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Abstract

In ����� Reynolds outlined a general method for eliminat�
ing functional arguments known as defunctionalization� The
idea underlying defunctionalization is encoding functional
values as 	rst�order data� and then to realized the appli�
cations of the encoded function via an apply function� Al�
though this process is simple enough� problems arise when
defunctionalization is used in a polymorphic language� In
such a language� a functional argument of a higher�order
function can take di
erent type instances in di
erent appli�
cations� As a consequence� its associated apply function can
be untypable in the soucre language� In the paper we present
a defunctionalization transformation which preserves typa�
bility� Moreover� the transformation imposes no restriction
on functional arguments of recursive functions� and it han�
dles functions as results as well as functions encapsulated in
constructors or tuples� The key to this success is the use
of type information in the defunctionalization transforma�
tion� Run�time characteristics are preserved by defunction�
alization� hence� there is no performance improvement com�
ing from the transformation itself� However closures need
not be implemented to compile the transformed program�
Since the defunctionalization is driven by type information�
it can also easily perform a specialization of higher�order
functions with respect to the values of their functional ar�
guments� hence gaining a real run�time improvement of the
transformed program�

� Introduction

Defunctionalization is the transformation of a program that
uses higher�order functions into a semantically equivalent
	rst�order program� This paper presents defunctionalization
as a source�to�source translation in a Hindley�Milner typable
functional language� Defunctionalization is very closely re�
lated to �closure conversion in functional compilers� We
are motivated to investigate it as a separate transforma�
tion because we have developed tools for functional language
compilation that are based on typed source�to�source trans�
formation and that generate typed 	rst�order programs in
conventional languages� In addition� we apply 	rst�order
program transformation techniques to the defunctionalized
representations of programs� The explicit study of typed de�
functionalization illuminates issues related to type special�
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����

fun map F y � case y of
Nil� Nil

j Cons�x�xs�� Cons�F x�map F xs�
fun addone l � map incr l
fun subone l � map decr l

Figure �� Example higher�order program

fun apply map encoding arg �
case encoding of

�incr� � incr arg
j �decr� � decr arg

fun map� F y � case y of
Nil� Nil

j Cons�x�xs�� Cons�apply map F x�map� F xs�
fun addone l � map��incr� l
fun subone l � map� �decr� l

Figure �� Defunctionalized program

ization� The algorithm presented performs necessary type
specialization but does not generate a strictly monomorphic
representation�
Reynolds outlined a general method for defunctionaliza�

tion �Rey���� The idea underlying defunctionalization is en�
coding functional values as 	rst�order data� Since a 	rst�
order value cannot be applied as a function� applications of
the encoded functionals need to be modi	ed� by introducing
a call to an apply function� The apply function is called
wherever the functional argument was applied in the origi�
nal higher�order function� The apply function takes as argu�
ments the encoded functional and all the arguments to the
functional� The apply function dispatches based on the en�
coding� and applies the appropriate function to the remain�
ing arguments� For example� if the program in Figure � is
defunctionalized using strings containing the function name
as the representation of function values� the program in Fig�
ure � is the result�
Reynolds� method defunctionalizes functions that have

functional arguments� but not functions that return func�



fun applyint�int encoding arg �
case encoding of

�incr� � incr arg
fun applystring�int encoding arg �

case encoding of
�str�int� � str�int arg

fun mapint�int F y � case y of
Nil� Nil

j Cons�x�xs�� Cons� apply mapint�int F x�
mapint�int F xs�

fun mapstring�int F y � case y of
Nil� Nil

j Cons�x�xs�� Cons�apply mapstring�int F x�
mapstring�int F xs�

fun addone l � mapint�int�incr� l
fun subone l � mapstring�int �str�int� l

Figure �� Defunctionalized example with specialization

tions� Chin and Darlington address this in their A�algorithm �CD��
which removes some functional results by ��expansion� Our
transformation includes the capabilities of the A�algorithm�
Problems arise when defunctionalization is used in a poly�

morphic language �Bel��� BH��a�� In the above example�
map is called twice� each time passing a function of type
int � int� Suppose that the second call to map used a
function with a di
erent type� e�g� str�int � string � int�
Then the apply map function would be�

fun apply map encoding arg �
case encoding of

�incr� � incr arg
j �str�int� � str�int arg

This function is ill typed in a Hindley�Milner language
�although the resulting program will have no �wrong be�
haviors if the orignal program was type correct�� Our so�
lution is to specialize apply functions by the type of the
functionals whose encodings are interpreted in the apply
function� Under this scheme� there would be one version
of apply map that applies int� int functions� and another
version that applies string � int functions� Since the apply
functions are specialized by type� so must be the higher�
order functions that rely on the various apply functions�
Again� this specialization is according to the type of the
encoded functions� A type�correct defunctionalized version
of the modi	ed example is given in Figure ��
Another complication encountered by the defunctional�

ization algorithm is illustrated in Figure �� showing an im�
plementation of the sum function using continuation�passing
style� Here� sum is called with a series of di
erent function
values for the argument F � This requires an encoding for F
that accounts for all possible values of F � which is accom�
plished by encoding F in a recursive datatype� as described
in Section ����
Our desire for a defunctionalization algorithm was moti�

vated by work on software component generators that per�
form type�faithful translations of higher�order functional pro�
grams to 	rst�order imperative languages �e�g� Ada� �B����

fun sum F y � case y of
Nil� F �

j Cons�x� xs�� sum ��n�� � F n� xs

Figure �� Higher�order function in CPS

Terms t�M� e
�terms are underlined in
transformation rules�

Variables v�w�x� y� z�F�G�H
Function symbols f� g� h
Type variables ���� �
Type terms �������
Data constructors C labelled with the type and the

term it encodes
Type constructors T labelled with the type it encodes

as an index

Table �� Naming conventions

KBB����� Although specialization�based techniques for de�
functionalization exist �CD�� they do not defunctionalize func�
tions in data constructors �e�g� lists of functions�� In addi�
tion� there are higher�order functions on which specialization
fails because an in	nite family of specializations would be
generated� such as the example in Figure ��
Our type�driven transformation is presented as a set of

transformation rules� Two rules decrease higher�orderness
and three rules lessen polymorphism� The rules make clear
the amount of monomorphization which is necessary for de�
functionalization�
The remainder of the paper is organized as follows� Sec�

tion � describes how the type�driven defunctionalization trans�
formation is applied to higher�order programs� Section �
summarizes the results related to soundness� termination�
and e
ectiveness of the transformation �full proofs are given
in a technical report �BBH����� Section � presents our con�
clusions and future work� The appendices include several
illustrative examples�

� Presentation of the transformation

The defunctionalization transformation applies to a restricted
form of higher�order polymorphic strongly�typed functional
language� A grammar for the language is presented in Ta�
ble �� This is a simple polymorphic language without local
let or lambda bindings� Only function symbols� function
variables� and constructors can appear in function applica�
tion position� A program consists of datatype declarations
followed by function declarations followed by a �top�level�
term� This language form can be calculated from� say� a
core ML program by the standard lambda�lifting transfor�
mation �Joh���� These restrictions simplify the exposition�
the language can be extended without fundamental changes�
The naming conventions used in this and following Sections
are given in Table ��



Datatypes� ddecl ��� datatype �� � � � �n T � cdecs
cdecs ��� cdec p cdec j cdecs
cdec ��� C type� � � � �� typen �n � ��

Functions� fdecl ��� fun f v� � � �vn � term

Terms� term ��� rator term� � � � termn �n � ��
p case term of pat� �	 term� j � � � j patn �	 termn

rator ��� f p v p C
pat ��� C v� � � � vn �n � ��

p �v�� v��

Types� type ��� � p type� � type� p T type� � � � typen p type� � type�

Program� program ��� ddecl� fdecl� term

Table �� The grammar of the polymorphic higher�order language

��� Functional type specialization and arrow type param�
eter encoding

The transformation relies on analyses of types� The basic
idea is to replace arrow type arguments �of type order �� by
appropriate elements of a datatype� A datatype T� captures
the arrow type arguments of the arrow type � where each
arrow type argument of type � is encoded by a constructor
in the datatype T�� Consider the following example of a
term� map id ��� �� where map is declared as in Figure ��
The type of map is�

map � ��� ��� list �� list �

It is a higher�order function since it has an arrow type ar�
gument� The type of id is � � �� But in the context
of the application map id ��� ��� id is instantiated at type
int � int� Therefore� this occurrence of id can be encoded
by a constructor Cid

int�int in a datatype Tint�int which is
created to contain the encodings of arrow type arguments
of type int � int� So doing� the type of map has to be�
come Tint�int � list int � list int� However� in another
application� the type of map could be instantiated other�
wise� The solution is to create as many di
erent versions�
called clones� of the higher�order function as needed� The
transformation requires a di
erent clone of the higher�order
function for each type at which the higher�order function
is applied in all of its applications� Cloning is necessary
because each clone of the higher�order function will use a
specialized encoding of function values�
When creating and manipulating clones� it is necessary

to keep track of which expressions are in the encoded repre�
sentation and which are not� This information in indicated
with braces� Speci	cally� braces subscripted by a type �f�g��
are placed around encoded fragments that are used in their
original context� In the dual case we write braces with an
inverse �f�g���� The de	nition and typing rules are given in
Figure ��
The creation of a clone of a higher�order function is not

a simple task� An arrow type parameter in the higher�order
function becomes a ��order type parameter in its clones� so
it can no longer be applied as a function� The 	rst step is
to create a clone in which the arrow type argument is still
a function but of a specialized type� For example� the clone
of map as presented in Figure � is of type�

� � �int� int�� list int� list int�

fun map� F y � case y of
Nil� Nil

j Cons�x� xs�� Cons� fFgint�int x�
map fFgint�int xs�

Figure �� Higher�order clone of map of type �

A clone of f at a specialized type � is given the function
symbol f�� It is created by taking a copy of the declaration
of f in which arrow type variables are replaced with an ap�
plication of the function f�g� to the arrow type variable� as
shown in Figure �� Note that at this point the recursive call
to map is not encoded� This will be addressed when this
function call is defunctionalized�
The next step is to encode arrow type arguments in

datatypes� Then� in the body of the clone� an application of
fFg� must be transformed into an application of an apply
function� In the body of map�� the application fFgint�int x
is transformed into applyint�int F x as shown in Figure ��
The apply function depends on the datatype� It establishes
a correspondence between the encoding and the encoded
terms� For the example� the transformation adds the decla�
ration of an applyint�int function shown in Figure ��

��� Transformation rules

The transformation informally described in the previous sec�
tion is guided by a set of transformation rules� A rule trans�
forms an expression of type order �� which we call fully�
applied� in the context of a program P � It also updates the
set  of function symbol declarations of P and the set !
of datatype declarations of P � so that a transformation rule
transforms a triple �term�  � !� into a new triple� The
three rules �FunSpec�� �EncodeClosed�� �ApplyV ar� shown
in Figures �� �� and ��� allow us to defunctionalize the fully�
applied application map id ��� ��� De	nitions of the functions
order and functional used in these rules can be found in Fig�
ure ���
The rules reference type information calculated by type



De	nitions�

ftg� � the unencoded value of t

ffvg�g
�� � v

ff t� � � � tng
�� � f ft�g

�� � � � ftng
��

fC t� � � � tng
�� � C ft�g

�� � � � ftng
��

fv t� � � � tng
�� � v ft�g

�� � � � ftng
��

fcase t of p� �	 t� j � � � j pn �	 tng
�� �

case ftg�� of p� �	 ft�g
�� j � � � j pn �	 ftng

��

Typing rule�
" � t � �

" � ftg� � �

Figure �� De	nitions and typing rules for semantic functions

fun map� F y � case y of
Nil� Nil

j Cons�x� xs�� Cons� applyint�int F x�
map fFgint�int xs�

Figure �� Clone of map where F is seen as encoded

datatype Tint�int � Cid
int�int

fun applyint�int f x � case f of
Cid
int�int � �id x�

Figure �� Encoding�derived declarations

inference on the original� untransformed terms� As the trans�
formation progresses� this information is propagated un�
changed� Since the transformation proceeds nondetermin�
istically through untyped intermediate representations� it is
important to note that sometimes the type does not apply
to the term being manipulated� but the input term of which
it is a residual�
The rule �FunSpec� specializes a fully�applied higher�

order application of a function symbol according to the type
of its arrow type arguments� For instance� it transforms
map id ��� �� into map� id ����� and adds the clone map�
from in Figure � to the function declaration set  � The
rule �EncodeClosed� encodes arrow type arguments into con�
structors of datatypes� For example� it transforms the ex�
pression map� id ��� �� into map� Cid

int�int ��� �� and adds
the encoding�derived declarations in Figure � to the dec�
laration set  � Next� in the body of the declaration� the
application fFgint�int x is transformed into apply� F x by
the rule �ApplVar�� In the clone map� there remains a fully�
applied higher�order application of map which comes from
the original recursive application of map� No more transfor�
mation rules are needed to cope with recursive calls in a set
of mutually recursive clone declarations� as explained in the
following section�

��� Higher�order recursive functions

In a clone� types can be inferred with Hindley�Milner type
inference �Mil��� augmented with the rules of Figure � and
from the type label of the clone function symbol� For exam�
ple� in the body of the map� clone of map� the specialized
type of map in the recursive application� map fFgint�int xs
is recognized as the type � because of the subscript int �
int�
Since we suppose Hindley�Milner typability� recursive calls

in a set of mutually�recursive declarations are of a consistent
inferred type� Therefore� in a set of mutually�recursive spe�
cialized clones� the types of recursive calls are of consistent
specialized types� This serves the useful purpose of allow�
ing the specialization rule �FunSpec� to fold the specialized
recursive call anywhere it occurs in the set of mutually�
recursive clone declarations without the need for further
analysis� For example� the rule �FunSpec� is used again to
change the occurrence of map into map� in the body of the
declaration of the clone map�� and change fFgint�int into
F via the application of f�g��� No more rules apply� the
result of the transformation is the 	rst�order program com�
posed of the term map� Cid

int�int ��� �� and the declarations
in Figure � and below�

fun map� F y � case y of
Nil� Nil

j Cons�x�xs�� Cons�applyint�int F x�map� F xs�

An example of mutually�recursive functions is presented in
Appendix B���

��� Polymorphic higher�order application

Cloning a polymorphic function is not as simple when it is
specialized in such a way that it becomes a function that
returns a function� In such a case� a polymorphic function
symbol f with arity a may be applied to a number of ar�
guments n where n 	 a� For example� although id is of



IF
� j� j 	 � � � � n� functional��j�

 all functional variables in functional arguments are arguments of f�g� for some �


 n � order��� 
 order��� � � 
 f is a function symbol

AND
" � ti � �i� �i� i 	 � � � � n�
" � f t� � � � tn � ��
" � f � ��

� � �� � � � �� �n � �

THEN
f t� � � � tn� �! �� f�� ft�g

�� � � � ftng
��� ��!

WHERE

 � �

��
�
 � ff�� x� � � � xn �M �xi�  fxi�g�i� � � � xik  fxikg�ik �g

where  �f� � f x� � � � xn �M and ij� j 	 � � � � k�
are the indices of the functional arguments

Figure �� �FunSpec� Functional type specialization transformation rule

IF
� j� j 	 � � � � n 
 order��j� 	 � 
 tj is a closed term


 z is a function symbol or a function variable
 order��� � �

AND
" � ti � �i�
�i� i 	 � � � � n�
" � z t� � � � tn � ��

THEN
z t� � � � tj � � � tn� �! �� z t� � � � C

tj
�j

� � � tn� 
��!�

WHERE

 � �

�����
����

if Apply�jhas not been declared in  then
 � fApply�j x y� � � � yorder��j � �

case x of C
tj
�j

� tj y� � � � yorder��j �g else

add to it the case arm C
tj
�j
� tj y� � � � yorder��j �

!� �

���
��

if T�j has not been declared in !

then ! � fdatatype T�j � C
tj
�j
g

else add to it the constructor C
tj
�j

Figure ��� �EncodeClosed� Closed arrow type parameter encoding transformation rule

IF
order��� � � 
 F is a variable

AND
" � F t� � � � tn � �

THEN
fFg� t� � � � tn� �! �� Apply� F t� � � � tn� �!

Figure ��� �ApplVar� Higher�order variable application



�case t of p� �	 t� jj ��� jj pn �	 tn� t
�

�
case t of p� �	 t� t

� jj ��� jj pn �	 tn t�

Figure ��� Rewrite rule for case expression normalization

� order � type� int � �t�case t of
� � �
j �� � � � � order���
j T �� � � ��n � �
j �� ��� � �

� functional � type� bool �
�t�case t of

� � false
j �� � � true
j T �� � � ��n � functional���� � � � � �

functional��n�
� � a constructor C � "� � � � � � "m �

T �� � � ��n such that
functional�"�� � � � � � functional�"m�

j �� ��� � false

Figure ��� Di
erence between order and functional

arity �� in id id �id �� the 	rst occurrence of id has two ar�
guments� In this case� the specialized clone of the function
de	nition must not be simply a copy� but an ��extension
annotated with the types of the functional arguments� The
function id in the expression id id �id �� is instantiated at
two types� the 	rst�order type int � int and the second�
order type � � �int� int�� �int� int�� In addition� the
second id appears as a parameter to a higher�order function
and the third as a 	rst�order function� The defunctionaliza�
tion must distinguish on both order and these distinct roles�
Since the outermost application has a functional argument
id� an ��extended clone fun id� x y � fxgint�int y is pro�
duced� along with a transformation of the application into�
id� id �id ��� This is accomplished by the rule �ExpandSpec�
shown in Figure ���
This rule expands the body M of the function it spe�

cializes with fresh variables so that it becomes fully�applied�
This works 	ne if M is a function symbol or a variable� but
M can also be a case expression �see the grammar in Ta�
ble ��� In this case� normalize uses the rewrite rule shown in
Figure ��� as much as needed� to push the variables inside
case arms so that case expressions do not occur as operators
in function applications�
Both rules �FunSpec� and �ExpandSpec� help to decrease

the occurrences of polymorphic applications since the func�
tional polymorphic arguments of fully�applied applications
become monomorphic�
The higher�orderness of programs is addressed by the

rules �EncodeClosed� and �ApplVar�� In the above example�
the result of the transformation is the term id� Cid

int�int �id ���
with the declarations�

datatype Tint�int � Cid
int�int

fun id x � x
fun applyint�int x y � case x of

Cid
int�int � �id y�

fun id� x y � applyint�int x y

This example can be extended to require the encoding
at an arbitrarily high order� Thus a defunctionalization
based on function declarations instead of function applica�
tions cannot work� It is also clear from this example that
the algorithm must be sensitive to the set of monomorphic
types at which every function symbol in the program occurs�
It is necessary to start with an expression with a monomor�
phic type and recursively perform type specialization on all
function symbols occurring in the monomorphic expression�
The transformation rules require fully�applied applica�

tions� thereby intertwining the monomorphization of the
higher�order components and their encoding counterparts
during the transformation� Consider for example the appli�
cation id �id id� �id ��� Only the higher�order argument of
the application di
ers from the example above� It is �id id�
which is a higher�order application itself� However in this
context it is a higher�order argument and as such� it has to

be encoded by a constructor C
�id id�
int�int� Proceeding as above�

we get 	rst�

datatype Tint�int � C
�id id�
int�int

fun applyint�int x y � case x of

C
�id id�
int�int � id id y

fun id� x y � applyint�int x y

with the term id� C
�id id�
int�int �id ��� The application id id

is fully�applied as id id y in the body of the generated
applyint�int function� Because the rules work solely from
fully�applied applications� it is only at this point that the
defunctionalization of id id y is done� This provides the

	rst�order program composed of the term id� C
�id id�
int�int �id ��

with the declarations below�

datatype Tint�int � C
�id id�
int�int j C

id
int�int

fun id x � x
fun applyint�int x y � case x of

C
�id id�
int�int � id� Cid

int�int y
Cid
int�int � id y

fun id� x y � applyint�int x y

Notice that polymorphism can induce arrow type argu�
ments that are syntactically equal but are not of the same
type just as in the application id id id �� The two arguments
id of types � � �int � int� � �int � int� and int � int
are encoded by two di
erent constructors� Cid

� and C
id
int�int

since the constructor symbols are built on both the type and
the term they encode� The interested reader can 	nd more
realistic examples in Appendix B�

��� Encoding nonclosed arrow type arguments

Closed arrow type arguments are always encodable into con�
stant constructors but arrow type arguments may contain
variables� The transformation must be able to encode both
kinds of arrow type arguments of fully�applied functional
applications�



IF
� i� i 	 � � � � n� functional��i�

 all functional variables in functional arguments are arguments of f�g� for some �


 n 	 order��� 
 order��� � � 
 f is a function symbol

AND
" � ti � �i� �i� i 	 � � � � n�
" � f t� � � � tn � ��
" � f � ��

� � �� � � � �� �n � �

THEN
f t� � � � tn� �! �� f�� ft�g

�� � � � ftng
��� ��!

WHERE

 � �

��������
�������

 � ff�� x� � � � xorder��� v� � � � vp �

normalize�Mv� � � � vp��xi�  fxi�g�i� � � � � xik  fxikg�ik �

vl�  fvl�g�l� � � � � � vlm  fvlmg�lm �

where  �f� � f x� � � � xorder��� �M�

ij� j 	 � � � � k� and lj � j 	 � � � �m are the indices of

the functional arguments� p � n� order��� � ��

Figure ��� �ExpandSpec� Functional ��extension and specialization

Arrow type argument expressions may contain arrow type
variables as well as 	rst�order variables� For example an ar�
gument could be t � �fZg	 �fFgint��int�int� x��� where �
is the type �int � int� � int � int� As above� such an
arrow type argument must be encoded in a datatype that
corresponds to its type� This can be done by encoding the
argument as a function constructor rather than as a 	rst�
order constructor�
First�order variables are not encoded by the transforma�

tion� The types of the values of the 	rst�order variables thus
remain variable types and parametric datatypes are gener�
ated to encode arrow type terms which contain 	rst�order
variables� Thus we are doing as much monomorphization as
needed� and no more�
Since functional variable values are encoded� their types

are those of the encoding datatypes� In the above example�
since t contains a 	rst�order variable� the functional argu�
ment t of type int � int must be encoded in a parametric
datatype � Tint�int by a constructor C

t
int�int of type

�T	 � Tint��int�int� � ��� �int� int��

By encoding functional variable values� the datatypes that
are created for the encodings can be recursive �See Sec�
tion B�� for an example of such a recursive datatype�� The
rule Encode presented in Appendix A subsumes the rule En�
codeClosed presented in Figure ���

��	 Higher�order constructors

A special case of higher�order application is higher�order
constructor application�
A higher�order constructor can be an instance of a poly�

morphic constructor� For example the list constructor Cons
has the type �int � int� � list�int � int� � list�int �
int� in the application Cons�id� fxsglist�int�int��� The func�
tional argument id of type int� int has to be encoded into
a constructor Cid

int�int as for an application of a higher�
order function� The rule �Encode� in Appendix A allows

encodings of functional arguments of higher�order functions
as well as functional arguments of constructors�
It is by matching the type � of a term t against the

datatype of the patterns in a case expression that we know
the functional types of function variables in a pattern� These
types are used to apply f�g� to functional variables in the
arm bodies� This is accomplished by the rule �UpdateArms�
of Figure ��� For example�

case fxglist int�int of
Cons�x�� x��� �x� y�

��

case x of
Cons�x�� x��� �fx�gint�int y�

By matching the functional type list�int� int� of x against
the parametric type list � with the substitution 
 � f� 
�int � int�g� The type domain of the data constructor
Cons is then specialized into �int � int�� list�int� int��
allowing the rule �UpdateArms� to apply f�gint�int to the
arrow type variable x�� Tuple patterns are treated in the
same way� The interested reader can consider the exam�
ples B�� and B���
Notice that the type list�int � int� is considered as

functional �see Figure ��� though it is of type order �� Only
term arguments of type order greater than � need to be en�
coded but any term of a functional type may be an argument
of a polymorphic function which� in this case� has to be type
specialized�
There is a minor complication when a datatype declares

a functional constructor explicitly like the constructor Store
in the declaration� datatype ����� store � Store � � ��
Unlike a function symbol� a constructor cannot have clones
in datatypes corresponding to di
erent type instances of �
and �� A way around this is to generalize such a datatype�
Generalization is safe for type inference� Moreover since
the programs are type correct� it is useless to typecheck the
arrow� By the rule �GeneralizeArrows� of Figure �� the



IF

functional�T�� � � ��k�

 all functional variables in t are arguments of f�g� for some �

AND
" � t � T�� � � ��k

THEN
case t of
C�x�� � � � x�m�

� t�

���
Cnxn� � � � xnmn

� tn�

� �! ��

case ftg�� of

C�x�� � � � x�m�
� t��

���
Cnxn� � � � xnmn

� t�n

� �!

WHERE
T is declared datatype �� � � � �k T � �

� i� i 	 � � � � n� t�i � ti�xij�  fxij� g�j� � � � � � xijp  fxijp g�jp ��
Ci appears as Ci�� � � ��mi in the instantiated sumtype ����  ��� � � � � �k  �k�
jl� l 	 � � � � p are the indices of functional pattern variables�

Figure ��� �UpdateArms� rule for updating case arm variables

datatype store becomes datatype � store � Store � so
that encoding of di
erently typed functional arguments in
di
erent applications of the constructor Store is possible�
Rules �FunSpec� and �ExpandSpec� introduce applica�

tions of f�g� to functional terms� These applications are
ultimately removed when the functional term is applied �in
�ApplVar��� when the term is examined �in �UpdateArms���
or by applying f�g�� �in �FunSpec� and �ExpandSpec��� How�
ever� applications of f�g� are not removed when an �unap�
plied� functional term is used as an argument to a higher�
order constructor� as in Cons�ffg��Nil�� For this� we use
the rule �UpdateCon�� as shown in Figure ���

��
 The use of types

In summary� types are used by the defunctionalization algo�
rithm

� to replace arrow type arguments of higher�order func�
tion applications by appropriate elements of a datatype�
A datatype T� is created for functional arguments of
type ��

� to create clones of polymorphic higher�order functions
specialized by the types of their functional arguments�
the clone names are simply labelled by their types�

� to recover the appropriate clone name in a recursive
call that occurs in �mutually� recursive clones of higher�
order function declarations�

� to recognize the datatype in which is encoded the value
of a arrow type variable so that its application can be
replaced by an application of an apply function�

� to know when a clone must be an ��extended copy of
the original polymorphic declaration� and

� to discriminate arrow type arguments of constructors
in di
erent arms of a case expression by analysing the
type of the matched expression�

The encoding of arrow type arguments into datatypes� to�
gether with a type analysis originated by fully�applied appli�
cations� accommodates the transformation of higher�order
programs into a 	rst�order equivalent program�

� Study of the transformation

A transformation rule transforms a program which contains
an expression e in the context P denoted by P �e�� In the
previous section� a transformation rule has been written in
the following abbreviated form�

if C e� �! �� e�� ��!�

Suppose that a function � extracts the set  of the function
declarations from the program and that a function � ex�
tracts the set ! of type declarations from the program� As
usual� the notation M �N �N � denotes that the occurrence�s�
of the subterm N are replaced by the subterm N � in M � A
transformation rule on a program P �e� could be expressed
as�

if C P �e� �� P �e��� ���P �e���!���P �e���

Given a program� the defunctionalization algorithm ap�
plies the six rules fFunSpec� ExpandSpec� Encode� ApplVar�
UpdateArms� GeneralizeArrowsg in any order until none of
them is applicable� It relies upon a type inference sys�
tem which infers the type of an expression according to the
Hindley�Milner algorithm while taking into account type in�
formation introduced by the transformation� For that� the
type inference system is given the inference rule of Figure �
and the following two additional rules� The 	rst rule is for
the type of an apply function� The label of an apply function
indicates the type of the functional encoding term �� The
type of the encoded term is the datatype T�� Therefore�

� apply� � T� � �

The second rule is for the type of a clone function symbol�

� f� � �



IF

� j� j 	 � � � � n�
 order��j� 	 �

 all variables of tj are arguments of f�g� for some �

THEN
C t� � � � tn� �! � f�� � � � �m T � � � � j C �� � � � ���j � � � �� �nj � � �g
��
C t� � � � tn� �! � f�� � � � �k T � � � � j C �� � � � �� � � � � ���nj � � �g

WHERE
�� � � � �m are the type variables in f� � � j C �� � � � �� �j � � � ���nj � � �g
�� � � � �k are the type variables in f� � � j C �� � � � �� � � � � �� �nj � � �g
� is a fresh type variable

Figure ��� �GeneralizeArrows� Arrow constructor generalization

IF
� j� j 	 � � � � n� functional��j�

 all functional variables in functional arguments are arguments of f�g� for some �


 c is a constructor

AND
" � ti � �i� �i� i 	 � � � � n�

THEN
c t� � � � tn� �! �� c ft�g

�� � � � ftng
��� �!

Figure ��� �UpdateCon� Removes applications of f�g� from higher�order constructor arguments

The following paragraphs address the issues of sound�
ness� termination and e
ectiveness of the transformation�

��� Soundness

Theorem � If a program is well typed according to the Hindley�
Milner algorithm� then the transformation results in a well�
typed equivalent program	

Here� by equivalent� we mean have the same result when
evaluated�
Rules �FunSpec�� �ExpandSpec� and �UpdateArms� pre�

serve type� Rule �Encode� introduces a confusion between
function type � and a datatype T� for function variables�
However� when no rules apply� every term ftg� has been
changed into a variable of type T� by application of the rule
�ApplVar��
For proof of the preservation of the equivalence� we com�

pare the reductions of e by an evaluator eval� Depending
on the chosen evaluation order� the function evid means
either eval or the identity� In this way� the proof is inde�
pendent of a particular semantics� The function app is an
evaluator which applies an evaluated function to a set of
evaluated arguments� We prove that transformation rules
preserve evaluation by induction on the structure of an ap�
plication�

Proof�

� Rules �FunSpec�� �ExpandSpec� and �UpdateArms�
address only typing issues so they have no im�
pact on the evaluation�

� The encoding made by �Encode� does not change
the evaluation assuming that the evaluation of
application of encoding term and application
simulated by the apply function to the encoded
term are equivalent� This last assumption cor�
responds to the transformation made by the
rule �ApplyVar�� Suppose that variable F in the
application e � F t� � � � tn is bound to t in the
environment� then the evaluation of ��e�� reduces
to�

app �eval �� t ��� evid �� t� �� � � � evid �� tn ��

The rule transforms e into e� � applyT� F t� � � � tn�

But here F is an encoding of the term t� result of
the transformation of t� Suppose Cu

� u� � � � um
is the encoding of t�� and the constructor Cu

�

belongs to the datatype T�� The term u is the
encoded term so t� is an instance of u� t� � 
�u��
Let x�� � � � � xm be the variables of u� Then the
substitution 
 is fx�  u�� � � � � xm  umg� and
the declaration of applyT� contains the arm�

Cu u� � � � um � t� x� � � � xn

After pattern�matching with the substitution

� e� reduces to�

eval �� 
�u� evid �� t� �� � � � evid �� tn �� ���

which reduces to

app �eval �� 
�u� ��� evid �� t� �� � � � evid �� tn ��



Since 
�u� � t�� and since by induction t and t�

have the same results e and e� have the same
results�

�

Notice that� if e�ciency is counted as a number
of reduction steps then the transformed �rst�order
program is slightly less e�cient than the source higher�
order program since there are supplementary reduc�
tion steps for pattern matching the case expressions
in apply functions�

��� Termination

Theorem 	 The transformation always terminates�

Proof� We consider the least partial quasi�ordering
on term � which enjoys the subterm property� is
closed under context and extends the following par�
tial ordering on terms�

x � x
� ���

v
� t� � � � tn � apply� v t� � � � tn ���

t � Ct
�� where " � t � � ���

f t� � � � tn � f� t� � � � tn ���

The associated s is equivalence by ��extension� This
quasi�ordering is well�founded since� is well�founded�

Consider the multiset fM��M�� � � � �Mng of a term
M� and the term bodies of its function declarations�
we prove that if fM��M�� � � � �Mng �� fM �

��M
�

�� � � � �M
�

ng�
then fM��M�� � � � �Mng � fM �

��M
�

�� � � � �M
�

ng where � is
the multiset ordering induced by ��

� Rules �FunSpec� and �ExpandSpec� transform a
subterm t of an element Mi into Mi�t

�t�� t � t�

by 
��� soMi �Mi�t
�t�� If a cloneMj� v� � � � vp �p �

�� is added to the multiset�Mj �Mj� sMj� v� � � � vp
by 
���

� Rules �UpdateArms� and �ApplVar� transform a
subterm t of an element Mi into Mi�t

�t�� t � t�

respectively by 
�� and by 
	�� so Mi �Mi�t
�t��

� Rule �Encode� transforms a subterm t of an el�
ement Mi into Mi�t

�t�� t � t� by 
�� so Mi �
Mi�tt

�� of one Mi by 
�� Moreover� the rule
adds an arm body t y� � � � yk to the apply func�
tion� but Mi � t � t y� � � � yk

�

��� E�ectiveness�

Theorem  The transformation of a closed program
results in a �rst�order program�

A closed program is composed of a fully�applied
closed term e� together with its declarations D� Sup�
pose no transformation rules apply� Applications
in e and in declaration bodies cannot have any ar�
row type arguments since �Encode� does not apply�
Therefore no variables in declaration bodies can be
of an arrow type so that no function symbols denote
higher�order functions�

�This theorem remains valid if e has free rst�order variables

� Conclusion and future work

The defunctionalization transformation presented in
this paper is a complete algorithm for transforming
a closed higher�order well�typed functional program�
comprising an expression e together with its decla�
rations� into an equivalent �rst�order program� As
far as we know� a complete algorithm such as this
has not been presented before� The method that re�
places functional applications by macros �Wad��� is
elegant but macros cannot be recursive� Although
recursion can be recovered by way of recursive lo�
cal functions� the macro method supports only func�
tional arguments which remain identical in recursive
calls� The method that specializes functional ap�
plications with respect to the values of arrow type
arguments is limited to so called variable�only arrow
type arguments �CD�� None of these methods con�
sider the case of higher�order constructor applica�
tions�

Our transformation is based on Reynolds�s method �Rey�	�
of encoding functional arguments� Our main contri�
bution is to bring together this idea and the idea
of using functional application types to drive the
defunctionalization transformation� This is crucial
for handling polymorphic higher�order functions as
has been noted by Chin and Darlington in their A�
algorithm �CD�� which is used to remove some func�
tional results by eta�expansion� Our transformation
includes the functionality of the A�algorithm�

While it always produces a �rst�order program�
this transformation has little e�ect on execution ef�
�ciency since the reduction steps of the �rst�order
program are similar to the reduction steps of the
original higher�order program� The only gains in
performance come from removing the penalties in�
curred by the implementation of higher�order func�
tions� In contrast� Chin and Darlington�s R algo�
rithm �CD� relies on specialization with respect to
the values of functional arguments and returns� when
it is applicable� an improved �rst�order program�

The ideal solution is to add to our set of rules a
transformation rule to specialize variable�only arrow
type arguments with respect to their value to get
the best of both worlds� For example� the �rst ar�
gument of map in the introductory example in Sec�
tion 	 is variable�only� as is the �rst argument of
mp in the example in Section B��� Therefore in ap�
plications of map or mp� the functions map and mp
can be specialized with respect to the value of their
actual functional parameters rather than encoding
them and consequently creating an apply function
that corresponds to this encoding� At a functional
application of f � variable�only functional arguments
lead to a clone of f specialized with respect to their
values� In a combined transformation� the values of
the variable�only parameters of the application would
be substituted in the clone body whereas other func�
tional arguments would lead to a clone of f special�
ized with respect to their types� their values being
encoded into a constructor term of a datatype� In
the combined transformation� since a clone is tied to
its source application type� the folding of a recursive
clone application either coming from type specializa�
tion or from value specialization is always recogniz�



able by its type� So� the type annotations and the
variable�only analysis of the version body together
enable the algorithm to fold the recursive calls in
recursive as well as in mutually�recursive versions�
We suggest performing the variable�only analysis be�
forehand and to carry on a variable�only annotation
to the functional arguments of functional versions�
The result of applying such a combined transforma�
tion can be seen in the example in Section B���

Note that the defunctionalization transformation
performs a monomorphization of functions with re�
spect to their functional arguments and functional
results� Full monomorphization of the program can
be obtained by specializing also �rst order function
symbol with respect to the type of their applica�
tions and annotating �rst�order variables as well as
functional variables�

The defunctionalization transformation� we present
in this paper� is a step in a pipe�line of transforma�
tions designed to automatically derive a program
generator �B���� KBB���� from the semantics of
a domain�speci
c design language� The purpose of the
transformation is to obtain satisfactory performance
and to tailor the implementation to a speci�c plat�
form and software environment� Defunctionaliza�
tion accommodates software environments which pe�
nalize or prohibit functionals� It is also used to
translate functional programs into term�rewriting
systems in the transformation system Astre �Bel��b�
Bel��a� which uses term�rewriting techniques to per�
form algebraic manipulation on functional programs�
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A Encode� rule for encoding functional arguments

IF
� j� j 	 � � � � n� tj is not a variable
 order��j� 	 �

 all functional variables in tj are arguments of f�g� for some �


 F is a function symbol� a function variable� or a data constructor


 order��� � �

AND
�i� i 	 � � � � n�" � ti � �i�
" � F t� � � � � tn � ��
v� � � � vk are the variables in tj

THEN
F t� � � � tj � � � tn� �! �� F t� � � � �C

tj
�j

v� � � � vk� � � � tn� 
��!�

WHERE

 � �

�����
����

if Apply�jhas not been declared in  then
 � fApply�j y x� � � � xorder��j � �

case y of C
tj
�j

v� � � � vk � tj x� � � � xorder��j �g

else add to it the arm C
tj
�j

v� � � � vk � tj x� � � � xorder��j �

!� �

���������
��������

if T�jhas not been declared in ! then

! � fdatatype �� � � � �m T�j � C
tj
�j
�� � � � �� �kg

where

���
�� � i� i 	 � � � � k��i �

�
if vi is annotated by �
then �
else � where � is a fresh type variable

�� � � � �m are the type variables in �� � � ��k

else add to it the constructor C
tj
�j
�� � � � ���k

B Examples

B�� Second�order argument�

This example is inspired from �BH��b��
fun mp Z F x � case x of

Nil� Nil
j Cons�x�xs�� Cons�F x�mp Z �Z F � xs�

fun db F x � F �F x�
fun inc x � x� � with the term mp db inc ��� �� �� of type� list int�
becomes

datatype Tint�int � Cinc
int�int j C

�Z F �
int�int T�int�int���int�int� � Tint�int

datatype T�int�int���int�int� � Cdb
�int�int���int�int�

fun mp� Z F x � case x of
Nil� Nil

j Cons�x�xs�� Cons�applyTint�int F x�mp� Z �C
�Z F �
int�int �Z�F �� xs�

fun applyTint�int F x � case F of
Cinc
int�int � inc x

j C
�Z F �
int�int�Z�G�� �applyT�int�int���int�int� Z G x�

fun applyT� Z F x � case Z of
Cdb
�int�int���int�int� � db� F x

fun db� F x � applyTint�int F �applyTint�int F x�
fun inc x � x� �
with the term� mp� Cdb

�int�int���int�int� Cinc
int�int ��� �� ��

� � ��int� int�� int� int�� �int� int�� list int� list int�
� � �int� int�� int� int
If combined with specialization with respect to the value of the variable�only �rst argument of mp�



this program becomes�

datatype Tint�int � Cinc
int�int j C

�db F �
int�int Tint�int

fun mp� F x � case x of
Nil� Nil

j Cons�x�xs�� Cons�applyTint�int F x�mp� �C
�db F �
int�int �db� F �� xs�

fun applyTint�int F x � case F of
Cinc
int�int � inc x

j �C�db F �
int�int G�� �db� G x�

fun db� f x � applyTint�int F �applyTint�int F x�
fun inc x � x� �
with the term� mp� Cinc

int�int ����� ��
where � � ��int� int�� int� int�� �int� int�� list int� list int�

B�� List of functions�

This example is borrowed from �CD��
fun maph Fs y � case Fs of

Nil� Nil
j Cons�F�Fs�� Cons�F y�maph Fs y�

fun add� y � case y of
Nil� Nil

j Cons�x�xs�� Cons�k x�add� xs�
fun k x z � z � � � x
with the term maph �add� xs� y of type� list int�

becomes�

datatype � Tint�int � C
�k x�
int�int �

fun maph� Fs y � case Fs of
Nil� Nil

j Cons�F�Fs�� Cons�applyTint�int
F y�maph� Fs y�

fun add� y � case y of
Nil� Nil

j Cons�x�xs�� Cons�C
�k x�
int�int x�add� xs�

fun applyTint�int
F y � case F of

C
�k x�
int�int x� k x y

fun k x z � z � � � x with the term� maph� �add� xs� y
where � � list �int� int�� int list� list int�

B�� Pair of functions�

This example is borrowed from �PS���� The term case �fmin t� of �F�m�� �F m� with the declarations�

fun fmin t � case t of
Leaf a� �Leaf� a�

j Tree �t�� t���
case �fmin t�� of

�F��m��� case fmin t� of
�F��m��� �k F� F��min�m��m���

fun k F G x � Tree �F x�G x�

becomes�
case �fmin� t� of�F�m�� �applyTtree int�int

F m�
where � � tree int� �int� tree int�� int with declarations�

datatype Ttree int�int � C
Leaf
tree int�int j C

k
tree int�int Ttree int�int � Ttree int�int

fun fmin� t � case t of

Leaf a� �C
Leaf
tree int�int a�

j Tree �t�� t���
case �fmin� t�� of

�F��m��� case �fmin� t��of
�F��m��� �Ck

tree int�int �F�� F���min�m��m���
fun applyTtree int�int

F m � case F of



C
Leaf
tree int�int � �Leaf m�

j Ck
tree int�int �F�� F��� �k F� F� m�

fun k F G m � Tree �applyTtree int�int F m�applyTtree int�int G m�

B�� Mutually recursive functions�

datatype � dec � Dec �� exp �
datatype � exp � Var � j App exp � � exp � j Let dec �� exp �
fun fold�dec D V A L x � case x of

Dec�v� x�� D v �fold�exp D V A L x�

fun fold�exp D V A L x � case x of
Var v � V v
jApp �y� z�� A �fold�exp D V A L y� �fold�exp D V A L z�
jLet �x� z�� Let �fold�dec D V A L x� �fold�exp D V A L z�

and the term fold�exp proj� unit append append �Var �x���

becomes�

fold�exp� Cproj�
��� Cunitstring�

C
append
�� C

append
�� �Var

�x���

� � � � #� #�� �string� #�� �#� #� #�� �#� #� #�� ! � #�
� � � � #� #�� �string� #�� �#� #� #�� �#� #� #��  � #�
 � dec string� ! � exp string� and # � list string�
and the added declarations�
datatype T��� � Cproj�

���

datatype Tstring� � Cunitstring�

datatype T�� � C
append
��

fun fold�dec� D V A L x � case x of
Dec�v� x�� apply���� D v �fold�exp� D V A L x�

fun fold�exp� D V A L x � case x of
Var v � applystring� V v

jApp �y� z�� apply�� A �fold�exp� D V A L y� �fold�exp� D V A L z�
jLet �x� z�� apply�� L �fold�decj� D V A L x� �fold�exp� D V A L z�

fun apply��� v x z � case v of
Cid
��� � proj� x z

fun applystring� v x � case v of

Cunitstring�
� unit x

fun apply�� v x y � case v of

C
append
�� � append x y


