
CPU Management for UNIX�based MPEG Video Applications

Veronica Baiceanu

May �� ����

Abstract

While continuous media applications are becoming increasingly popular� poor quality result�
ing from resource scarcity is a common problem� Resource management for distributed mul�
timedia systems is an active topic of research� addressing both performance issues and quality
guarantees� Insu�cient operating systems support for multimedia computing is often mentioned
as a major problem� even for real�time platforms� In particular� continuous media applications
require speci�c scheduling mechanisms� appropriate for periodic tasks with deadline and jitter
constraints� While many scheduling algorithms have been proposed and implemented� we notice
that most of the studies assume operating systems with real�time capabilities� Most research
ignores widespread time�sharing systems such as UNIX� which is known to perform poorly for
multimedia� o�ering no support for hard guarantees�

We evaluate the performance and quality of service guarantees enabled by the real�time
features of recent versions of UNIX� While hard real�time guarantees cannot be provided� we
argue that statistical guarantees are satisfactory� as a certain quality loss is usually tolerable�
We propose a scheduling mechanism that approximates the rate�monotonic �RM	 scheduling
algorithm� and a test for granting admission to new applications� We have implemented our
method on tasks simulating workloads derived from a real MPEG video player� Our experiments
show that our mechanism provides better guarantees for computation deadlines and better
performance than the UNIX standard scheduler� We discuss the reasons for guarantee violations
and issues related to applying our method in real systems�

� Introduction

While user demand for high quality multimedia presentations is increasing� multiple problems arise

because of insu�cient support at network and end�point system levels� The continuous transfer of

massive amounts of data in real�time requires speci�c multimedia system design issues and forces

tradeo�s between real�time performance and data accuracy� Thus� while many research e�orts

aim to enable satisfactory multimedia presentations� by providing adequate application and system

support �	�
� ��� other e�orts are directed towards characterizing and guaranteeing a certain quality

of service QoS� ���� ����

�

A possible de�nition of QoS is �	��� �QoS represents the set of those quantitative and qualitative

characteristics of a distributed multimedia system necessary to achieve the required functionality

of an application� Functionality includes both the presentation of multimedia data to the user and

general user satisfaction��

Depending on whether there are or not QoS guarantees for an application� we can distinguish two

main approaches for multimedia applications� the best�e�ort approach and the resource�reservation

approach� The best�e�ort approach strives to deliver all data in real�time� by consuming as many

resources as possible� The resource�reservation approach attempts to reserve resources in order to

guarantee quality of service�

Resource reservation is performed through an admission tester� a system component to which

applications will request guarantees for a certain amount of a given resource or resources� If

accepted� an application will have that amount of resources guaranteed� and if rejected it can rene�

gotiate with the admission tester for a smaller amount of resources� A resource reservation system

should support monitoring � keeping track of the amount of resources consumed by applications�

and policing � a mechanism for preventing applications from using more resources than the amount

reserved�

For both the adaptive and resource�reservation approaches� we notice that a certain amount of

resource consumption has to be associated to a user�perceived quality� While user perception of

quality is insu�ciently described in litterature� Staehli et al� ���� have speci�ed an architecture for

describing QoS at the application level� Tradeo�s among di�erent quality dimensions should be

speci�ed by the application through a QoS interface� For example� a loss of spatial resolution for

digital video could be prefered to having a lower playback frame rate�

In order to perform resource management� Staehli et al� ���� propose starting from application�

level QoS speci�cations� This will require the translation from application�level parameters into

low level resource requirements� The necessity of solving this �mapping problem� is widely recog�

nized ���� ��� as the best means of allocating the correct amount of resources in the guaranteed

approach�

	

Most of the e�ort for providing multimedia support� including guarantees� has focused on the

network level ���� However� many researchers notice the need for more operating system support

for multimedia ��
� �	�� In particular� multimedia applications require large disk and memory

bandwidth� and impose scheduling constraints related to periodic arrival of data� Guaranteeing

that tasks are going to meet their periodic deadlines requires real�time operating system features �

operating system features that insure that the end time of a computation can be predetermined� A

major problem encountered in real world is that most of the existing platforms are based on time�

sharing systems such as UNIX� that do not o�er support for real�time guarantees� Thus� most of the

research has focused on providing scheduling mechanisms and guarantees for real�time operating

systems � We argue that even though hard real�time guarantees that is absolute guarantees� for

instance no deadline missed�� cannot be supported on a UNIX�like operating system� statistical

guarantees can be o�ered� Some quality degradation from the level requested by a human user is

usually tolerable� and thus giving statistical guarantees is useful� as long as the statistical bound

for error tolerated by these guarantees is reasonably high�

Our work will focus on CPU management study� as we believe that the CPU is often the

bottleneck resource for data delivery in end�to�end systems� We perform a simulation for estimating

the statistical guarantees that can be o�ered on a UNIX platform for tasks with characteristics

derived from a real MPEG player� Our approach for doing CPU management is QoS�driven� we

will map application�level QoS parameters resolution and frame rate for MPEG video� into task

characteristics� We are adopting the resource�reservation approach� since resource scarcity is likely

to remain a problem in the next years� and guarantees will be desirable� Thus� we will describe an

appropriate scheduling mechanism and an admission tester for our particular kind of tasks�

The paper is organized as follows� Section 	 is an overview of CPU scheduling in the context

of multimedia requirements� Section � introduces the scheduling mechanism we propose� Section

� presents our admission tester�s architecture� Sections �� �� and � describe our experiments� and

�nally� Sections � and
 discuss conclusions� and mention related and future work�

�

� CPU Management Context

��� Operating System Support for Real�Time Computing

Time�sharing systems such as UNIX aim to insure good responsiveness for interactive tasks� In

contrast� the main goal of real�time systems is to o�er support for predictable service� In order to

guarantee completion time of tasks� the system should have a deterministic behavior� The existence

of virtual memory or secondary storage makes real�time computing di�cult� since page faults and

disk accesses induce an unpredictable variation in servicing task requests� A nondeterministic

behavior is also caused by an unpredictable dispatch latency� if tasks are non�preemptable in system

calls or when blocking on I�O �����

We should distinguish between hard real�time guarantees� when the completion time guaranteed

has to be always satis�ed� and soft real�time guarantees� when guarantee violations are acceptable�

within certain statistical limits� As mentioned� UNIX does not have the features required for a real�

time operating system� implying that hard guarantees are not possible� However� multi�threaded

versions of UNIX like SOLARIS allow preemption within system calls� at so�called preemption

points� where tasks are not within critical regions� In addition� recent versions of UNIX support

real�time features that enable better performance of multimedia applications� Real�time operating

systems are based on schedulers that are priority�based� and are known not to provide adequate

support for background computation� The recent versions of UNIX that support the facility of

assigning real�time priorities to tasks will also exhibit the undesirable features of real�time systems�

Nieh et al� ���� have shown that the time�sharing properties of the entire system can be compromised

by using these real�time facilities for continuous media applications� As expected� the response time

of background or interactive tasks can become extremely high� and even starvation can occur� Our

work will not address this particular aspect� we are rather interested to estimate the guarantees that

can be given for continuous media applications� However� we believe that this kind of performance

degradation can be prevented through a more sophisticated scheduling mechanism� together with

CPU reservation and admission testing�

We notice that increase of CPU speed will bene�t overall system performance� as more CPU will

�

be available for general�purpose and interactive tasks� Faster computing will never insure good real�

time performance ����� since a task will still miss its close deadline� if other unurgent computations

occupy the CPU� However� fast computing allows more real�time tasks to be scheduled� higher

�exibility in their scheduling� and increases CPU availability for other kinds of tasks�

��� Scheduling Algorithms for Continuous Media

����� The Rate�Monotonic �RM� Scheduling Mechanism

As mentioned� continuous media are periodic media� requiring scheduling mechanisms for periodic

tasks� In the following� we will focus on the description of the RM scheduling algorithm� since

we consider that it is the algorithm most likely to be chosen for implementations on time�sharing

platforms� In addition� it is one of the algorithms usually chosen for the study of continuous media

scheduling�

The RM scheduling algorithm was �rst characterized by Liu and Layland ��� under the following

assumptions�

� Tasks have periodic requests�

� The only constraint on the deadlines is that the task must complete before its next request�

� Tasks are independent � the request of one task does not depend on the initiation or comple�

tion of another task�

� The time a task runs within each of its periods is constant�

� Nonperiodic tasks in the system are special� they will displace periodic tasks and do not have

themselves critical deadlines�

All these constraints can be relaxed� under certain conditions� For example� the second requirement

can be violated� given a certain amount of bu�ering for incoming data� Also� the fourth condition

can be relaxed by considering the maximum computation time of the task for all the periods� This

