constant propagation to have
the values of � and � respectively� and A is still has the value �� The passthru parameter
FJF 
PTFJF� identi�es actuals that are non
modi�ed formals or are found by IPFJF�
Because it uses formal and global parameters as input it can cross multiple edges in the

�The term is historical and was originated by John Cocke�

�



proc Q proc S �Z


N � � call T �Z�Z


call R ��� N� N��
 end S

end Q proc T �Y


proc R �A� B� C
 end T

call S �A


B � C � A � ��

end R

Figure �� Jump Function Example

call graph� In Figure �� formal Z in procedure S has value � because A is unmodi�ed in
R and is bound to an intraprocedural constant value in procedure Q� The more general
polynomial parameter FJF 
PNFJF� identi�es actuals that are any polynomial function
of the procedure�s formal and global parameters� In Figure �� formal Y has value 	
because it is bound to a polynomial function of Z in S which was found to have the
value ��

Similarly there are three RJFs of interest� The literal constant RJF 
LCRJF� iden

ti�es formal and global parameters whose side e�ect is assignment of a literal con

stant� The intraprocedural constant RJF 
IPRJF� identi�es formal and global parame

ters whose side e�ect is assignment of an intraprocedural constant� similar to the IPFJF�
The polynomial parameter RJF 
PNRJF� identi�es formal and global parameters whose
side e�ect is a polynomial function of a subset of the formal and global parameters� In
Figure �� the RJF for formal B in procedure R is a polynomial function of the for

mal arguments A and C� The notion of a passthru parameter RJF is captured by the
argument not appearing in the MOD set of the procedure�

In the analysis used by Callahan et al�� the jump functions are extracted from
the body of the procedure and stored in the procedure summary block so that the
text of the program is not required� This is to support separate compilation� Since
Nascent keeps the program text around� we do not need to extract the actual Jump
Function description� Instead� actual parameters are inspected to determine if they are
literal constants� to give the e�ect of LCFJF� After intraprocedural constant propagation
is run� we can tell which actual parameters have constant lattice values� This gives
the e�ect of IPFJF� We implemented a demand
driven solver for the interprocedural
constant propagation� The interprocedural aspect gives the capability of the PTFJF�
and the demand
driven aspect gives the capability of the PNFJF�

None of the RJFs were implemented for this experiment� The PNRJF is very com

plex to compute� Because the lattice values are not available until after intraprocedural
constant propagation� the LCRJF would require the same complexity as the IPRJF�
We discuss this under future work�

�



� Interprocedural Constant Propagation

Interprocedural constant propagation increases all of the bene�ts of intraprocedural
constant propagation in three ways� First� MOD analysis makes it possible to change
the non
killing defs at call sites to simple uses for global variables and actual arguments
which are not modi�ed� This allows their values to be propagated past the call site�
Second� formal parameters and global variables may be identi�ed as constants at proce

dure entry time� Third� RJFs may identify modi�cation by a constant value for global
variables and actual parameters�

Interprocedural constant propagation also allows a completely new optimization�
procedure cloning� where a procedure is specialized for speci�c constant values of one or
more of its formal parameters� If interprocedural analysis �nds that there are only a few
constant values for a formal parameter then the procedure is a candidate for cloning�
A clone could have a simpler CFG� and use of a clone can simplify the call graph� The
drawback is that cloning can increase code size� so the compiler must make decisions on
the tradeo� between space and time�

��� Demand�driven With Incremental Modi�cation Algorithm

There are three leading theoretical descriptions of interprocedural constant propagation
aside from the obvious brute force approach� Wegman and Zadeck�s interprocedural al

gorithm on the complete program SSA graph solves the interprocedural constant prop

agation problem in time linear in the sum of the size of the component procedure SSA
graphs �WZ���� However� the use of global worklists is likely to lead to poor locality of
reference and consequently poor compile
time performance� Burke and Cytron�s inter

procedural algorithm is tailored to minimize the working set of memory needed� They
describe the use of an incremental intraprocedural propagator� iterating both backward
and forward over the call graph �BC���� On the practical front� Grove and Torczon
have demonstrated that procedure summary blocks with jump functions �nd a very
high percentage of the available constants �GT���� RJFs also capture modi�cation by a
constant as a result of a procedure call� This information can be applied on a call site
by call site basis which is more powerful than simply merging the results of all call sites
together�

We chose to couple the last two observations along with some signi�cant improve

ments� Burke and Cytron suggested using a pessimistic propagator because it is able to
function incrementally� Recall that an optimistic algorithm would have to reinitialize
the lattice values to � before beginning and a pessimistic algorithm can not deal with
loops in the CFG� We chose to use an optimistic algorithm� WZ
SCC� for the initial
setting of the lattice values and to use a pessimistic algorithm for the incremental prop

agator� An added feature of WZ
SCC is that it marks unreachable code� so we simplify
the CFG during the initial pass� RJFs can easily be incorporated into DWIM�

The order of the compiler phases in Figure � is straightforward� The Alias and
MOD�REF analyses need the complete call graph� The SSA algorithm needs to know
whether a given IL node is a use� def� or non
killing def so the MOD sets need to
be re�ected into the IL� Induction variable analysis is done before constant propaga


�



tion because constant propagation can look at induction expressions to �nd additional
constants� The demand
driven character of the interprocedural driver is an important
aspect of the algorithm� It provides the power of PNFJFs with no more complexity
than the IPFJF�

Our incremental algorithm described in Figure ��� is a modi�cation of WZ
SCC� We
want to retain the full power of an SCC propagator and combine it with the incremental
capability of a pessimistic algorithm� We use two worklists� the SSAlist for SSA edges�
the AntiFlowlist for nonexecutable �ow edges� Our incremental algorithm takes as
parameters a procedure 
implicit� and one formal argument� The SSAlist is initialized
with all uses of this parameter� The AntiFlowlist is initially empty� We assume an
initial intraprocedural constant propagation has been performed on the procedure� In
the incremental analysis� we can only raise non
constant values to constants and mark
executable edges as non
executable� New constant defs may only alter expressions whose
value is currently �� so the check at line 		 is for consistency only� The check for an
executable incoming edge is to avoid useless computation� Visit
 checks for lattice
value changing 
lowering� in line �� to avoid useless computation� In Visit
Expression�
for any predicate which may change� the current SSA and CFG information is based on
all paths from a predicate being executable� so if a predicate becomes constant then the
new information is which edges are NOT executable� For nonexecutable edges we must
check the destination block to see if any information crossing that edge is merged at a
�
node� If the block has become dead code� i�e�� it has no executable incoming edges�
then we add all outgoing edges to the AntiFlowlist�

An important di�erence from the optimistic intraprocedural algorithm are� a �
node
that has value � must be reexamined as these are the interesting nodes for a pessimistic
algorithm� they need not be examined by an optimistic algorithm as the algorithm only
lowers nodes in the lattice� However� SSA edges from formal arguments are not special

cased to � because the algorithm has precise information about their value and need
make no assumptions�

Our algorithm is a Demand
driven With Incremental Modi�cation interprocedural
constant propagator 
DWIM�� This algorithm combines the demand
driven approach
which enhances the power of simple Jump Functions with an initial optimistic intrapro

cedural constant propagator to handle loops in the CFG and a pessimistic incremental
propagator� We are very precise about only examining information that may have
changed and only propagating information that has de�nitely changed� Careful modi

�cation of the WZ
SCC algorithm� allows us to obtain the bene�t of incremental dead
code elimination�

� Experiments

We evaluate the e�ectiveness of demand
driven interprocedural constant propagation
by running it on several sets of standard benchmark programs� the RICEPS benchmark

��



�� Incremental �n�
�� Initialize SSAlist with all edges from n
�� While NotEmpty�SSAlist� and NotEmpty�AntiFlowlist�
�� Take an item from a list
�� If item is from SSAlist and destination is a ��node then
�� call Visit� 
�� If item is from SSAlist and destination is an expression then
	� call Visit�Expression

� If item is from AntiFlowlist then
��� mark edge as nonexecutable
��� ���nodes in destination block call Visit� 
��� If all incoming edges to this block are unexecutable then
��� add all outgoing edges to the AntiFlowlist
��� End Incremental

��� Visit� �n�
��� If at least one incoming edge is executable then
��� evaluate ��node
�	� If lattice value of ��node changes then
�
� add all uses of the ��node to the SSAlist
��� End Visit� 

��� Visit�Expression �n�
��� If at least one incoming edge is executable and the value is � then
��� evaluate the full expression
��� If the lattice value of the expression changes then
��� If target is an assignment then
��� add all SSA edges to the SSAlist
��� If target is a predicate then
�	� add all outgoing edges NOT determined by the �
�
� predicate to the AntiFlowlist
��� End Visit�Expression

Figure �� Incremental Pessimistic Propagator

��



suite�� the PERFECT Club suite� and the Mendez suite�� They are all used for eval

uating optimizing Fortran compilers� Tables �� 	 and � give an idea of the size and
complexity of the various programs� The ��s indicate programs that have comments
counted in their number of lines�

Table �� PERFECT Club static characterization

PERFECT Club lines procs blocks insts fetches stores preds calls
adm �
�� 	� ��	� ����
 ���
 �

 ��� 
��
arc�d ���� 
	 
�
� ����� ��
� 
�� �
 
�

bdna 
�	
 �
 ��	
 ����� 
��� ��� 
�
 ���
dyfesm ���
 �� ��	
 ����� 
��� 
	
 

� 
��
�o�� 
��� �� 
��� �
	�� ���� �
� 
�� ���
main ��
�� �� 

�� ���
	 ���� ��� 

� 
��
mdg 
��� 
� ��� ���	
 ��
 

� 
	 	�
ocean ���� 
� 
��� ����� 
��� ��
 
�
 
��
qcd 
��� 
� 
�	� �
��� 

�� �
	 �	 
��
spec�� 

		 �� ��	� �

�� 



 
�� 
�
 ���
spice 
���
� 
�� ���� 

��
� 
�
�� 

	� 
	�� 
��	
track �
	� 
� 	�� ��


 	�� ��� 
�� 



trfd �
� � �
� �

� ��� 
�
 �� 
�

Table 	� RICEPS static characterization

RICEPS lines procs blocks insts fetches stores preds calls
boast ��
� �� ��
� 
�
	�� 	��� 


� �	� 
	�
ccm 
���	 
�� ��
� 
��
�� 

��� ���� ��� ���
hydro 

��	 
� 
��� ���	� ���� 
�� ��� 
��
qcd �
�
� 
� 
��� ����
 


	 
�� 
�� ���
simple 
�
	 � ��
 �	
�� 
��
 

� �� ��
sphot ��� � �

 
�
	� ��� 
�� 	
 ��
track 
�
�� 
� 	�	 �
	�� 	

 �
� 
�
 
��
wanal
 
�
� 

 �
�
 �
	�� 
��� 

� 

 
��
wave ����� 	
 

�
 	���� ��	� �
� ��� 
��

Recall that constant propagation performs two primary functions for us� it �nds constant
uses and defs of variables� and it �nds predicates which can be evaluated at compile�time� These
two functions are only loosely interdependent so we chose to measure both of them� We could
count programmer variables which have constant value� but this is not meaningful� For example�
a particular variable might have several di�erent constant values within a procedure or it might
be constant only over part of a procedure� Speci�cally� we count all uses and all defs which have
a constant lattice value and we count all predicates which can be evaluated at compile�time� The
compile�time predicates indicate simpli�cation of the CFG� and we want to know how much�

�ccm� linpackd� qcd and track have procedure calls with an incorrect number of arguments� This
breaks interprocedural analysis so they are discarded�

�bdna� 	o
� and track have the same problem�
�euler� mhd�d and shear have the same problem�

�	



Table �� MENDEZ static characterization

MENDEZ lines procs blocks insts fetches stores preds calls
baro 	
�� � ��� 	��� 
�
� �� �� 
�
euler 
���� 
� �
� 
	
�� 	�� 
�� 
�� 	

mhd�d 	��� 
� ��� 

�
�� ��
 
�� �
 
��
vortex �
�� �� 
�� ���� 
�� �� 
� ��

We also count the number of call sites in each procedure so we can measure the compile�time
simpli�cation of the call graph�

The baseline for comparison is standard intraprocedural constant propagation using WZ�
SCC and induction variable analysis� One experiment measures just the use of MOD sets to
show how many constants are preserved across call sites� Another experiment measures the
e�ectiveness of Jump Functions in addition to MOD sets� The JFs measured are the LCFJF
and the PNFJF�

Table �� Totals From Constant Propagation Over the Whole Benchmark Set

Fetches Predicates
Intra � MOD � LCFJF � PNFJF Intra �MOD � LCFJF � PNFJF

�
� 
�� �
 
�
 �� 

 	 �	

The results in Table � show that we �nd �
��� more constant fetches with MOD sets over
vanilla intraprocedural WZ�SCC� We �nd an additional ����� more constant fetches over WZ�
SCC when we add the LCFJF and ����� more when we use the PNFJF instead of the LCFJF�
We �nd ����� more constant predicates with MOD sets over vanilla intraprocedural WZ�SCC�
We �nd an additional ����� more constant predicates over WZ�SCC when we add the LCFJF
and 

���� more when we use the PNFJF instead of the LCFJF� Fetches represent eliminated
load instructions and predicates represent eliminated branch instructions plus dead code� See
Appendix A for a program by program breakdown of the statistics�

The current implementation of Nascent has some limitations� It does not parse EQUIV�
ALENCE statements� so speci�c programmer directed aliases are not available to the alias
analysis� Nascent does not use Alias information intraprocedurally� so defs are not correctly
handled in the presence of aliases� Happily� the Fortran standard declares that modifying an
aliased variable is not required to be supported� Nascent does not make globals that are implic�
itly passed through a procedure visible� so useful constant propagation would be very di�cult
and was not implemented� Also Nascent does not parse DATA statements or BLOCKDATA
procedures� These are an important source for constants� especially for global variables� so the
numbers presented above are strictly conservative�

The results show only �rst order e�ects� We do not perform incremental update of the call
graph and hence no incremental update of Alias� MOD and REF sets� and no iteration over the
improvement to interprocedural information aside from the constants themselves is done� If this
were done in an environment that supported separate compilation it would increase the amount
of inter�le dependences� These results are also based on static measurements� Nascent does not
have a code generator so it is not yet possible to determine the actual a�ect on the run�time
performance seen by a user�

The results in Table � show that we �nd �
�
� more dead call sites with MOD sets over
vanilla intraprocedural WZ�SCC� We �nd an additional �
��� more dead call sites over WZ�
SCC when we add the LCFJF and 

��� more when we use the PNFJF instead of the LCFJF�

��



Table �� Total Dead Call Sites and Basic Blocks for the Whole Benchmark Set

Dead Call Sites Dead Basic Blocks
Intra � MOD � LCFJF � PNFJF Intra �MOD � LCFJF � PNFJF

��
 �� 
 �
 ��� ��	 
� 
�

We �nd 
��
� more dead basic blocks with MOD sets over vanilla intraprocedural WZ�SCC�
We �nd an additional 
���� more dead basic blocks over WZ�SCC when we add the LCFJF
and ����� more when we use the PNFJF instead of the LCFJF� See Appendix A for a program
by program breakdown of the statistics�

	 Related Work

We compare our work to some of the original theoretical work in the area� There is a distinct
shortage of papers evaluating the e�ectiveness or cost of performing interprocedural analysis�
optimization and in particular constant propagation� Grove and Torczon have evaluated the
ParaScope� research compiler� and Metzger and Stroud have evaluated the Convex Application
Compiler� a commercial compiler �MS	
�� We will make comparisons to the Rice group under
Ken Kennedy� to Wegman and Zadeck�s extension of their intraprocedural SCC algorithm� to
Burke and Cytron�s work and to partial evaluation techniques�

Callahan et al� describe a method for e�cient interprocedural constant propagation that
easily supports separate compilation� but provide no evaluation of its e�ectiveness �CCKT����
They use procedure summary blocks so that they do not need the procedure text available when
they perform interprocedural analysis� They expand the idea of forward and return Jump Func�
tions� The FJFs summarize the partial computations from procedure invocation to a given call
site and the RJFs summarize the side e�ects �except I�O� of a procedure� By providing sum�
mary information their method minimizes the e�ects of interprocedural constant propagation
on recompilation e�ort� They build the Jump Function expression trees after parsing but before
interprocedural analysis� They use a WZ�SCC constant propagator with a symbolic expression
evaluator for the Jump Functions� The expression evaluator handles aliasing� They trade com�
pleteness against support for separate compilation and they choose data structures that give
them time linear in the size of the call graph with some reasonable assumptions�

Grove and Torczon evaluate the e�ectiveness of the various types of Jump Functions �GT	
��
Their algorithm only handles integer constants and it does not track them in and out of arrays�
First� in a bottom�up walk of the call graph� it builds RJFs from an SSA graph� then it destroys
the SSA graph� Next� in a top�down walk of the call graph� it builds the FJFs from a new
SSA graph� Then the algorithm uses ParaScope�s standard interprocedural data��ow solver
to perform the actual interprocedural constant propagation� If a formal parameter becomes
constant� then the FJFs are evaluated for all call sites� If an actual parameter becomes constant�
then the data��ow solver makes another pass over the entire call graph� They use the programs
in the SPEC and PERFECT benchmark suites that ParaScope could compile� They noted that
PNFJFs found no more constants than the PTFJFs� and complete� constant propagation found
���� more constants compared to PNFJF� both using MOD sets�

Grove and Torczon found ����� more constants with full interprocedural constant propa�
gation over vanilla intraprocedural constant propagation� There are several reasons why their

�ParaScope is a parallelizing compiler developed by Ken Kennedy�s group at Rice�
	Applies dead code elimination after each pass over the call graph� For their benchmark set two

passes were su�cient�

��



results di�er from ours� Grove and Torczon use as a metric �the number of constants substituted
into the program text�� This is equivalent to our fetches metric� However� they used a di�erent
set of benchmarks� including the SPEC�	 FP codes� doduc� fpppp� linpackd� matrix����

snasa�� simple� If we count just the benchmarks in common between the two experiments�
Grove and Torczon �nd only ����� more constants and we �nd ��	� more� Allowing only a
single pass over the call graph� Grove and Torczon �nd only �
��� more constants� Only one of
these programs� ocean� has constants in a BLOCKDATA procedure� So it is the only signi�cant
benchmark where RJFs a�ect the number of constants found� If this benchmark is removed
from consideration then Grove and Torczon �nd only ��
� more constants and we �nd 
���
more� The di�erence can be accounted for by our lack of support for global variables and RJFs�

Burke and Cytron note that interprocedural constant propagation can be modeled as incre�
mental intraprocedural constant propagation �BC���� They point out that optimistic algorithms�
which assume a value is constant until proven otherwise� such as WZ�SCC� are ill�suited to in�
cremental propagation� They suggest using a pessimistic algorithm combined with iteration
forward and backward over the call graph� updating the procedure summary information� to
achieve the best possible result� To keep the memory requirements down they use only the cur�
rent node�s intraprocedural data��ow graph along with all the procedure summary information�
They are willing to trade away e�ciency for e�ectiveness�

Wegman and Zadeck develop the powerful Sparse Conditional Constant algorithm �WZ	
��
This algorithm relies on properties of an SSA graph� the lack of which in def�use chains prevented
an earlier discovery of the algorithm� The algorithm is linear in the size of the SSA graph� They
describe an interprocedural version that connects up the SSA graphs of the procedures by adding
edges from call sites to procedure entry points� and edges from the exit points back to the call
sites� This gives a complete solution� linear in the sum of the sizes of the SSA graphs of the
component procedures� However� this approach fails to capture the results of RJFs� Since RJFs
are functions of formal parameters rather than actual parameters they represent e�ects with
respect to one call site rather than across all call sites� The interprocedural algorithm uses
one def and one edge worklist for the whole program which is likely to lead to poor locality of
reference� Wegman and Zadeck also suggest aggressive procedure inlining to allow for call site
speci�c optimizations� They do note that this can lead to large programs and that it fails in the
case of cycles in the call graph if a naive inlining algorithm is used� The envision this approach
being more e�ective in a functional language setting�

Constant propagation is one of the primary tools used in partial evaluation �CD	
�� In partial
evaluation a program as specialized with respect to some of its inputs and a new one is generate
by a partial evaluation function� Given a partition of the binding time of a program�s inputs�
partial evaluators perform binding time analysis on a program to determine for each expression
when it can be evaluated� Partial evaluators are divided into two classes� o�ine for compile
time evaluation and online for run time evaluation� An imperative language compiler is an
o�ine partial evaluator that uses constant propagation and constant folding to partially evaluate
a program� Constant propagation algorithms identify statically bound inputs to expressions
and fold the results to make statically bound inputs for other expressions� Polyvariant partial
evaluators may generate multiple specialized instances of an input function where some of its
inputs are constants� In imperative language compilers this is called procedure cloning� A
partial evaluator must make the same sort of space versus time tradeo� decisions as a compiler�


 Future Work

There are several tasks to complete to demonstrate the full capability of this algorithm� make all
implicit globals explicit in the intermediate representation implement the polynomial RJF and�
process COMMON blocks� EQUIVALANCE statements� BLOCKDATA procedures� and DATA

��



statements� This will ensure that all sources of constants are utilized and that the capability of
propagating them is in place�

This work can be extended in several directions� Among the most interesting are to build
a uni�ed solver for constant propagation� induction variable detection and dead code removal�
To carry it even further� an incremental version suitable for assisting interprocedural constant
propagation can be investigated� In the same vein� a set of incremental algorithms for interpro�
cedural information would enable higher order e�ects� All of these should be integrated with a
procedure cloning and inlining capability�

A completely new area would be to extend constant analysis to the discovery of write�once
variables� especially those that are de�ned by READ statements� A number of programs have
constants represented as DATA statements� whereas others get them from a �le or the command
line at run time� Compile time analysis can support dynamic specialization using run time code
generation and run time linking� However� a number of parallel optimizations can bene�t from
constant information to assist with partitioning data and specializing code with respect to the
processor number it is executing on� Run time resolution of this information when it cannot be
discovered at compile time is expensive� By delaying some of the code generation until early
run time� a lot of interpretation may be avoided� or performed once as a compilation� Programs
that get their input data from �les can receive the same bene�ts of constant propagation as
those which have their constants inline�

� Summary

We have described the implementation of several interprocedural analyses in Nascent� complete
call graph� Alias� and MOD�REF� We presented DWIM� a new hybrid algorithm for solving the
interprocedural constant propagation problem� which uses a demand�driven approach with two
intraprocedural propagators� an optimistic initial one and pessimistic incremental one� The pes�
simistic algorithm was developed from an existing powerful optimistic one� We have performed
preliminary evaluation of DWIM and we have shown it to be as e�ective as the best approach
based on procedure summary information�

� Bibliography

References

�All��� F� E� Allen� A Catalogue of Optimizing Transformations� pages 
!
�� Prentice Hall�
Englewood Cli�s� NH� 
	���

�ASU��� A� V� Aho� R� Sethi� and J� D� Ullman� Compilers� Principles� Techniques� and

Tools� Addison�Wesley� Reading� MA� 
	���

�BC��� Michael Burke and Ron Cytron� Interprocedural dependence analysis and paral�
lelization� In Proceedings of the ACM SIGPLAN ��� Symposium on Compiler Con�

struction� pages 
��!
��� July 
	���

�CCKT��� David Callahan� Keith D� Cooper� Ken Kennedy� and Linda Torczon� Interprocedu�
ral constant propagation� In Proceedings of the ACM SIGPLAN ��� Symposium on

Compiler Construction� pages 
��!
�
� July 
	���

�CD	
� Charles Consel and Olivier Danvy� Tutorial notes on partial evaluation� In Pro�

ceedings of the Twentieth Annual ACM Symposium on Principles of Programming

Languages� 
		
�

��



�CFR��	� Ron Cytron� Jeanne Ferrante� Barry K� Rosen� Mark N� Wegman� and F� Kenneth
Zadeck� An e�cient method of computing static single assignment form� In Pro�

ceedings of the Sixteenth Annual ACM Symposium on Principles of Programming

Languages� pages ��!
�� February 
	�	�

�CK��� Keith D� Cooper and Ken Kennedy� E�cient computation of �ow�insensitive inter�
procedural summary information� In Proceedings of the ACM SIGPLAN ��	 Sym�

posium on Compiler Construction� pages ���!���� June 
	���

�CK��� Keith D� Cooper and Ken Kennedy� Fast interprocedural alias analysis� In Pro�

ceedings of the Sixteenth Annual ACM Symposium on Principles of Programming

Languages� pages �	!�
� February 
	���

�CK��� Keith D� Cooper and Ken Kennedy� E�cient computation of �ow�insensitive in�
terprocedural summary infomation �a correction�� Technical Report TR������ Rice
University� 
	���

�CK��� Keith D� Cooper and Ken Kennedy� Interprocedural side�e�ect analysis in linear
time� In Proceedings of the ACM SIGPLAN ��� Conference on Programming Lan�

guage Design and Implementation� pages ��!��� August 
	���

�Coo��� Keith D� Cooper� Analyzing aliases of reference formal parameters� In Proceedings

of the Twelfthh Annual ACM Symposium on Principles of Programming Languages�
pages ��
!�	�� January 
	���

�EB	
� Rudolf Eigenmann and William Blume� An e�ectiveness study of parallelizing com�
piler techniques� In Proceedings of the 
��
 International Conference on Parallel

Processing� August 
		
�

�GT	
� Dan Grove and Linda Torczon� Interprocedural constant propagation� A study of
jump function implementations� In Proceedings of the ACM SIGPLAN ��� Con�

ference on Programming Language Design and Implementation� pages 	�!		� June

		
�

�HK	�� Mary W� Hall and Ken Kennedy� E�cient call graph analysis� ACM Letters on

Programming Languages and Systems� 
�
�����!���� Sept 
		��

�HP	�� John Hennessy and David Patterson� Computer Architecture� A Quantitative Ap�

proach� Morgan Kaufmann� San Mateo� CA� 
		��

�Kil�
� G� Kildall� A uni�ed approach to global program optimization� In Proceedings of

the First Annual ACM Symposium on Principles of Programming Languages� 
	�
�

�Kol	�� Priyadarshan Kolte� Optimization of array subscript range checks� Technical report�
Oregon Graduate Institute� 
		��

�KU��� J� B� Kam and J� D� Ullman� Monotone data �ow analysis frameworks� Acta Infor�

matica� ��
��!

�� 
	���

�MS	
� Robert Metzger and Sean Stroud� Interprocedural constant propagation� An em�
pirical study� ACM Letters on Programming Languages and Systems� ������

!�
��
December 
		
�

�MW	
� Herbert G� Mayer and Michael Wolfe� Interprocedural alias analysis� Implementa�
tion and empirical results� Software
 Practice and Experience� �
�

��
��
!
�

�
November 
		
�

��



�SLY	�� Zhiyu Shen� Zhiyuan Li� and Pen�Chung Yew� An empirical study of Fortran pro�
grams for parallelizing compilers� IEEE Transactions on Parallel and Distributed

Systems� 
�
��
��!
��� July 
		��

�SW	�� Eric Stoltz and Michael Wolfe� Constant propagation� A fresh� demand�driven look�
In Symposium on Applied Computing� ACM SIGAPP� March 
		��

�WZ	
� Mark N� Wegman and F� Kenneth Zadeck� Constant propagation with conditional
branches� ACM Transactions on Programming Languages and Systems� 

����
�
!
�
�� April 
		
�

��



�
 Appendix A

In the constants found table� the �rst column� Fetches� is the number of constant fetches found
by intraprocedural analysis� The second column is the additional ones found with MOD sets�
the third column is number of ones over column two found with both MOD sets and the LCFJF�
and the fourth column is the additional ones in excess of column three when the PNFJF is used
instead of the LCFJF� Columns �ve through eight are the same� respectively� but for constant
predicates� In the second table� dead edges� columns one through four are the same as in the �rst
table� but for call sites eliminated� and columns �ve through eight are basic blocks eliminated�
In the third table� dead code� columns one through four are the same as in the second table� but
for intermediate code tuples eliminated� In cases where static predicates are found some fetches
and predicates may become unexecutable� the number is indicated after a slash ������

There seems to be an anomaly introduced by the MOD�REF transformation that updates
the call site information which causes additional fetches to appear� The additional number found
is indicated in parentheses in the appropriate column�

In table three� all the ICs eliminated by MOD�REF are for simpli�cation at call sites to
account for non�referenced global parameters� A few have actual code elimination due to new
constant predicates found� and these are called out in parentheses�

Table �� Constants Found per Benchmark

Program Intra � � � Intra � � �
Fetches MOD LC PN Preds MOD LC PN

adm 
�
 �
�� 
 

arc�d �� �	� ��
 
� ��

dyfesm � ��	� ��
 

 

main ��� �
� 
 ��� �
ocean 
 ���� � ��
� ��

qcd 
� ��	� 
 �
spice 
���
��
 �

���
 
�
 
�
 
��
		 
�	� 
 

trfd � 
 

boast ����
� ��
�� 
 ����	 ��� � 
��

hydro �� 
��
�
simple � 
�
�
� �
sphot � ��
�
wanal
 ���	� ���� � �
wave ���

 ��
�� ��
 
���
baro 
� ��
� � �
vortex 
� ���� �
 �

��



Table �� Dead Edges and Blocks Found

Program Intra � � � Intra � � �
Calls MOD LC PN Blocks MOD LC PN

adm �
arc�d �
dyfesm �
main �
ocean 
 
 �
 �
qcd
spice �
� �	 ��� ��� 
 �
trfd
boast � �
 �� ��� ��
hydro
simple
sphot
wanal
 
��
wave � �� 	 ��
baro
vortex �

Table �� Dead Code Found

Program Intra � � �
ICs MOD LC PN

adm ��
 ����
arc�d �
� 
�
dyfesm ��
� 
�
main 
��� 
�
ocean ��� �
��� �


qcd 
�	�
spice ����
 ���������	� 

 
	
trfd 
��
boast 
��� ��
����
�
�	 	�	
hydro 
��


simple ��		
sphot 	��
wanal
 



 

�
wave ��� �
	�
����
baro �


vortex ��� �

	�


