
Exploiting Non-Determinism in Set Iterators to Reduce I/O Latency

David C. Steere

March 26, 1997

Abstract

A key goal of distributed systems is to provide prompt access
to shared information repositories. The high latency of remote
access is a serious impediment to this goal. We propose a new
file systemabstraction called dynamic sets that allows the system
to transparently reduce I/O latency without relying on reference
locality, without modifying DFS serversand protocols, and with-
out unduly complicating the programming model. We present
this abstraction, and describe an implementation of it that runs
on local and distributed file systems, as well as the World Wide
Web. Substantial performance gains are demonstrated – up to
50% savings in runtime for search on NFS, and up to 90% re-
duction in I/O latency for Web searches.

1 Introduction

A central problem facing distributed systems is the high
latency to access remote data. Latency is problematic be-
cause it reduces the benefit typical applications can receive
from faster CPUs, and reduces the productivity of users
who are forced to wait for data. Long I/O delays can re-
duce the usability of a system, especially if the variance
in the delay is high. In this paper we show that a small,
carefully designed extension to the system-call interface
of an operating system can result in a substantial reduction
in the aggregate I/O latency seen by applications that use
iterators, without requiring locality of reference or modi-
fications to protocols or servers.

The essence of our argument is that extending the system
interface to support iterators will allow the system to re-
duce I/O latency transparently for those applications that
use them. Our solution is based on three observations.
First, current file system interfaces restrict the system’s
opportunity to reduce latency by forcing applications to

This research was supported by the Air Force Materiel Com-
mand (AFMC) and the Defense Advanced Research Projects Agency
(DARPA) under contract number F19628-93-C-0193. Additional sup-
port was provided by the IBM Corporation, Digital Equipment Corpora-
tion, and Intel Corporation.

The views and conclusions contained here are those of the author and
should not be interpreted as necessarily representing the official policies
or endorsements, either express or implied, of AFMC, DARPA, IBM,
DEC, Intel, CMU, or the U.S. Government.

process groups of objects in a serial, and often imposed
order. As a result, systems manage I/O for applications
without accurate knowledge of their future data needs, yet
pushing I/O management to the application significantly
increases the complexity of the programming model. Sec-
ond, iterators are a convenient mechanism for process-
ing groups of objects, as attested by the widespread use
of iterator-like constructs such as cursors in SQL; foreach
loops in shells like perl, tcl, and sh; and iterators in higher
level languages like Alphard[26] and CLU[17]. Third, the
use of iterators on sets of objects could allow a system to
transparently reduce the aggregate I/O latency of access-
ing the set members if the iterator was visible to the sys-
tem.

To explore the utility of iterators, we have added a
new abstraction called dynamic sets to the application
programmer interface (API) of a distributed file system
(DFS). A dynamic set is a lightweight, transitory, and un-
ordered collection of objects that is created on-the-fly by
an application to hold the objects that it wishes to pro-
cess. An object’s membership in a dynamic set indicates
the likelihood of near-term access, allowing the system to
safely prefetch the objects’ data to reduce latency.

An application creates a dynamic set by supplying a
membership specification that is evaluated by the system
to ascertain the names of the set members. Applications
can then process the set members by iterating on the set.
Every call to the iterator returns a handle to an object that
has already been fetched. As a result, the application sees
either little or no latency to access the object’s data. Ap-
plications can also manipulate set membership using stan-
dard set operations. For example, one might create sets to
hold the results of queries to two news services, and then
intersect the sets to find stories common to both services.

A crucial aspect of this work is that the application’s
use of iterators on unordered sets frees the system to de-
termine the order in which it yields objects to the appli-
cation. There is currently no way for an application to ex-
press such non-determinism to the kernel, which forces de-
terminism on applicationsand restricts the system’s oppor-
tunity to reduce latency. Dynamic sets provides a means
for applications to disclose non-determinism to the sys-
tem, allowing the system to schedule I/O and manage its

1

caches more efficiently. Dynamic sets do allow applica-
tions to request an order, but applications that do so limit
the system’s ability to optimize access through reordering
and may pay a performance penalty for their ordering re-
quirements.

One application domain that can benefit from dynamic
sets is search and retrieval of file data, hereafter referred
to as search. Search applications identify a group of can-
didate objects, and then fetch and examine them in turn
to find an object or objects that satisfy the search criteria.
Search has several important characteristics that make it
an ideal application for dynamic sets. First, search is an
important application as is dramatically apparent to any
user of a large distributed system. Second, search exhibits
poor locality of reference and thus gets little benefit from
caches. For example, one study of a World Wide Web
(Web) caching proxy saw only a 33% hit rate, even though
the cache had unlimited size and served all external ref-
erences from employees of a large computer company[8].
Third, searches often run until some satisfactory object is
found, and thus either have no preference of the order in
which objects are fetched or have insufficient knowledge
to specify the order at the time of search.

2 Related Work

I/O latency has long plagued computer systems, and sys-
tem builders have developed two basic techniques to over-
come it: caching and prefetching. Caching is widely used,
and is nearly ubiquitous in distributed file systems[10, 24,
20] in which accessing remote data incurs high latency.
However, caching is effective only if applications exhibit
locality of reference. Prefetching does not rely on locality
and so is more suited to applications with poor locality like
search. The drawbacks of prefetching are that one must
somehow predict future data accesses in order to prefetch
them, and inaccurate predictions increase the load on the
I/O subsystem, and can lead to thrashing. Systems that in-
fer future accesses based on past history[16, 6, 31, 22, 9]
are most susceptible to this problem. One study found a
20x slow down in one case when prefetching data from
disk on a parallel computer[15]. However, prefetching
can produce substantial improvement if the access pattern
is sufficiently regular and easily detected, such as Unix’s
one-block read-ahead mechanism[1, 27].

One way to avoid the problem of inaccurate predictions
is to expose asynchronous I/O directly to applications,
and let applications manage their I/O explicitly. However,
this approach increases the burden on the application pro-
gramming, and violates software engineering principles
which call for hiding low-level details beneath strong in-
terface boundaries. In addition, applications that manage
I/O themselves are highly sensitive to changes in CPU or

I/O speed, and are thus difficult to port or maintain. An
example of explicit prefetching is the Queued RPC mech-
anism of the Rover toolkit[11], which exposes asynchrony
to application programmers and users. Although this can
result in more efficient I/O, it requires the application pro-
grammer to poll to determine when an operation has com-
pleted and to maintain the operation’s context until the op-
eration terminates.

In another approach, called Informed Prefetching, the
application informs the system of its future data needs
but leaves the management of asynchrony to the system.
The system can safely prefetch based on these hints, and
the application is not complicated by the need to control
prefetching or manage system resources. Recent stud-
ies by Patterson et al[23], Cao et al[4, 5], and Kimbrel
et al[13] have found significant speedups from informed
prefetching in local file systems, particularlywhen reading
data from multipledisks in parallel. These systems require
application programmers to manually augment their code
to pass hints of future block accesses to the file system.
Mowry et al[19] describe a similar approach which uses
compiler generated hints to pre-page in a virtual memory
system[19]. Their compiler generates prefetch requests by
analyzing program loops to determine near-future data ac-
cesses in virtual memory. Similar analysis allows the com-
piler to insert hints to release pages as well.

The work described here also uses informed prefetching
to reduce latency, but differs in several respects. First, the
hints of future access are derived from the membership of
a dynamic set as opposed to being supplied by the com-
piler or application programmer. Second, dynamic sets
offer the opportunity to schedule file accesses more effi-
ciently through reordering. Third, the implementation
of dynamic sets is tuned for search on distributed file sys-
tems and prefetches whole files, as opposed to prefetching
blocks within a file.

3 Dynamic Sets

To better understand how applications could use dynamic
sets, consider a search using the Unix command grep,
such as “grep pattern *.c”. Currently, the shell ex-
pands the wildcard “*.c” into an alphabetical list of file-
names, and grep opens each of these files in that order.
For each file, grep reads the file’s data and prints lines
matching the pattern. Although grep knows the identity
of the files it will read when it starts, it has no way of dis-
closing this information to the system, and thus the system
has no opportunityto prefetch the files. In addition, the or-
der in which the files are opened is imposed by the shell,
independent of grep’s, the system’s, or the user’s needs.

Now consider howgrepmight use dynamic sets. First,
grep would create a dynamic set to hold the files named

2

Main loop of grep

while (*argv) f
fd = open(argv++);
execute(fd);
close(fd);

g

Main loop using dynamic sets

s = setOpen(argv[2]);
while (fd = setIterate(s)) f

execute(fd);
close(fd);

g
setClose(s);

The two sections of code reflect how grep can be modified to use dynamic sets. The code on the left is the main loop ofgrep. The
code on the right shows the main loop of grep using dynamic sets. This example illustrates two points. First, it shows the ease with
which one can modify common search applications to use dynamic sets. Second, the main functionality ofgrep, locating substrings
in a file, does not need to be modified to use dynamic sets. In this example, the command line argument must be quoted to prevent
shell expansion of “*.c”.

Figure 1: Code Example Showing the Use of Dynamic Sets

by “*.c”. Grep would then loop, calling the iterator to
retrieve the next file, and processing it using the same code
as standard grep. Each call to the iterator returns a pre-
viously unseen file, and the loop terminates when all set
members have been seen and processed. Figure 1 contains
the main loop of grep with and without dynamic sets.

Modifying grep to use dynamic sets yields three ben-
efits. First, the system can prefetch the files named
by “*.c” with a reasonable assurance that grep will
shortly access them. Through prefetching, files on sepa-
rate servers may be fetched in parallel, and the fetching
of some files may overlap the processing of others. Sec-
ond, the system can reorder the fetching of the files, since
grep does not require that the files be processed in any
order. Thus if some of the files are local and others re-
mote, the system could return the local files first to re-
duce the time to begin processing the data, and could over-
lap processing these files with the fetching of remote files.
Third, prefetching and reordering together give the sys-
tem greater flexibility to adapt its behavior to changing re-
sources. For instance, the system might prefetch all of a set
when communicating with a lightly loaded server, but may
only prefetch one or two members on a low bandwidth or
loaded connection. In addition, the system can chose to
prefetch only some of the members to avoid wasting I/O
bandwidth should the search terminates prematurely.

3.1 Properties of Dynamic Sets

We designed the dynamic set abstraction to be general,
since it offers benefit to any application that can iterate,
that suffers substantial I/O latency, and that can inexpen-
sively name the objects in its short-term working set. In
particular, the design includes only that functionality nec-
essary to support search applications in order to avoid
overrestricting the implementation’s ability to reduce la-
tency. The followingparagraphs describe the dynamic sets
abstraction.

� Created on-demand

Applications create dynamic sets on-demand by sup-
plying a specification that the system evaluates to de-
termine the names of the set members. The member-
ship specification language is orthogonal to the de-
sign of sets, and is discussed below. Because this
specification is evaluated at runtime, a set’s member-
ship depends on the state of the system at the time
of the set’s creation, hence the moniker “dynamic”.
One advantage of determining membership at run-
time is that applications see current information by
default, but can relax currency by opening a set be-
fore it is needed. Fortunately, evaluating membership
consists of name resolution, e.g. Unix filename glob-
bing, which is typically a small percentage of the time
to fetch the set members’ data.

� Short-lived

Because the membership of each newly created set is
dynamically determined, the system need only pre-
serve a set while its creator is running. This in turn
allows the system to maintain sets in volatile mem-
ory, which results in sets being lightweight. Since the
time spent creating and maintaining a set directly off-
sets any potential benefit of prefetching and reorder-
ing, lightweight sets can reduce latency in a wider va-
riety of settings.

� Unordered

By using a set as the abstraction underlying dynamic
sets, we allow applications to disclose their short-
term working set without imposing a deterministic
order on it. This non-determinism frees the system
to schedule file access for greater efficiency. For in-
stance, the system could yield a cached member im-
mediately, and overlap the I/O to fetch other members
with the time to process the cached member. Further,
the system could prevent cached members from be-

3

ing evicted from the cache before the application gets
a chance to read them. In addition, the ability to re-
order allows the prefetcher to prefetch speculatively,
rather than based on estimates of server latency. For
instance, the prefetcher can initiate three fetches and
use the first to return, rather than waiting to determine
the size of every object and calculating the expected
latency to fetch them. This is particularly important
in the presence of unpredictable failures which result
in lengthy timeouts.

Currently, many applications have no particular or-
dering needs and so could use dynamic sets, but are
forced to serialize their accesses by current system
APIs. Often the order is provided by some thirdparty,
such as the csh in the case of filename globbing. For
search, the proper order is unknown until the search
terminates with a satisfactory object, since that ob-
ject would be first in the optimal order. Search en-
gine rankings approximate this order, but are not suf-
ficiently accurate to warrant strict adherence to them.
For those applications that do have an ordering pref-
erence, dynamic sets allow applications to submit
ordering hints, for instance based on search engine
rankings. The system attempts to satisfy this order,
but may violate it rather than blocking the application
if a member with lower rank is available.

One can think of dynamic sets as a specific instance
or component of a general N�tuple data structure.
The order within the tuple represent a partial order
on all its members. Elements within an equivalence
class can be stored in a dynamic set; all members
have the same rank in the partial order. A dynamic set
would be a 1-tuple in which all members had equal
rank. An ordered list would be an n�tuple where n
is the number of objects in the tuple. However, we
leave the design of this more general abstraction to
future work.

� Loosely consistent

Ideally, membership would be evaluated atomically
and have perfect precision and recall (no false posi-
tives or negatives). However, it can be expensive in
system complexity and performance to provide these
properties[33]. Further, dynamic sets are layered on
top of existing systems for simplicity, and as such
cannot provide a stronger consistency model than the
underlying system. Fortunately, many searches on
DFS are satisfied without strong consistency guaran-
tees, as the widespread use of these systems can at-
test. For example, a programmer can usually find the
right version of a source file without having to lock
all the candidate files and directories for the duration
of the search.

Rather than promise the illusion of atomicity, dy-
namic sets instead guarantee that:

� Every member must satisfy the membership
specification at some point during the lifetime
of the set.

� Once an object is known to be a member, it will
remain a member of the set.

Together, these guarantees ensure that the member-
ship of a set is current but not necessarily complete.
In addition, the state of each member captured in the
set is the state that satisfied the specification, and
not necessarily the most current version of that ob-
ject. However, specifications that involve queries to
search engines can only be as correct as the search
engine’s index, since the engines are external to dy-
namic sets.

� No duplicates, immutable

Dynamic sets are similar to mathematical sets in that
they do not contain duplicate members and are im-
mutable. Duplicates can be eliminated automatically
by testing for name or value equivalence with other
members. Using name equivalence has the added
benefit of eliminating duplicates before fetching their
data, while still providing reasonable semantics. To
ensure immutability, operations which would other-
wise modify a set’s membership instead create a new
set. Since sets are lightweight, the cost of immutabil-
ity is small.

4 Implementation

To evaluate our design, we have added dynamic sets to the
Unix file system interface. Since this implementation is
just one possible use of the dynamic sets abstraction, we
refer to the implementation as SETS to distinguish its fea-
tures from those of the dynamic sets abstraction. Figure 2
depicts the architecture of SETS, which contains three ba-
sic components. The API component manages the dy-
namic sets data structures and exports the SETS API to
applications. The prefetching engine evaluates member-
ship specifications to determine the names of members and
manages prefetching. Wardens are DFS clients extended
to support queries and prefetching. SETS defines asyn-
chronous interfaces between these components to avoid
unnecessarily stalling the processing of a set.

One controversial aspect of this architecture is that the
API and prefetcher reside in the operating system kernel,
as opposed to residing in a user-level library. A kernel im-
plementation allows SETS to interact closely with the file
system at low cost. For instance, the prefetcher needs low

4

Coda File
System

Informix
Database

SETS Prefetching

Engine

SETS API

NFSNFS Warden

Kernel API

Application

Coda Warden

SQL Warden

This figure depicts the main components of SETS: the API layer, the prefetching engine, and the wardens. The bold dashed line
indicates the kernel boundary, other dashed lines separate different threads of control. The API layer extends the kernel interface
with the SETS operations, the prefetching engine sits within the kernel. In the picture two wardens are outside and one is inside the
kernel; the location is chosen by the implementor.

Figure 2: The Architecture of SETS

Explicit: /projects/*src*/*.c
Interpreted: /staff/nselect home from users where name like "%david%"n
Executable: /sources/pkgs/contrib/%myMakeDepend foo.c%

This figure gives examples of the three different kinds of membership specifications supported by SETS. Explicit specifications list
the names using csh’s regular expressions. Interpreted specifications allow applications to use strings that is interpreted by search
engines as queries, returning the names of the objects that satisfy the query. Executable specifications name executable programs
whose execution results in a list of filenames. With these types of specifications, SETS can easily be extended to support a variety
of query languages and modes of search.

Figure 3: Examples of SETS Membership Specification Language

latency access to the file system’s buffer cache to locate
cached set members and to avoid overrunning the cache
with prefetch data. Note that this decision is specific to
SETS: in some other domain such as a Web browser it may
be more appropriate to implement dynamic sets as a plug-
in or library.

4.1 Application Programming Interface

The dynamic sets API provides operations to create and
destroy sets, merge sets through union or intersection, cre-
ate a subset, query a set’s membership, determine a set’s
size, list the names or properties of members, and iterate
on the set. For brevity, we discuss only the representation
of an open set and the membership specification language.

In SETS, an open set is similar in nature to an open file
descriptor. The open set handle is an index into a per-
process table of open sets. This open set handle can then
be passed to set operations, in much the same way that a
file descriptor is passed to the read() system call. When
the process exits, open sets are automatically destroyed
and their resources freed.

When a set is created, the creator supplies a specifica-
tion which SETS evaluates to produce a list of the names of
the set members. The specification language used by SETS

extends the csh wildcard set notation[12] to supports
three types of specifications. Figure 3 gives examples of
each. Explicit specifications use standard csh wildcard
notation to indicate the names of the members of the set.
Interpreted specifications contain strings in some query
language, such as SQL, delimited by “n”. The query is
passed to the warden responsible for the object named by
the prefix of the specification, resulting in a list of names
which are then used to further expand the specification.
The warden that interprets the query is not necessarily re-
sponsible for the objects named by the query, for instance a
GLIMPSE[18] warden could reference NFS objects. The
second example in Figure 3 would cause SETS to send the
SQL query to a database mounted at “/staff”. If this
object’s warden did not support SQL queries or the se-
lected fields did not contain valid filenames, the specifi-
cation would result in the empty set. Executable specifi-
cations name programs that act as filters over a portion of
the system’s name space, returning the names of satisfac-
tory files to SETS. Note that interpreted specifications use
existing search engines such as SQL databases to provide
functionality similar to that provided by search-enhanced
file systems[7, 18, 3].

5

4.2 SETS Prefetching Engine

The prefetching engine consists of a number of worker
threads, and is responsible for evaluating specifications
and prefetching set members. The API layer generates re-
quests on behalf of applications and queues them for work-
ers. The workers handle the requests, possibly updating
the set’s data structures to reflect new members or to indi-
cate that a member has been cached.

Workers evaluate specifications to determine the names
of members, checking to see if the object is already a mem-
ber, and if not adding it to the set. Workers evaluate ex-
plicit specifications directly using Unix’s name resolution
mechanisms. For interpreted specifications, a worker es-
tablishes a cursor, or query handle, with a warden and
queues a request to have the cursor expanded at some later
point. When this request is handled, the worker reads
member names from the cursor and adds them to the set,
requeueing the request for further expansion if necessary.
Executable specifications are handled in a similar manner,
but start a new process in which to run the command in-
stead of contacting a warden.

4.2.1 Prefetching Policy

We designed the SETS’s prefetching policy to work in an
environment where remote access incurs a high latency,
such as a wide-area DFS like AFS[28] or a mobile client
connected over a low-bandwidth link. The policy has to
balance conflicting goals: aggressive prefetching results
in lower latencies, but may overwhelm disks, networks,
or servers, resulting in thrashing and loss of performance.
Prefetching in a DFS is complicated by variance in latency,
e.g. due to load or non-uniform access times between
servers. Load due to other clients of the system is difficult
for a prefetcher on one client to measure or predict. Ac-
cess times may vary widely between servers, due to load,
geographic or network location relative to the client, or the
performance of the server itself. Various caches through-
out the system can also affect latency in ways that a given
client cannot predict.

In order to prefetch in the face of inaccurate or incom-
plete knowledge of system state, we make three simpli-
fying assumptions. First, we assume that accessing data
off the local file system is faster than fetching it from a
server. This is true when the data is in the local buffer
cache, when the data is very remote (propagation delays
and connection setup are often larger than local disk I/O
in wide-area DFS), or the remote accesses miss in the
server’s memory cache�. Second, SETS assumes that lo-
cal disks have a cache large enough to hold reasonably

�When this assumption is false, SETS can adjust its buffer cache
eviction policy to refetch data from the servers on demand instead of
evicting it to the local disk.

sized sets. Disks capacities have been growing exponen-
tially, and even low-end PCs typically come with several
gigabytes of free disk space. Third, SETS assumes that set
members will be accessed sequentially and as whole files.

These assumptions result in several simplifications.
SETS stores prefetched data in the local file system, SETS
prefetches whole files opportunistically, and SETS can
tune its policy to adapt to different kinds of systems. When
a set is opened for iteration, SETS concurrently fetches
a small number of files, spreading the requests across
servers or disks if possible. The number of files ini-
tially fetched depends on the client’s guess of the available
bandwidth, but is currently limited to five files (based on
typical file size, application processing rate, and latency).
When the application calls the iterator, SETS returns the
largest fully cached member which has the highest rank
if the application has specified an order. On each call to
the iterator, SETS starts a new prefetch, and thus automat-
ically tunes the rate at which it prefetches files to the rate
at which the application consumes them.

In addition, SETS needs to manage its consumption of
the file system buffer cache to maximize the application’s
hite rate and to avoid overruning the cache. For instance,
if several of the concurrently fetched files are larger than
the buffer cache, prefetching them entirely would evict the
beginningof the files from the cache along witheverything
else in it. Since the application will read these files sequen-
tially, it will miss on the evicted data, evicting the next
blocks to read and so on, thus missing on every block in
the file. In this situation, other applications will see lower
hit rates in the buffer cache as a result of prefetching.

SETS extends Unix’s buffer cache management to han-
dle buffers with prefetched data in three ways. First,
SETS limits the number of buffers that can be used to hold
prefetched data. This also limits SETS consumption of
network bandwidth, since the prefetcher will stall when it
runs out of buffers. Second, SETS pins data in the buffer
cache to prevent other data from evicting it. SETS then
uses the knowledge of what is pinned when decideding
what objects to yield to the application. Third, SETS can
proactively warm the cache with evicted data when all
pinned data has been consumed by the application.

4.3 Wardens

A SETS warden is the client of a distributed system ex-
tended to support prefetching and interpreted specifica-
tions. Wardens can run in the kernel, such as the NFS
warden which is based on an in-kernel NFS client, or in
user-level processes. User-level wardens communicate
with SETS using an existing upcall mechanism[29] which
passes VFS file system operations[14] to user-level DFS
clients, caching data in the kernel to avoid upcalls where

6

possible. We extended this mechanism with operations to
prefetch an object, open a cursor for an interpreted spec-
ification, expand the cursor to retrieve the resulting file-
names, and close the cursor. This mechanism also allows
wardens to mount themselves as virtual file systems in the
local file system namespace. Wardens can implement all
or part of this extended VFS interface. For instance the
warden to an SQL database may chose to support only
queries, while an NFS warden may support prefetching
and the standard VFS operations, but not queries.

The open cursor operation passes the specification to the
warden, which responds with a cursor – a handle to an as-
yet empty set of names. The warden then asynchronously
interprets the specification to produce a list of filenames,
potentially contacting servers in the process. Expand cur-
sor operations return any names that are currently avail-
able, or block until the warden produces some names or
finishes the interpretation. The close cursor operation is
necessary to allow SETS to inform wardens to prematurely
terminate the cursor if the application closed the set.

The prefetch operation causes the warden to fetch an
object, and blocks until the entire object is cached. Sim-
ple wardens fetch the data on demand, more complicated
wardens can use asynchronous I/O or lower priority op-
erations if their system allows. Once an object is cached,
SETS holds it open to prevent the warden from evicting its
data. However, the warden can chose to evict a prefetched
object’s data without violating the semantics of SETS as
long as it prevents updates to the object to ensure consis-
tency.

4.4 Current Status

We have implemented SETS as an extension to the file
system of the Mach 2.6 operating system, a variant of
4.3BSD Unix. Although we used Mach for historical rea-
sons, our implementation avoids Mach-specific function-
ality and we are in the process of porting SETS to NetBSD
and Linux. The NFS warden took 3 days to implement
(starting from the NFS client source code), and adds or
modifies 379 (out of 6887) lines of code.

We have modified a number of Unix utilities to use dy-
namic sets. Although one must recompile an application
to use sets, the changes are relatively simple as shown in
Figure 1 and are easy to make.

5 Evaluation

Our evaluation is based on a number of synthetic bench-
marks that examine the potential benefits of dynamic sets
with respect to the cardinality of the set of objects being
examined, the size of these objects, the degree of paral-
lelism, and the amount of application computation. In ad-

dition, we ran two experiments to examine the effect of re-
ordering and the benefits of dynamic sets for search on a
local file system. A more complete set of experiments, in-
cluding low bandwidth and interactive search tests, is de-
scribed elsewhere[30].

5.0.1 Test Methodology

Our experiments use a benchmark program called synth-
Grep to generate a workload for the system. SynthGrep
is derived from the Unix grep utility, preserving the I/O
pattern of grep (whole file sequential, process a block
before reading the next), but providing two parameters to
control the amount of computation. The first parameter,
Comp, is the amount of processing to be done, expressed
in terms of microseconds/byte. It controls the number of
instructions executed by the benchmark program between
file system reads. The second parameter allows synthGrep
to emulate user think time, but is not utilized by the exper-
iments described here.

Each experiment consists of running synthGrep on a set
of uncached NFS files, once using the standard file sys-
tem operations and again using dynamic sets. The experi-
ments flush both the client’s and the servers’ buffer caches
before running synthGrep to eliminate dependencies be-
tween runs. The experiments record the total elapsed time
to run the test as well as the amount of time spent in the idle
loop. In the absence of competition for the client’s CPU,
idle time is equivalent to the amount of time the applica-
tion was blocked waiting for data. The results presented
below are the average of 10 trials.

The experiments ran on DECStation 5000/200s (25Mhz
Mips R3000A) with 32 MB of RAM running the Mach 2.6
operating system, which includes an in-kernel NFS ver-
sion 2 client and server. The machines have a hardware
cycle counter with which the kernel can accurately time
events to within a few microseconds. The tests were run
on an isolated 10Mbps Ethernet, and were lightly loaded:
only the user running tests was logged in during the tests,
although the machines were not booted single user. Since
the machines are normally shared among several users,
they were rebooted before each series of tests to ensure a
clean test environment.

5.0.2 Cardinality

Figure 4 shows the results of running the benchmark on
sets of size N of uncached 16KB files on one server with
Comp � �. The results show that dynamic sets reduce
the running time of the application for N � �, and the
amount of reduction grows with the size of the set. For
N � � there is no statistical difference in the run times.
The reduction in run time is a result of lower idle times:

7

Set Cardinality
2 4 6 8 10 12 14 16

E
la

ps
ed

 T
im

e
(m

se
c)

200

400

600

800

1000

1200

1400

1600

1800

0

Total w/o SETS
Total with SETS
CPU w/o SETS
CPU with SETS

This graph shows the cost and benefit of SETS vs. set cardi-
nality. The points are experimental results with lines fitted via
regression with a correlation coefficient of greater than .9995 in
all cases. The dots show the results without SETS, the pluses
those with SETS. The solid lines show the total elapsed time
and the dashed lines show the amount of CPU, the difference
between the solid and dashed lines is the stall time. From the
graph, one can see the increase in CPU usage due to SETS, but
also the larger reduction from overlappingcomputation and I/O.
The result is that SETS can reduce the run time for every file in
the set, and thus get more benefit for larger sets.

Figure 4: Benefit of SETS vs. Cardinality

the application spends less time waiting for data and more
time working.

The tradeoff is that more computation has to be done in
order to prefetch the files. This increase in computation
is shown by the higher line for CPU when using dynamic
sets. Fortunately, this increase is small and in particular
much smaller than the decrease in latency from prefetch-
ing.

From whence comes the reduction in latency? One
source is clearly the ability to overlap computation and
I/O. Rather than blocking, the application can process data
and the system can send and receive other messages, re-
ducing the amount of idle time with legitimate work. An-
other source is a higher utilizationof the I/O system, which
results in higher I/O efficiency. For instance, while the
server is waiting for a disk read to complete it can pro-
cess other read requests or send data over the network. It
should be noted that this higher utilization from prefetch-
ing can have a negative impact if the server or network
is fully utilized by demand traffic. SETS also derives
a small benefit by pre-reading a file’s data immediately,
while Unix read-ahead must wait for a sequential access

pattern to be established.

5.0.3 Overlapping Computation and I/O

0 1 2 3 6

CPU (sec/byte)

0

300

600

900

1200

1500

1800

2100

E
la

ps
ed

 T
im

e
(m

se
c)

μ

CPU

Stall

SETS SETS
W/O With

This graph shows the time to run synthGrep with different
amounts of computation (�sec/byte). Solid bars show the re-
sults for runs without and stripped bar for runs with SETS. The
light portion of each bar is the amount of time spent in the idle
loop, which indicates the amountof time the application blocked
on I/O. From the graph, one can see that SETS can reduce la-
tency by overlapping I/O and computation. For higher amounts
of computation the application becomes compute bound, which
reduces the affect of prefetching.

Figure 5: Benefit of SETS vs. Computation

One reason that prefetching can lower latency is that I/O
can be performed in parallel with computation, hiding the
delays and increasing client CPU utilization. The second
experiment examines this effect by varying the amount of
computation (Comp) performed by synthGrep on sets of
12 16KB files stored on one server. Figure 5 show the
results of this experiment. As shown in the graph, there
is almost no difference in synthGrep’s runtime between
Comp � � andComp � �when using SETS, even though
the application spends more time computing. The addi-
tional computation hides I/O latency from the application,
reducing the amount of idle time. For Comp � �, the ap-
plication is compute bound because SETS has eliminated
as much latency as it can. For higher values ofComp, the
potential benefit from prefetching to runtime becomes in-
significant.

8

16 64 256 1024

File Size (KB)

0

10

20

30

40

50

60

70

80

90

100

110

P
er

ce
nt

 o
f n

on
-S

E
T

S
 R

un
tim

e
3 servers W/O SETS
1 server With SETS
2 servers With SETS
3 servers With SETS

CPU

Stall

SETS SETS
W/O With

This graph shows the time to run synthGrep on different file sizes and files stored on multiple servers. Each cluster represents a
file size, and bars within the cluster are normalized to the total time for runs without SETS. The dark portion of each bar is the time
spent computing, the light portion is the time spent in the idle loop stalled on I/O. The graph shows that SETS can exploit parallelism
through concurrent prefetching.

Figure 6: Benefit from SETS vs. Concurrent Prefetching

5.0.4 The Effect of Parallel I/O

A second benefit of prefetching is the ability to exploit
parallelism by fetching data from independent disks or
servers concurrently. Such parallelism would exist, for in-
stance, if a search’s candidate objects were stored on mul-
tiple servers. The third experiment examined the effect of
concurrent fetches by running synthGrep on sets of files
stored on one, two, or three servers. Because SETS is able
to eliminate most of the latency to access 16KB files by
overlapping I/O and computation, this experiment also ran
synthGrep on larger files.

Figure 6 shows the results of running synthGrep on sets
of 12 files of equal size, withComp � �. The graph shows
four clusters, each corresponding to a different file size
(16, 64, 256, and 1024KB). The bars within each cluster
correspond to (from left to right) a set of 12 files stored on
three servers (4 files per server) using standard file system
operations�, 12 files on one server, 12 files on 2 servers (6
on each) and 12 files on 3 servers (4 each). The leftmost
bar in each cluster presents times without using SETS, the
other bars are for runs with SETS. All values are normal-
ized to the average total execution time without SETS. By
comparing the results across clusters one can see the ef-
fect of file size on the relative benefit from dynamic sets,

�There is no significant difference between times for non-SETS tests
with one, two, and three servers, so the graph only shows the results for
three servers.

by comparing within the cluster one can see the effect of
parallel fetches.

This experiment has two chief results. First, by com-
paring the bars corresponding to runs on one server, one
can see that the benefit from SETS drops off for larger
files. The reason is that the relative benefit SETS gets
by prefetching decreases as the performance improvement
from read-ahead increases. Fortunately, the range of sizes
under which dynamic sets offer greatest performance im-
provements covers most files in a typical Unix environ-
ment. Studies have shown median file sizes between
10KB and 16KB, and 80% to 90% of files are less than
50KB in size[2, 21, 25].

The second result is that SETS is able to exploit paral-
lelism between servers to virtually eliminate latency, even
for large files. In fact, the remaining latency is close to
the minimum achievable by the implementation’s use of
whole file transfer, since the best SETS can do is elimi-
nate all latency but the time to fetch the first file. With-
out prefetching, NFS can only read from one file, and thus
one server at a time, and so cannot exploit parallelism be-
tween servers as can SETS. The drawback of concurrently
fetching data is that it consumes more network and server
bandwidth by fetching the same data in a shorter amount
of time.

9

16 64 256 1024

File Size (KB)

0

10

20

30

40

50

60

70

80

90

100

110

P
er

ce
nt

 o
f n

on
-S

E
T

S
 R

un
tim

e
W/O SETS, 0 Cached
W/O SETS, 1 Cached
With SETS, 0 Cached
With SETS, 1 Cached

CPU

Stall

SETS SETS
W/O With

This graph shows the time to run synthGrep when one set member is cached. Each cluster represents a file size, and bars within the
cluster are normalized to the total time for runs without SETS. The dark portion of each bar is the time spent computing, the light
portion is the time spent in the idle loop stalled on I/O. These results show that SETS can eliminate I/O when a file is cached by
reordering access to use the cached file before it is evicted.

Figure 7: Benefit of Reordering When One File Is Cached

5.0.5 Reordering

In addition to the benefits of prefetching, dynamic sets al-
low the system to reorder fetches. Reordering is advanta-
geous when I/O latency differs between members, such as
when some members are in the cache when the set is cre-
ated. Figure 7 shows the results of an experiment which
cached one member of the set before running synthGrep,
and used sets of 12 files of equal size stored on 3 servers.
In order to best demonstrate the benefits of reordering, the
experiment used Comp � � to achieve the maximal ben-
efit from prefetching. The graph in Figure 7 shows four
clusters of bars corresponding to files of 16, 64, 256, and
1024KB in size. The two bars on the left of each clus-
ter correspond to runs without SETS, the ones on the right
to runs with SETS. The first and third bars in each cluster
show the results when no files were in the cache, the sec-
ond and forth bars show the results when one set member
was cached.

The chief result of this experiment is that reordering al-
lows SETS to eliminate all I/O latency. In the previous ex-
periments, SETS could not eliminate the latency to fetch
the first file since the application had no data on which to
perform computation. A secondary effect is shown in the
1MB file tests. Because the client’s buffer cache is too
small to hold the entire set, the cached member is evicted
before the application can read it. By reordering, SETS is
able to determine the member is cached and yield the ob-

ject before its data is evicted. The benefits of reordering
are more clearly seen when the disparity in latency is very
high, such as when some fetches timeout.

5.0.6 Accessing Data from the Local File System

The previous experiments show that SETS offers substan-
tial benefits in the domain for which it was designed –
search on a distributed file system. Figure 8 shows the re-
sults of running synthGrep on files on the local disk. The
experiment ran synthGrep on sets of 12 files stored on one
disk, using Comp � �. The graph shows clusters corre-
sponding to file sizes of 16, 64, 256, and 1024KB, normal-
ized to run times without SETS. For small files (16KB and
smaller), SETS reduces latency and overall runtime. For
larger files, however, SETS’ prefetching results in an in-
crease in latency!

Three factors contribute to this negative result. First, we
designed SETS to prefetch into the local file system, and
so it does not prefetch aggressively from the local disk.
Second, the Unix read-ahead mechanism is very effective
at reducing latency, leaving little additional opportunity
for SETS. Third, SETS prefetching strategy, which was de-
signed for network reads, attempts to prefetch from more
than one file at a time. As a result, the accesses seen by the
disk are not sequential, and force the disk to seek more of-
ten. The performance penalty incurred from these seeks
does depend on data layout, and by carefully placing the

10

16 64 256 1024

File Size (KB)

0

10

20

30

40

50

60

70

80

90

100

110

P
er

ce
nt

 o
f n

on
-S

E
T

S
 R

un
tim

e
CPU

Stall

SETS SETS
W/O With

This graph shows the time to run synthGrep on sets of local files.
Each cluster represents a file size, and bars within the cluster are
normalized to the total time for runs without SETS. The dark
portion of each bar is the time spent computing, the light por-
tion is the time spent in the idle loop stalled on I/O. These results
show that prefetching local files off one disk has limited bene-
fit over read-ahead, but SETS still provides a sizeable benefit
(25%) for the majority of files which are small.

Figure 8: Benefit of SETS for Local Disk Files

data on disk we were able to eliminate the increase in la-
tency. However, controlling data layout in this manner is
not practical in a real-world setting. An alternate strategy
that avoided concurrently reading more than one file from
the same disk should not suffer this problem. In addition,
we could easily extend SETS to use a system like TIP2[23]
to manage local disk prefetching, if it were available on the
same platform.

6 Dynamic Sets and the Web

We now turn to the question of whether search on the
World Wide Web could benefit from dynamic sets. The
Web is an interesting domain because latencies are very
high, there is substantial variance in latency between dif-
ferent servers and over time, and because Web search
tends to be interactive. Unfortunately, Web browsers cur-
rently only support “point-and-click” interaction, which
leaves little opportunity to use set iterators. However, one
could easily extend a browser’s interface to support user-
controlled creation and iteration over sets of objects, and
then use dynamic sets to reduce I/O latency. It is critical
that users control the creation and membership of sets in
order to ensure the accuracy of the hints inherent in a set.

There are a number of cases where iteration over sets is
possible. Any hypertext page can be thought of as a set
whose members are the objects to which the page has a

link. For instance, Web search engines represent the query
results as an HTML page, many Web servers have a top-
level page that serves as an index of their site, and many
pages contain links to sites with related information. If
a user decides that she might wish to visit some number
of the links on a page, she could create a set by selecting
these links and then iterate on the set to view the mem-
bers. There exist tools to prefetch sets of objects (such
as WebCompass[32]), but these tools use predefined sets
and prefetch set members well in advance of a search. Dy-
namic sets, if successful, would allow searchers to specify
sets at runtime and still substantially reduce the latency of
processing the sets.

6.1 Adding Web Support to SETS

In order to evaluate the use of dynamic sets on the Web,
we implemented a warden to allow SETS to prefetch Web
documents and to query search engines, and extended the
NCSA Mosaic 2.6 browser to use dynamic sets. The
browser redirects queries to search engines through the
warden when requested to do so by the user, and the war-
den parses the response to extract links. Currently all links
on a page are added to the set, but this is just a limita-
tion of our prototype. In fact, our Warden can use any hy-
pertext page to define a set’s membership since search en-
gine queries are URLs (Web document names) and return
HTML.

Once a set is created, the browser displays a pop-up di-
alog such as the one in Figure 9. Users request the next
set member by clicking the “iterate” button; mosaic gets
the member by calling the set’s iterator and displaying the
object it receives. The warden prefetches whole objects
to the local disk using the standard HTTP protocol and
stores the HTTP headers with the objects to allow Mosaic
to properly parse their data.

6.2 Experimental Methodology

Because the Web is so large and amorphous, capturing its
performance characteristics accurately in a model, simu-
lation, or clean test environment is difficult. Our solu-
tion overcomes this problem by replaying traces of real
searches to achieve both repeatability and realism. The
traces� were captured by recording the activity of 5 expert
Web users, each performing 3 searches and spending 10
minutes per search. The traces record the names of the ob-
jects that were fetched (including inlined images) and the
times at which the fetches were requested by the user. By
determining the time between the return of one fetch and
the start of the next, one can obtain the user think time –

�Bill Camargo at Transarc, Inc. designed and implemented the trace
capturing mechanism.

11

This window appears when a user opens a set. Clicking on the “Iterate” button causes Mosaic to get the next set element by calling
the set’s iterator. The other buttons allow users to see the member names (“Digest”), print the set cardinality (“Size”), open a new
set to begin iteration again (“Rewind”), and to close the set (“Close”).

Figure 9: Mosaic Window for Managing Open Sets

the amount of time the user spent examining the object be-
fore moving on. The five traces can be viewed as indepen-
dent samples from the population of directed search activ-
ity performed by expert Web users. Figure 10 summarizes
the traces to give an idea of the workload they represent.

To create equivalent traces that use dynamic sets, we
manually copied these traces, replacing demand load op-
erations with iteration over sets. We defined these sets by
creating 15 HTML pages corresponding to the 15 traced
tasks (3 per user). Each page contains a link to each ob-
ject loaded by the trace for that task. The modified traces
open one set per task, using the correspondingHTML page
to define set membership. The traces then iterate once for
every member of the set and close the set before moving
on to the next task.

It is important to realize that since the creation of the
SETS traces employed an oracle to determine set member-
ship, this experiment provides an upper bound on the ben-
efit one would expect from using dynamic sets. If one can
exactly capture one’s near-term future data needs, such as
by iterating over the results of a query to a search engine,
then one should see performance improvements compa-
rable to the results shown below. However, the benefits
from dynamic sets do depend on the user iterating over a
set of objects whose membership she defines. The benefits
shown by the experiments below are realizable in practice
only to the extent that the user adopts this mode of opera-
tion.

6.3 Experimental Results

We replayed the traces on a DECStation 5000/200 with
64MB of RAM; all client caches were flushed prior to
each run. The client software is version 2.6 of NCSA
Mosaic modified to replay traces and use dynamic sets,
and the client operating system is Mach 2.6. The replay
mechanism loads the objects in the trace from live Web
servers, Mosaic displays the objects, and then pauses to
approximate the user think time captured in the traces. The
trace output records the latency seen by the trace mecha-

nism, the amount of time Mosaic spent processing the ob-
ject, and the amount of simulated user think time. The
client shared a 45Mbps T3 connection to the Internet with
several thousand other computers�. The traces were re-
played during peak hours (afternoon EST) for greatest re-
alism; other experiments that replay the traces on week-
ends, without loading inlined images, and over a phone
line see vastly different latencies but similar benefits to
those shown here[30].

Figure 11 shows the results of replaying these traces,
broken out by search task and averaged over 5 runs. Each
bar consists of three parts: the user think time captured in
the trace, CPU to fetch and display the images, and the la-
tency seen by Mosaic. The labels on each cluster denote
the search task and user that cluster represents; solid bars
show the times for runs that did not use dynamic sets and
striped bars show the times for runs with sets.

Figure 11 shows three chief results. First, dynamic sets
can dramatically reduce aggregate I/O latency on the Web
by overlapping egregious Web latencies with even larger
user think times, and by fetching data in parallel. The re-
sults show between a 70% and 98% reduction in latency,
which means that users would wait much less time for their
data if they were using dynamic sets. Second, reducing
the latency reduces the magnitude of variance in latency
which results in a more predictable, and therefore more us-
able system. Third, the savings from dynamic sets largely
depend on the composition of the set, the amount of user
think time, and the speed of the network. In the extreme,
dynamic sets offer no performance benefits for sets of 1
object, and induce a small overhead to create the set.

This experiment also demonstrates the advantages of re-
ordering. Several of the fetches in each trace take tens of
seconds to complete. Prefetching alone would force the
user to block on these fetches, even though other objects
are waiting to be processed. Because of the nature of iter-
ators, SETS can yield any member that is ready, and thus
overlap these long fetches with user think time to substan-

�In the final paper we will identify the organizations that share the
link, omitted here for interests of blind reviewing.

12

Task A Task B Task C
Trace # 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Think(sec) 378 174 211 284 110 322 385 244 307 266 351 263 281 228 286
of Objects 21 13 12 17 3 15 20 12 9 10 39 16 16 20 12
of Images 12 30 26 15 12 56 9 22 19 18 48 30 6 46 21
Bytes(KB) 226 80 134 154 136 254 263 152 459 176 132 63 131 273 256

Figure 10: Summary of 5 WWW Search Traces

tially reduce the amount of time the user is blocked waiting
for data.

7 Future Work

We are in the process of extending the work reported here
in several ways. First, clients with low bandwidth con-
nections have little opportunity to benefit from concurrent
prefetching, and we are exploring other alternatives. Sec-
ond, prefetching in a distributed system is inherently dif-
ficult since it involves finding an ideally optimal sched-
ule with incomplete knowledge in the face of dynamic
changes in resource availability. We are exploring strate-
gies that will allow the prefetcher to dynamically adapt its
behavior to meet the needs of applications while avoiding
overrunning shared network and server resources. Third,
our work has focused on the systems issues of dynamic
sets. We are now exploring issues of user interface design
related to use of dynamic sets on the Web. In particular,
we plan on exploring more powerful membership speci-
fication techniques that would allow users to create sets
without a priori knowledge of the members. Finally, we
are in the process of porting SETS to NetBSD and Linux,
and implementing dynamic sets as a Netscape plug-in for
release to the wider Internet community.

8 Conclusions

Dynamic sets are a new operating system abstraction that
gives systems greater opportunity to transparently reduce
I/O latency and better captures application behavior. We
have demonstrated that by exploiting the semantic non-
determinism of iterating over sets, systems can reduce la-
tency over a wide range of systems through reordering
and informed prefetching. These benefits do not depend
on locality of reference and therefore apply to applica-
tions for which caches and predictive methods perform
poorly. Dynamic sets can be implemented without requir-
ing modifications to protocols or servers, and so can be
easily deployed. Finally, dynamic sets adhere to estab-
lished software engineering principles by preserving inter-

face boundaries and shielding applications from low-level
system details.

Dynamic sets address the problem of I/O latency by ex-
posing the an application’s non-determinism and future
data needs to the system, which can exploit this knowledge
to reduce latency. Applications benefit from prefetch-
ing without having to manage I/O explicitly, and the sys-
tem is given greater knowledge with which to schedule
I/O and manage resources. As a result, the system can
prefetch without accurate predictions of latency by fetch-
ing a small number of objects concurrently and oppor-
tunistically yielding the first to return.

9 Acknowledgements

This paper describes work originally presented in my
thesis[30] performed while I was a Ph.D. student in the
School of Computer Science at Carnegie Mellon Univer-
sity. My advisor, M. Satyanarayanan, made significant
contributions to the work, as did my thesis committee –
Garth Gibson, Jeannette Wing, and Hector Garcia-Molina.
Hugo Patterson, Andrew Black, and Dan Revel read early
versions of this paper; their insightful feedback helped me
improve this document tremendously.

References

[1] BACH, M. J. The Design of the Unix Operating System.
Prentice Hall, Inc. A division of Simon & Schuster, En-
glewood Cliffs, New Jersey 07632, 1986. Chapter 3: The
Buffer Cache.

[2] BAKER, M. G., HARTMAN, J. H., KUPFER, M. D.,
SHIRRIFF, K., AND OUSTERHOUT, J. K. Measurements
of a distributed file system. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles (Octo-
ber 1991).

[3] BOWMAN, M., SPASOJEVIC, M., AND SPECTOR, A. File
system support for search. Transarc white paper, 1994.

[4] CAO, P., FELTEN, E. W., KARLIN, A., AND LI, K.
A study of integrated prefetching and caching strategies.
In Proceedings of the ACM SIGMETRICS Conference on

13

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5
0

100

200

300

400

500

600

700

800

900

E
la

ps
ed

 ti
m

e
fo

r
to

ta
l t

ra
ce

 r
ep

la
y

(s
ec

)

Legend

User

CPU

Fetch

SETS SETS
W/O With

This graph shows the results of replaying traces of user search activity on the live Web. Five users were traced, and each trace
consisted of three search tasks. The graph shows the cumulative user think time, amount of computation to display data, and I/O
latency to replay the trace of one search task for one user. The chief feature of this graph is the potential savings from latency that
can be obtained by using dynamic sets.

Figure 11: Results of Replaying User Traces on the Web

Measurement and Modeling of Computer Systems (May
1995).

[5] CAO, P., FELTEN, E. W., AND LI, K. Implementation
and performance of application-controlled file caching. In
Proceedingsof the First USENIX Symposiumon Operating
Systems Design and Implementation (November 1994).

[6] CUREWITZ, K. M., KRISHNAN, P., AND VITTER, J. S.
Practical prefetching via data compression. In Proceedings
of the 1993ACM Conf. onManagementof Data (SIGMOD)
(May 1993).

[7] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND

O’TOOLE, JR., J. W. Semantic file systems. In Proceed-
ings of the 13th ACM Symposium on Operating Systems
Principles (October 1991).

[8] GLASSMAN, S. A caching relay for the world wide web.
Computer Networks and ISDN Systems 27, 2 (Nov. 1994).
Special Issue: selected papers from the First International
WWW Conference.

[9] GRIFFIOEN, J., AND APPLETON, R. The design, imple-
mentation, and evaluation of a predictive caching file sys-
tem. Tech. Rep. CS-264-96, Department of Computer Sci-
ence, University of Kentucky, June 1996.

[10] HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D.,
SATYANARAYANAN, M., SIDEBOTHAM, R., AND WEST,
M. Scale and performance in a distributed file system.
ACM Trans. Comput. Syst. 6, 1 (Feb. 1988).

[11] JOSEPH, A. D., DELESPINASSE, A. F., TAUBER, J. A.,
GIFFORD, D. K., AND KAASHOEK, M. F. Rover: A
toolkit for mobile information access. In Proceedings of
the 15th ACM Symposiumon OperatingSystemsPrinciples
(December 1995).

[12] JOY, W. An introduction to the C shell. In Unix User’s
Manual, Supplementary Documents, M. J. Karels and S. J.
Leffler, Eds. Computer Science Division, Department of
Electrical Engineering and Computer Science, University
of California, 1980.

[13] KIMBREL, T., TOKMINS, A., PATTERSON, R. H., BER-
SHAD, B., CAO, P., FELTEN, E. W., GIBSON, G. A.,
KARLIN, A. R., AND LI, K. A trace-driven comparison
of algorithms for parallel prefetching and caching. In Pro-
ceedings of the Second USENIX Symposium on Operating
Systems Design and Implementation (Oct. 1996).

[14] KLEIMAN, S. Vnodes: An architecture for multiple file
system types in Sun UNIX. In Summer USENIX Confer-
ence Proceedings (Atlanta, 1986).

[15] KOTZ, D., AND ELLIS, C. Practical prefetching tech-
niques for parallel file systems. In Proceedings of the 1st
International Conference on Parallel and Distributed In-
formation Systems (Miami Beach, Florida, Dec. 1992).

[16] KUENNING, G. H. The design of the SEER predictive
caching system. In Proceedings of the Workshop on Mo-

14

bile ComputingSystemsand Applications (Santa Cruz, CA,
Dec. 1994).

[17] LISKOV, B., AND GUTTAG, J. Abstraction and Specifica-
tion in ProgramDevelopment. The MIT EECS Series. MIT
Press, Cambridge, MA ; McGraw-Hill, New York, 1986.

[18] MANBER, U., AND WU, S. Glimpse: A tool to search
through entire file systems. In Winter USENIX Conference
Proceedings (1994). Also available as The University of
Arizona Department of Computer Science Technical Re-
port TR 93-34.

[19] MOWRY, T. C., DEMKE, A. K., AND KRIEGER, O. Au-
tomatic compiler-inserted I/O prefetching for out-of-core
applications. In Proceedings of the Second USENIX Sym-
posium on Operating Systems Design and Implementation
(Oct. 1996).

[20] NELSON, M., WELCH, B., AND OUSTERHOUT, J.
Caching in the Sprite Network File System. ACM Trans.
Comput. Syst. 6, 1 (Feb. 1988).

[21] OUSTERHOUT, J. K., DA COSTA, H., HARRISON, D.,
KUNZE, J. A., KUPFER, M., AND THOMPSON, J. G. A
trace-driven analysis of the UNIX 4.2 BSD file system. In
Proceedings of the 10th ACM Symposium on Operating
Systems Principles (December 1985).

[22] PADMANABHAN, V. N., AND MOGUL, J. C. Using pre-
dictive prefetching to improve world wide web latency.
ACM SIGCOMM Computer Communication Review 26, 3
(July 1996).

[23] PATTERSON, R. H., GIBSON, G. A., GINTING, E.,
STODOLSKY, D., AND ZELENKA, J. Informed prefetching
and caching. In Proceedings of the 15th ACM Symposium
on Operating System Principles (Dec. 1995).

[24] SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH,
D., AND LYON, B. Design and implementation of the
Sun Network File System. In Summer USENIX Conference
Proceedings, Portland (1985).

[25] SATYANARAYANAN, M. A study of file sizes and func-
tional lifetimes. In Proceedingsof the 8th ACM Symposium
on Operating Systems Principles (December 1981).

[26] SHAW, M., WULF, W. A., AND LONDON, R. L. Abstrac-
tion and verification in Alphard: Defining and specifying
iteration and generators. Commun. ACM 20, 8 (Mar. 1977).
Reprinted in Tutorial: Programming Language Design,
text for IEEE Tutorial by Anthony I. Wasserman, 1980,
pp. 145-155.

[27] SMITH, A. J. Disk cache – miss ratio analysis and de-
sign considerations. ACM Trans. Comput. Syst. 3, 3 (Aug.
1985).

[28] SPASOJEVIC, M., AND SATYANARAYANAN, M. A usage
profile and evaluation of a wide-area distributed file sys-
tem. In Winter Usenix Conference Proceedings (San Fran-
cisco, CA, 1994).

[29] STEERE, D., KISTLER, J., AND SATYANARAYANAN, M.
Efficient user-level file cache management on the Sun vn-
ode interface. In Summer USENIX Conference Proceed-
ings (Anaheim, CA, 1990).

[30] STEERE, D. C. Using Dynamic Sets to Reduce the Aggre-
gate Latency of Data Access. PhD thesis, Carnegie Mellon
University, School of Computer Science, 1997. Available
as technical report CMU-CS-94-215.

[31] TAIT, C. D., AND DUCHAMP, D. Detection and exploita-
tion of file working sets. In Proceedingsof the 11th Interna-
tional Conferenceon Distributed Com puting Systems (Ar-
lington, TX, 1991).

[32] WEBCOMPASS 1.0. Quarterdeck, Corp. Marina del Ray,
CA. (800) 683-6696. Additional information is available
at http://www.quarterdeck.com.

[33] WING, J., AND STEERE, D. Specifying weak sets. In Pro-
ceedings of the International Conference on Distributed
Computer Systems (Vancouver, June 1995). Also available
as Carnegie Mellon University School of Computer Sci-
ence technical report CMU-CS-94-194.

15