�

relaxation will result in wasting CPU time� but it can be necessary in cases where computation

times are highly variable� like the case of MPEG streams�

RM is a priority�driven scheduling algorithm � tasks are assigned priorities and the task with

the highest priority is given the CPU� It is a static scheduling algorithm� in the sense that priorities

assigned to tasks do not change over time� Higher priorities are assigned to tasks having shorter

period� RM is preemptive� meaning that a task with higher priority will preempt a task with lower

priority that occupies the CPU� Preemption is assumed to occur at once and with no context switch

overhead�

While Liu and Layland have provided a schedulability test for the RM scheduling algorithm�

their test is somewhat pessimistic � a set of tasks might still be schedulable under RM even if it fails

this test� Lehoczky et al� ��� have later provided the exact characterization of the RM scheduling

algorithm� The term �exact� is used in the sense that if the Lehoczky et al� admission test fails�

the set of tasks is guaranteed not to be schedulable under the RM mechanism�

Let us consider a set of tasks ��� ��������n with corresponding periods T�� T������Tn� sorted in

increasing order� Then� the admission test described by Lehoczky et al� insures that �i will meet

all its deadlines if and only if

min
��t�Ti

iX
j��

Cj

t

�
t

Tj

�
� ��

Since this criterion is piecewise linear and decreasing� it is enough to test for values of t which

are multiples of the Tj � If the test accepts all the tasks in the set� the whole set is schedulable under

RM� We can also notice that a task with longer period has less chances to meet all its deadlines

than a task with shorter period� since the value in the left hand side of the expression strictly

increases with the value of Ti� We will consider this aspect in Section ��

����� Discussion on Continuous Media Scheduling

For �xed priorities� RM is proven to be the optimum scheduling mechanism� in the sense that if

a set of tasks is not schedulable under RM� it will not be schedulable under any �xed priority

scheduling mechanism�

�

However� the set of tasks rejected by RM might still be scheduled under another scheduling

mechanism� Liu and Layland have also described the earliest deadline �rst scheduling algorithm

EDF�� which is optimal� in the sense that if a set of periodic tasks cannot be scheduled by EDF�

it cannot be scheduled by any scheduling algorithm� EDF uses dynamic priority assignment � it

dynamically assigns the highest priority to the task having the closest deadline� The �ve conditions

required for RM and the assumption of having preemptive tasks hold for EDF as well�

A measure of performance for these algorithms is the processor utilization factor � the percentage

of processor time spent in the execution of a task set ���� Under RM� tasks are usually unschedulable

for a processor utilization factor lower than for EDF� On the other hand� RM requires more context

switching than EDF ��
�� However� the priority recalculation required for EDF makes it much

harder to implement than RM� and makes context switching more expensive�

As mentioned� both the RM and EDF scheduling algorithms require preemptive scheduling�

However� this condition is not satis�ed on most of the existing platforms� Nagarajan and Vogt ����

have described an admission tester for the RM scheduling mechanism for nonpreemptable tasks�

While using their test results in drastically reducing CPU utilization� we believe it is worth studying

RM under nonpreemptive scheduling and our work addresses this aspect�

Finally� we notice that continuous media are characterized not only by periodic arrival of data�

but also by the requirement of periodic completion time of computations� Both RM and EDF

address the problem of having a task completed before its new request time� However� this does

not imply periodic completion of computations � a variance in completion times will be allowed�

as long as the task �nishes before its new run request� The human eye is however sensitive to the

non�uniformity in continuous data delivery� known as jitter� It has been shown that jitter is lower

for tasks scheduled under RM than for tasks scheduled under EDF ���� In addition� jitter for RM

can be ameliorated through a technique that achieves jitter reduction� but usually decreases CPU

utilization ����

�

Network
Decoder
Process

Display
Process

Buf 1 Buf 2

Figure �� Architecture of MPEG player client for one stream

��� Client�Site Architecture of an MPEG Player

Our scheduling mechanism and admission tester will be analyzed by using tasks that simulate video

processes from the client site of our distributed video player �	�� We will base our experiments on

this player�s architecture� as we found that it common for a distributed player� using compressed

video streams� The MPEG compression standard ��� used in our player is also widely used�

Figure 	 � represents the architecture of one MPEG video stream pipeline at the client part of

the player� The processes relevant for our considerations are the decoding process� and the display

process� Buf� holds the frames assembled from network packets� The decoding process decodes

the frames from Buf�� and stores the decoded frames in Buf	� and the display process displays the

frames after reading them from Buf	�

This architecture is relevant for the resource interplay that generally occurs in such applications�

For this particular case� the resource trade�o�s are among bu�er dimensions� network bandwidth

and CPU scheduling restrictions� For instance� if Buf	 is larger� we can relax the time constraints

on the decoder � it can be late for one or more frames� the exact number being determined by the

size of Buf	�� For the analysis of the scheduling algorithm and admission tester we propose� we will

consider the case of having no bu�ering� This implies that the time constraints on the decoding

process are the same as on the displaying process � the periods of the two processes have to be the

same�

�

� Runtime Scheduling

��� UNIX Facilities for Real�Time Computing

Time�sharing systems such as UNIX insure fairness by dynamically assigning priorities to processes�

according to the length of their bursts� Once scheduled� a process is allowed to run for a time interval

called time�slice� Meanwhile� no scheduler invocation can occur� unless the process voluntarily

relinquishes the CPU� Thus� a higher priority process cannot preempt a lower priority process

before the latter �nishes its time�slice or yields the CPU � this phenomenon is called priority

inversion�

As mentioned in Section 	�	� the new real�time facilities implemented on recent versions of

UNIX allow the user to set the priority of a process so that it does not get degraded through the

mechanism of priority aging� Real�time priorities do not degrade in time and all processes with

real�time priorities will be prefered over the non�real�time ones� Processes with equal real�time

priorities will be scheduled in round�robin fashion�

It is often mentioned that using the real�time priority facility presents many risks ����� A process

with real�time priority can prevent all other lower priority or non�real�time processes from running�

if it occupies ���� percent of the CPU� This implies that even the console will be frozen until that

process will voluntarily give up the CPU� Presently� for multimedia applications it is common that

one or many of their processes occupy the entire CPU� For instance� the MPEG player we used

for our experiments �Cen� becomes CPU bound when running a movie at �	�x	�� pixels resolution

and 	� frames�second� Even if there is CPU available for non�real�time background or interactive

tasks� their waiting time can be untolerably long �����

We believe that an admission tester can prevent catastrophic or undesirable situations� By

admitting only the video applications that can receive adequate service� our admission tester insures

that admitted tasks do not impede on each other�s performance�

To prevent malicious applications from taking over the CPU� the admission tester should run

with root privileges and kill tasks that do not conform to their reservation level� Measuring the

run time of tasks in UNIX is not a problem� since it is simply the sum of the times the process

has spent in kernel and user spaces� Thus� monitoring and policing can be supported for the tasks

admitted by the admission tester�

Of course� this mechanism o�ers no guarantees on the behavior of other tasks in the system�

Unless all real�time tasks in the system are characterized and tested for admission� a malicious

real�time application can occupy the CPU� Note� however that setting real�time priorities requires

special privileges� so only trusted users can run real�time tasks� This policy is a result of the risks

described for the use of real�time priorities� Thus� the user should run only real�time tasks whose

behavior is known and that have been tested for admission by using an adequate admission test�

��� Approximating the RM Scheduling Mechanism

Our goal is to adopt a scheduling mechanism that generates better performance for continuous

media tasks than the native UNIX scheduler� In addition� an admission testing mechanism adequate

to the scheduling mechanism adopted is required�

Our scheduling mechanism approximates the RM scheduling mechanism described in Subsection

����� we assign higher priorities to tasks with shorter periods� We use the term �approximation� in

the sense that in our case preemption is not possible at granularity lower than time�slice length on

our system� �� ms�� while RM requires preemptive scheduling� Additional imprecision is introduced

through context switch overhead� timer interrupt imprecision� non�preemptability in system calls

and during I�O blocks�

The admission tester we are studying uses the RM admission test described by Lehoczky et

al� ���� which assumes perfect preemptability of tasks� In this sense� our admission tester is op�

timistic� Some of the tasks it will accept should be rejected� even if we ignore the in�uence of

non�real�time UNIX characteristics� Notice that non�preemption at granularity lower than the

time�slice does not mean that the operating system in not real�time� For instance� we could use the

more restrictive admission test described by Nagarajan and Vogt ���� for nonpreemptable tasks�

We will show that statistical guarantees can be o�ered under our scheduling mechanism� using

the admission tester mentioned� We will analyze this for sets of tasks simulating tasks characteristic

��

to an MPEG video player client� Furthermore� we will show that our scheduling mechanism leads

to much better performance in terms of deadline misses and guarantees than the native UNIX

scheduler� The jitter level will also be reduced�

� Admission Tester Architecture

This section describes the admission tester we propose in the context of a real multimedia system�

So far� we have only simulated the behavior of our admission tester for performance analysis�

As mentioned� the admission tester runs the Lehoczky admission test� The admission tester can

run at user level� as a separate process in the application� if it is designed for one application only�

In this case� the application will have multiple video streams� and it will be the only multimedia

application running on the system� Or� the admission tester can run as a server process� if we assume

multiple similar cooperative applications running on the system� In either cases� the admission

tester has to be given highest priority� so that it becomes the running process when an application

demands admission or stops running�

We have mentioned in Subsection 	�� that we intend to perform QoS�driven admission testing�

Thus� the relevant quality parameters for our applications � resolution and frame rate � will be

mapped onto task parameters � computation time and period of tasks� respectively� When a new

application demands admission or when a user demands a quality change� the resolution and frame

rate desired are communicated to the admission tester� whether it is part of the application or in

a separate module� Within the admission tester� resolutions and frame rates are �rst translated

into computation times and periods� Based on the Lehoczky admission test� the one or many new

video streams are granted or denied admission� The admission tester must also be invoked when a

quality change is requested� and a new admission test occurs if this change results in more resource

consumption� In case of rejection� the application can renegotiate with the admission tester� and

lower its quality demands� An application will communicate to the admission tester that it stops

running or that it is lowering its quality demands� so that the admission tester can do the necessary

parameter updates�

��

We notice the di�culty of solving the mapping problem for the case of MPEG streams� MPEG

streams consist of three kinds of encoded pictures� which vary signi�cantly in size and required

decoding time� Much irregularity can be noticed in the stream even for the same type of picture�

Even though pictures form groups with the same picture pattern� the overall size and decoding

times for groups still exhibit much variation�

For the average values of the decode times� we notice an approximatively linear variation of

the decode time with the picture size that is� with number of pixels of both decoded and encoded

frames�� The display time also varies approximately linearly with the picture size�

Note that we will consider the cummulative value decoding and dithering computation times

for the admission test� Dithering is an image processing algorithm that sacri�es resolution in

order to get better user perception�� Both the decoding time and the cummulative value average

times� vary almost linearly with the size of the image� and we attempt to provide to the admission

tester values as close as possible from our real MPEG player� For simplicity� in the description of

simulation below� we will understand by decoding time the time corresponding to both decoding

and dithering tasks�

There are many possible design issues related to the irregularity noticed for MPEG decoding

times� A pessimistic admission tester will test using the maximum possible value of the decode time

for all the frames� However� this will result in dramatic CPU overreservation� Rather� as mentioned

in Section 	��� the period for the decoding process should be relaxed� according to the amount of

bu�ering available between the decoding and the displaying processes� and between the video

bu�ering and decoding processes� These bu�ers are present in our particular client architecture�

but they are usually a good design decision for a software decoded MPEG video stream�

� Simulation Environment

As mentioned� the goal of our study is to characterize the e�ectiveness of the �approximate�

RM scheduling mechanism and of the Lehoczky admission test for typical video tasks� We have

simulated MPEG player video decoder and video display processes� by implementing indepen�

�	

dent periodic processes with periods corresponding to discrete frame rates in the range �� � ��

frames�second� We anticipate that these are the values likely to be chosen for video applications�

The computation times of the simulation processes are derived from the computation times of the

decoding and displaying tasks in the player�

We have considered a range of resolutions between �	� x
� pixels� corresponding to the mini�

mum resolution for our movies� and ��� x ��� pixels� corresponding to VGA resolution� We have

interpolated one hundred resolution values between half the minimum mentioned and VGA reso�

lution� We are starting with half the minimum value� to leave a provision for the situation when

CPU speed will double�

We have chosen the computation times of the decoding process by taking the average values

for each resolution� Thus� our admission tester will optimistically accept tasks for which individual

frames will miss their deadlines� In practice� bu�ering allows relaxation of the constraints on

individual frames�

We are simulating the video decoding and displaying tasks in our player using tasks that count�

In order to reduce the time for admission testing� we are using a feasibility test� we reject the tasks

with computation time longer than their period� since they are guaranteed to be unschedulable�

Then� we are running the Lehoczky admission test� After the admission test is passed� we translate

computation times into number of countings� Note that we run the admission tester for sets of tasks

that approximate di�erent sets of video streams from players� We are experimenting for sets of

tasks corresponding to one� two� three or four players two� four� six and eight tasks� respectively��

While we have not performed studies of human behavior� we appreciate that a random distri�

bution of resolutions and frame rates within the range mentioned is adequate for a user selecting

video applications on a general�purpose machine� Each resolution and frame rate correspond to

a pair of decoding and displaying tasks� Since we are giving priorities to tasks according to RM�

and the tasks corresponding to the decoding and displaying tasks of a same player have equal

frame rates� they will be given the same priority� The fact of using pairs of tasks also determines

a speci�c kind of relationship between the computation times� A pair will have a task with a long

��

0

5

10

15

20

25

30

35

40

6 7 8 9 10 11 12

M
ea

n
of

 m
is

s
pe

rc
en

ta
ge

s

AT * 10

RM
UNIX

Figure 	� Arithmetic mean of miss percentages for three players

computation time the decoding process� and a task with short computation time the displaying

process�� Thus� our experiments target MPEG streams only� and we do not attempt to generalize

the results for arbitrary periodic tasks�

� Experiments

We run our experiments on a dedicated HP�UX machine� with clock frequency ��MHz� We are

estimating the statistical guarantees that can be o�ered on a UNIX platform for MPEG streams�

and we compare the �approximate� RM scheduling mechanism with the native UNIX scheduler�

For each set of tasks that is presented to the Lehoczky admission tester� the admission tester

will return the value AT� given by�

AT � min
��t�Tn

nX
j��

Cj

t

�
t

Tj

�
� ��

where Tn is the longest period for an n�task set� Recall from Section 	�	�� that a task with

��

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12

P
er

ce
nt

ag
e

de
ad

lli
ne

s
m

is
se

d

AT * 10

3players
2players
1player

Figure �� Arithmetic mean of miss percentages for native UNIX scheduler

longer period is less likely to meet all its deadlines than a task with shorter period� Thus� if Tn is

admitted by the Lehoczky test� all the tasks in the task set are guaranteed to meet their deadlines�

In order to estimate the guarantees that can be o�ered on UNIX� we measure the percentages

of deadlines missed for each task in a task set� for values of AT between � and ��	� The reason

why we are testing beyond the admission limit given by the Lehoczky test is that we can tolerate a

certain guarantee violation and thus the percentage of deadlines missed when hard guarantees are

impossible is still of interest� In addition� theoretically� we cannot ignore the possibility that a set

of tasks rejected by the Lehoczky test is schedulable under the �approximate� RM mechanism or

by the UNIX scheduler� It is however very unlikely that one of last two mechanisms can outperform

RM� which for statically assigned priorities is the optimum scheduling mechanism�

As mentioned� our study aims to estimate the guarantees in the case of MPEG streams� Thus�

we are deriving the percentage of deadlines missed per stream from the percentages of deadlines

��

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

M
ea

n
of

 m
is

s
pe

rc
en

ta
ge

s

AT * 10

3players
2players
1player

Figure �� Arithmetic mean of miss percentages for approximate RM mechanism

missed per task� A stream is consider to miss its deadline if either of its decoder or display processes

miss their deadline� This corresponds to the case of having no bu�ering between the decoder and

the display processes�

We are running our admission testing mechanism on the input data ������ times� ������ times

for each number of streams considered � one� two� three� and four streams� In order to estimate the

guarantees o�ered for each value of AT we will record the average of the percentages of deadlines

missed per set of streams� and the maximum of the percentages missed per set of streams�

Figure 	 presents the average of the percentages of deadlines missed per set of streams� for three

players� depending on the value of AT x ��� Because of our mechanism for data collection� the

values of AT are discrete� while in fact they vary in a continuous way for our random input data

set�� This measurement indicates that for a set of streams that have passed the feasibility test�

we can expect the percentage of deadlines missed indicated in �gure 	� The �approximate� RM

��

0

10

20

30

40

50

60

70

6 7 8 9 10 11 12

P
er

ce
nt

ag
e

m
is

se
d

AT * 10

Average
Maximum

Figure �� Maximum miss percentages for UNIX and RM

scheduling mechanism clearly outperforms the native UNIX scheduler� and starting from a value

of AT � ��
 which usually corresponds to �� �
�� CPU utilization�� the percentage of deadlines

missed becomes neglijible� However� we have to emphasize that we have represented the mean value

for a number of three players with a certain AT� The variance for all the results we collect is high�

We will discuss this aspect in the next section�

In order to estimate the maximum possible guarantee violations� in �gure � we have represented

the mean of the maxima of the percentages missed per set of streams� for three players� for the

same range of AT� We notice again that our proposed mechanism is on average better than the

native UNIX scheduler� However� if taking the absolute maxima we can notice that it is usually

higher for RM� and we will discuss this aspect in the next section�

Figure � shows the miss percentages from the total number of deadlines to be met by the

tasks within a set of players� Thus� for the �rst set of results represented we were calculating the

��

0

5

10

15

20

25

6 7 8 9 10 11 12

P
er

ce
nt

ag
e

de
ad

lli
ne

s
m

is
se

d

AT * 10

RM
UNIX

Figure �� Miss percentages for sets of three players

percentage of deadlines missed per stream� and then we were averaging for all the streams in the

set� Now� we are calculating the total number of deadlines that have to be met by the tasks in a

task set� and then we compute the percentage of that number of deadlines that were missed�

This experiment will give information about the useful workload that �approximate� RM and

the native scheduler are able to perform� A more useful measurement would have been to determine

the amount of computation that has been wasted by the tasks that� being admitted� have occupied

the CPU and then have missed their deadline� We plan to perform this measurement in the

future� We notice that again the �approximate� RM scheduling mechanism is superior to the

UNIX scheduler�

Additionally� in �gures � and � we have plotted the average percentages of deadlines missed

from the �rst experiment� for sets of one� two� and three players� The �gures show that the miss

rates are higher for a smaller number of streams� We attribute this to the fact that from our

��

random distribution of data� it is more likely that streams with high frames rates are accepted if

they are part of smaller sets of tasks� Thus� tasks within these small sets have on average higher

frame rates� At high frames rates� and thus short periods� e�ects like timer interrupt errors and

nonpreemption at granularity smaller than the time�slice� are more important� Notice that we do

not have values for sets of four players� since for our random distribution of stream characteristics�

no set of four players has passed the admission test�

We have also measured jitter values and have observed the same trend� Average jitter values

are higher for the native UNIX scheduler than for our scheduling mechanism� However jitter is

characterized by high unpredictability� In general� jitter is less than twice the length of a time�slice�

since timer interrupt errors and non�preemptive scheduling have e�ects only at this granularity�

Additionally� RM does not provide good jitter guarantees�

� Discussion

Besides the experiments described� we have observed that our scheduling mechanism and the native

UNIX scheduler exhibit a di�erent behavior related to the distribution of deadlines missed within a

set of streams� Under the UNIX scheduler� tasks with higher ratios between computation times and

periods tend to miss more deadlines� since the UNIX scheduling mechanism dynamically degrades

the priority of tasks with high computational demands� If the periods are similar for two tasks of

the set� the task with shorter period tends to miss more deadlines� because the UNIX features that

impede on real�time performance are more important at smaller granularity�

For the �approximate� RM scheduling mechanism� the task with the longest period tends to

miss more deadlines� since it has the lowest priority� Depending on user preference� this e�ect can

be tolerable or not� With RM� our results indicate that a smaller number of deadlines will be missed

than with the UNIX scheduler� However� since the frame rate for the stream that misses in the RM

case is lower� missing a few number of frames can result in catastrophic quality degradation� Thus�

it is essential to provide a QoS speci�cation� and interpret the importance of di�erent phenomena

from this point of view�

�

For all the experiments� we have observed a high variance for the result data collected� We

believe that this is due to the fact that the admission test itself does not capture information about

the non�real�time UNIX e�ects� These e�ects are dependent on other task characteristics than

those considered by the Lehoczky admission test� We intend to perform more experiments in order

to increase the degree of con�dence in our results� Given the large number of experiments required�

we have usually tested only ten sets of streams for each AT and each number of players� This is

insu�cient� as the data exhibit high variance�

� Related Work

Current research addresses diverse CPU management issues for continuous media applications�

Ramakrishnan et al� ���� have addressed the problem of continuous media tasks coexisting with

interactive and general�purpose tasks� Their scheduler and CPU admission tester o�er performance

guarantees for periodic tasks� while insuring satisfactory performance of interactive and general�

purpose tasks� Mercer et al� ���� have described a mechanism of reserving CPU for periodic tasks

on microkernel architectures and have provided facilities for monitoring and policing in this envi�

ronment� Han and Shin ��� have addressed the particular case of scheduling MPEG streams on the

server and have described a scheduler and an admission tester for such streams based on the EDF

algorithm� A common feature of all these approaches is that they are based on the RM or EDF

scheduling algorithms�

Despite the diversity of CPU management issues proposed� we notice that their applicability on

most of the platforms is limited� Usually� the mechanisms are implementing on real�time operating

systems ����� or the studies are purely theoretical ���� The lack of operating system support for

resource reservation has impeded on end�to�end resource reservation attempts ��	�� We also notice

that the resource interplay that occurs at end�system level and between end�systems and network

has been insu�ciently studied in the context of reservations� Even though QoS�driven resource

management is often mentioned as desirable� practical solutions are rarely described� Thus� our

work focuses on real applications and widespread systems� and studies the applicability of theoret�

	�

ical studies on existing platforms�

	 Conclusions and Future Work

Our work investigates the real�time performance and guarantees that can be o�ered for video

applications running on UNIX platforms� We have implemented the RM scheduling algorithm and

admission tester on UNIX and have studied the statistical guarantees o�ered for tasks that simulate

MPEG video streams� While our work is focusing only on CPU management and ignores other

resources� our future work will address the resource interplay in multimedia systems� from an end�

to�end perspective� We intend to consider di�erent network environments with guaranteed tra�c

rate or with burstiness�� We will continue to perform QoS�driven resource management� we will

start from application�level QoS parameters and will translate them into resource characteristics�

We are currently integrating the RM admission tester with our MPEG player and we will

estimate the guarantees that can be o�ered for a real application� We will study the e�ects of the

complexity of real applications� whose resource needs are hard to characterize� In addition� for real

applications task communication� system calls and signi�cant memory usage cannot be neglected�

While so far we have studied the performance of the RM scheduling algorithm and admission

tester on UNIX for MPEG streams� we plan to generalize the results for any kind of tasks� We also

plan to provide a formal characterization of the RM admission test for the UNIX system� where

preemption is limited by time�slice length� Our solution will thus refer to a situation in between

preemptive scheduling characterized by Liu and Layland and Lehoczky et al��� and nonpreemptive

scheduling characterized by Nagarajan and Vogt��

We will also analyze the coexistence of continuous media tasks� interactive tasks and general�

purpose tasks on UNIX� We intend to study reservation mechanisms for UNIX that allow guarantees

for continuous media tasks� without compromising performance of other tasks� Finally� we intend

to provide a UNIX extension with an in�kernel admission tester�

References

��� Andrew Campbell� Geo� Coulson� Francisco Garcia� David Hutchison� and Helmut Leopold�

	�

Integrated Quality of Service for Multimedia Communications� In IEEE INFOCOM ��� �

��

�	� Shanwei Cen� Calton Pu� Richard Staehli� Crispin Cowan� and Jonathan Walpole� A Dis�
tributed Real�Time MPEG Video Audio Player� In Proceedings of the ���� International
Workshop on Network and Operating System Support for Digital Audio and Video 	NOSS�
DAV
���� pages ������	� New Hampshire� April �

��

��� Sally Floyd� Van Jacobson� Ching�Gung Liu� Steven McCanne� and Lixia Zhang� A Reli�
able Multicast Framework for Light�weight Sessions and Application Level Framing� In ACM
SIGCOMM ��� pages ��	����� �

��

��� Didier Le Gall� MPEG� A Video Compression Standard for Multimedia Applications� CACM�
����������� April �

��

��� Ching�Chih Han and Kang G� Shin� Scheduling MPEG�Compressed Video Streams with Firm
Deadline Constraints� In Proceedings of the ACMMultimedia
��� pages �����		� San Francisco�
CA� �

��

��� J� Lehoczky� L� Sha� and Y� Ding� The rate monotonic scheduling algorithm� exact charac�
terization and average case behavior� In Proc� IEEE �th Real�Time Systems Symp�� pages
�������� December �
�
�

��� Kwei�Jay Lin and Ching�Shan Peng� Scheduling Algorithms for Real�Time Agent Systems�
In Proceedings of the Sixth International Workshop on Research Issues in Data Engineering
	RIDE
���� New Orleans� Louisiana� February �

��

��� C� L� Liu and J� W� Layland� Scheduling algorithms for multiprogramming in a hard real�time
environment� J� ACM� 	���������� January �
���

�
� Steven McCanne and Martin Vetterli� Joint Source�Channel Coding for Multicast Packet
Video� In Proceedings of the IEEE International Conference on Image Processing� Washington�
DC� �

��

���� C� W� Mercer� S� Savage� and H� Tokuda� Processor Capacity Reserves� Operating System
Support for Multimedia Applications� In Proc� of the International Conference on Multimedia
Computing and Systems� pages
��

� May �

��

���� R� Nagarajan and C� Vogt� Performance of Multimedia Tra�c over the Token Ring� Tech�
report� IBM�ENC� Heidelberg� �

	�

��	� K� Nahrstedt and J�M� Smith� Design� Implementation and Experiences of the OMEGA
Architecture� Tech� report� University of Pennsylvania� May �

��

���� K� Nahrstedt and J�M� Smith� The QoS Broker� IEEE Multimedia� 	��������� Spring �

��

���� Jason Nieh� James G� Hanko� J� Duane Northcutt� and Gerard A� Wall� SVR� UNIX Scheduler
Unacceptable for Multimedia Applications� In Proceedings of the ���� International Workshop
on Network and Operating Systems Support for Digital Audio and Video 	NOSSDAV
���� pages
������ Lancaster� U�K�� November �

��

���� K�K� Ramakrishnan� Lev Vaitzblit� Cary Gray� Uresh Vahalia� Dennis Ting� Percy Tzelnic�
Steve Glaser� and Wayne Duso� Operating Systems Support for a Video�On�Demand File
Service� In Proceedings of the ���� International Workshop on Network and Operating Sys�
tems Support for Digital Audio and Video 	NOSSDAV
���� pages 		��	��� Lancaster� U�K��
November �

��

		

���� A� Silberschatz and P� Galvin� Operating System Concepts� Addison�Wesley� Reading� Mas�
sachusetts� �

��

���� Richard Staehli� Jonathan Walpole� and David Maier� Quality of Service Speci�cations for
Multimedia Presentations� Multimedia Systems� ������	���	��� November �

��

���� John A� Stankovic� Misconceptions About Real�Time Computing� IEEE Multimedia� �
���

��
� Ralf Steinmetz� Analyzing the Multimedia Operating System� IEEE Multimedia� �

��

�	�� Andreas Vogel� Brigitte Kerherve� Gregor von Bochmann� and Jan Gecsei� Distributed Mul�
timedia and QoS� A Survey� IEEE Multimedia� May �

��

	�

