
A Toolkit for Specializing Production Operating System Code�

Crispin Cowan, Dylan McNamee, Andrew Black, Calton Pu, Jonathan Walpole
Charles Krasic, Perry Wagle, and Qian Zhang

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology [10pt]

Renauld Marlet
University of Rennes / IRISA

(synthetix-request@cse.ogi.edu)
http://www.cse.ogi.edu/DISC/projects/synthetix/

Abstract

Specialization has been recognized as a powerful tech-
nique for optimizingoperating systems. However, special-
ization has not been broadly applied beyond the research
community because the current techniques, based on man-
ual specialization, are time-consuming and error-prone.
This paper describes a specialization toolkit that should
help broaden the applicability of specializing operating
systems by assisting in the automatic generation of spe-
cialized code, and guarding the specialized code to ensure
the specialized system continues to be correct. We demon-
strate the effectiveness of the toolkit by describing expe-
riences we have had applying it in real, production en-
vironments. We report on our experiences with applying
the tools to three disparate portions of operating systems:
signal delivery, memory allocation and RPC. We describe
how we used the toolkit to specialize these components,
and present the resulting performance improvements. We
conclude that a toolkit-based approach to specialization
can work, and is an effective operating system optimiza-
tion technique.

1 Introduction

Specialization has been demonstrated to improve the per-
formance of “generic” operating system code by dynam-
ically creating optimized code for common cases that are
discovered at run time [20, 26]. However promising, spe-
cialization has yet to make a significant impact outside the
research community. This paper introduces a toolkit we
are constructing that eases the task of specializing produc-
tion operating system code. The toolkit enables the appli-

�This research is partially supported by DARPA grant N00014-
94-1-0845 and DARPA contract F19628-95-C-0193, NSF grant CCR-
9224375, and grants from the Hewlett-Packard Company and Tektronix.

cation of specialization techniques by a broader range of
research and commercial operating system developers.

Our specialization toolkit addresses three difficulties
with existing specialization techniques. First, manual spe-
cialization requires the hand coding of each special case.
Our toolkit eases the task of building specialized systems
by automatically generating specialized code and “guard-
ing” the specialized code to ensure it is only executed
when appropriate. Second, manual specialization often
introduces global interdependencies when taking infre-
quently relevant code outside of the critical path. Our
guarding tools make composing specialized modules fea-
sible by isolating these global interdependencies. Third,
manual specialization creates as many copies of the code
as the number of special cases, making software mainte-
nance expensive and error prone. Our toolsease the task of
maintaining optimized operating system code by preserv-
ing the original source and managing the special cases for
the programmer.

We have applied the specialization toolkit to a broad
range of production systems software, including Linux
signal delivery, the Vmalloc memory allocator and Sun’s
remote procedure call (RPC), yielding performance gains
from 10% up to 1200%. These experiences and the re-
sulting performance improvements demonstrate that tool-
assisted specialization is an approach that improves oper-
ating system performance and at the same time, preserves
system code maintainability and safety.

The remainder of this paper is organized as follows.
Section 2 summarizes the major approaches to specializa-
tion and adaptive operating systems. Section 3 describes a
specialization toolkit we have been developing at [institu-
tions omitted for blind reviewing]. Section 4 presents our
experiences with using the toolkit to specialize three areas
of system code: signal delivery, memory allocation, and
RPC. We describe the process of specializing each sys-

1



tem component, then the measurements of performance
improvements due to specialization. Section 6 discusses
the strengths and weaknesses of the current toolkit based
on our experiences. Finally, Section 7 describes ongoing
work on the specialization toolkit and summarizes our re-
sults.

2 Customizing Operating Systems

Operating system specialization is a promising approach
to improving application performance by adaptingoperat-
ing system behavior to individual application needs. This
section is structured as follows. Section 2.1 describes the
specialization-based approach to achieving operating sys-
tem adaptivity. Section 2.2 describes the motivation for
the tools, and describes the specialization subtask that each
tool addresses. Finally, Section 2.3 describes how our
tool-based specialization approach relates to other adap-
tive systems research.

2.1 Quasi-invariants and Specialization

Invariants are the building blocks for constructing special-
ized systems. We distinguishbetween two types of system
invariants. A true invariant, like a classical invariant, is a
state property of the system that is guaranteed to be true
at all times. A quasi-invariant is a state property that is
likely to remain true, but may become false at some future
time. Either kind of invariant is stated as an expression us-
ing system variables that must evaluate to “true” to facili-
tate automatic exploitation of the invariant via specializa-
tion.

Given that some set of invariants and quasi-invariants
are true, a specialized component can be created that im-
proves functionalityor performance over the generic com-
ponent that it replaces. Optimizations can be done us-
ing formal, mechanical methods such as partial evaluation
with respect to the invariants [8], or they can be at a higher
level of changing the component’s behavior while preserv-
ing the functional interface, such as changing the page re-
placement algorithm to adapt to application needs.

Previous specialization research has extensively ex-
plored filesystem operations, such as read [20, 26]. In
these projects, various quasi-invariants related to kernel
“open file” objects (file descriptors) were exploited as
specialization opportunities. For example, when an ap-
plication repeatedly performs small sequential reads, the
file descriptor’s current physical block number is a quasi-
invariant. This quasi-invariant was used to generate a spe-
cialized version of read that performed better than the
unspecialized read by more than a factor of 3 [26].

2.2 Motivation for a Specialization Toolkit

Even thoughspecialization can be a powerful optimization
technique, it has not been broadly applied in commercial
operating systems. We believe this is because correct and
effective specialization is hard to do. We have identified a
number of causes for this:

� Deciding what to specialize. It is non-trivial to find
opportunities for specialization. A variable may be
modified in only one kernel procedure (thus suggest-
ing candidacy for quasi-invariant status), but this pro-
cedure may be executed very frequently. Conversely,
a variable may be modified by many procedures, but
if those procedures live in “back roads” of the oper-
ating system, the variable could still be a good candi-
date quasi-invariant.

� Generating specialized code. The approach that has
been used to specialize operating systems to-date is
to manually generate specialized versions of proce-
dures and write code that dynamically dispatches ex-
ecution to these when deemed appropriate. This ap-
proach is problematic for three reasons. First, it is dif-
ficult to manually write code that fullyexploits the in-
variance of a set of quasi-invariants. Logically, this
task should be done by a compiler. Second, man-
ually identifying the conditions for dispatching to a
specialized routine can be tedious and error-prone.
Third, identifying all the associated guards with re-
spect to a quasi-invariant is difficult and error-prone,
and missing any one of them would introduce a bug
into the system.

� Maintaining specialized code. Current special-
ized systems are harder to maintain than their non-
specialized counterparts. This is because parallel ver-
sions of code must be maintained: the generic ver-
sion, and each of its specializations. Each modifica-
tion to the generic version must be manually verified
for its impact (or lack of impact) on each of the spe-
cialized versions. Furthermore, the system is com-
plicated by the addition of code that dispatches be-
tween the generic and specialized versions of each
specialized kernel procedure. Finally, changing the
quasi-invariants also modifies the guards, which may
be spread all over the system.

In order to build a toolkit that addresses these problems,
we have decomposed the task of specializing an operating
system into three components. (1) Discovering opportuni-
ties for specialization, (2) generating specialized code, and
(3) ensuring correctness in the presence of specialization.
We elaborate on these components in turn.

First, one of the most challenging aspects of specializ-
ing operating systems is discovering quasi-invariants that

2



provide opportunities for effective specialization. One in-
dication of the difficulty of this task is that all of the pre-
vious work in operating system specialization has concen-
trated on only one subsystem (the filesystem), and only a
limited number of quasi-invariants within that subsystem
(e.g., shared status, sequentiality of reads, and existence
of holes in file layout.) [26]. The experiences reported in
Section 4 indicate that tools can not replace human intu-
ition and experience, but that tools can be used to assist
kernel developers to evaluate quasi-invariant candidates,
and aid the verification phase.

Second, after a set of quasi-invariants have been iden-
tified, the next task is to partially evaluate the system, by
effectively recompiling the appropriate routines with the
new assumption that what was previously assumed to be
variable is now quasi-invariant. Previous specialization
experiments involved manual partial evaluation of kernel
routines with quasi-invariants. Our toolkit includes a tool
that automatically generates specialized code by partially
evaluating code that refers to quasi-invariants, thus greatly
reducing the burden on developers.

Third, since specialized code assumes the invariance of
quasi-invariant expressions, if a system condition causes
an invariant to no longer hold, the corresponding special-
ized code will produce incorrect results. A correct special-
ized system must detect quasi-invariantviolations, and dy-
namically recover from them. We refer to the detection of
violated quasi-invariants as “guarding.” When a guard in-
dicates that a quasi-invariant has been violated, recovery
consists of removing the specialized routine, and “replug-
ging” a less specialized routine that does not assume the
invariance of the violated quasi-invariant.

Previous specialization experiments required that pro-
grammers manually identify all of the locations within the
kernel that may violate quasi-invariants and insert the ap-
propriate guards. Further, once a quasi-invariant has been
violated, developers had to manually recover by replug-
ging. We have developed a tool that automatically iden-
tifies most of the sites where quasi-invariants may be vi-
olated and inserts guards at those locations. To catch the
cases our tool may miss (because of C’s lack of type-
safety), we have developed another tool to dynamically
verify the invariance of a specialized quasi-invariant.

2.3 Other Approaches to Customization

Customizing operating systems is an active area of re-
search. The toolkit approach to specialization distin-
guishes our work from previous specialization work [26],
as well as other customizable operating system projects
such as SPIN [3]. The guarding tools we provide sup-
port the explicit description and representation of quasi-
invariants, thus helping the system preserve correctness
despite evolving customization and specialization.

In contrast, systems like SPIN enforce protection
through the use of a type-safe programming language
combined with a dispatcher which enforces constraints
described by the service-writer [24]. For example, the
dispatcher might enforce that a particular virtual memory
extension can only handle faults for the process that
installed it. SPIN also includes a hierarchical name-space
that limits the damage caused by broken specialized
modules to only those tasks that specifically ask to use the
specialized components. The responsibility of ensuring
that specializations do not conflict with each other is left
to to extension-writers and the authors of built-in services.

Exokernel [12] represents another approach to operat-
ing system customization. Exokernel pushes system ser-
vices outside the kernel. Exokernel also enforces mainly
syntactic protection without explicit description and rep-
resentation of quasi-invariants. Consequently, the respon-
sibility of ensuring that code fragments outside the kernel
will not interfere with each other is left to the authors of
the user-level system services and the developers of sub-
sequent customizations.

The Utah Flux project has constructed a software archi-
tecture that supports flexible replacement of operating sys-
tem components, particularly nesting of operating system
components [13, 14] using concepts such as recursive vir-
tual machines [27]. These flexible layers of indirection
come at some cost. However, specialization may be able
to minimize these costs. The replaceable software compo-
nents are large and complex, and the relationship between
them is largely quasi-invariant, because the components
are not replaced frequently. As we will show in Section 4,
quasi-invariant relationships between entities in an oper-
ating system can be specialized to improve performance.

To summarize our relation to other work in this area,
the tools described in this paper build upon previous spe-
cialization projects and could be used in conjunction with
extensible kernels, such as SPIN, and user-level service
based systems, such as Exokernel. In these systems the
toolkit would be used to make the assumptions and inter-
dependencies of system extensions explicit, and automat-
ically generate and guard specialized code modules.

3 A Toolkit for OS Specialization

This section describes a toolkitwe are developing that pro-
vides the assistance programmers need in order to make
specialization a usable optimization technique. We begin
by reviewing the specialization process, noting where the
tools are to be applied. This is followed by a detailed de-
scription of each tool.

To aid discussion, we present here a sample quasi-
invariant that was used to specialize Linux signal delivery,
as described in Section 4.1. The following quasi-invariant

3



asserts that the process sending a signal has the same UID
as the target process, and thus has permission to signal the
target:

current->uid == p->uid

The variables current and p are of type
struct task struct *, where current is
the executing process, and p is the target process. The
above expression is a quasi-invariant, and the data stored
in current->uid and p->uid are quasi-invariant
terms.

Postulating Quasi-Invariants As described in Sec-
tion 1, discovering appropriate conditions to use as
quasi-invariants is difficult. The general approach is
to use the kernel developer’s intuition to postulate
that some condition is both quasi-invariant (doesn’t
change rapidly) and useful (the condition is tested
frequently). To answer these questions, the system
developer must know all the places in the system
where the terms of the quasi-invariant are read and
written. The guarding tools described in sections 3.3
and 3.2 automate the process of locating these
components, and can assist in determining how fre-
quently a quasi-invariant changes. In our example,
the kernel developer would have to determine how
frequently the task struct.uid field changes
by first locating all the places in the kernel that write
to the task struct.uid field, and then profiling
the kernel to determine how frequently they occur.

Using Quasi-Invariants to Generate Specialized Code
Given some invariant conditions, specialized code
can be generated for certain system components.
While this can and has been done by hand, it
can be automated using partial evaluation tech-
niques [7, 29]. Partial evaluation is specifically the
idea of defining some of the input to a function to be
constant (truly invariant) and using that invariance to
optimize the code. Section 3.1 describes our partial
evaluation compiler for C code. In our example, the
partial evaluation compiler can remove the tests on
the uid field from the signal delivery code.

Guarding Quasi-Invariants The distinguishing trait of
quasi-invariants is that they aren’t really invariant.
Specialized code that depends on quasi-invariants not
changing will break when the invariants do change.
To ensure correctness, the kernel developer must lo-
cate all the places in the system that can cause quasi-
invariants to change, and guard them with code that
will re-specialize the specialized components to re-
flect the new state of the quasi-invariants. The tools
described in sections 3.3 and 3.2, while useful for
postulatingquasi-invariants, were primarilydesigned

to assist in placing guards to ensure the applicability
of specialized code. In our example, the kernel devel-
oper would have to find all places in the kernel that
change the UID of a process, and guard them to en-
sure that they do not break some specialized code.

Replacing Specialized Code Specialized code that de-
pends on quasi-invariants must be re-specialized
when the quasi-invariants change. However, the spe-
cialized code may be in use when the quasi-invariant
changes. Therefore, some form of concurrency con-
trol must be applied to the quasi-invariants and the
specialized code. Section 3.5 describes our tools for
efficiently allowing concurrent execution nd replace-
ment of specialized code.

The remainder of this section describes each of our
tools.

3.1 Tempo: Generating Specialized Code

Tempo is a program specializer based on partial evalua-
tion [7, 18]. Tempo takes a generic source program Pgen
written in C plus a known subset of its input (the quasi-
invariants), and produces a specialized C program Pspec,
which is simplified with respect to the quasi-invariants.
Tempo supports both compile-time and run-time program
specialization [8], but in the specialization experiments
carried out so far, we have used only compile-time special-
ization.

Conceptually, program specialization using partial eval-
uation is straightforward. Tempo uses the known subset of
input to analyze Pgen, dividing it into static and dynamic
parts. Immediately, the static part ofPgen is evaluated and
reduced using the quasi-invariants (the known subset of
input), while the dynamic part is copied to the output. The
result Pspec is usually simpler than Pgen since the static
part has been pre-computed and only the dynamic part will
be executed at run-time. Informally, partial evaluation can
be described as an automated propagation of values known
to be constant at run-time (typically after some initializa-
tion code).

Partitioning program components into static and dy-
namic parts turned out to be insufficient for C programs
in operating systems. To address the complications in op-
erating systems code, several refinements were introduced
in Tempo:

� Static & dynamic variables: those with value known
at specialization time, so they can be exploited in spe-
cialization and some code are reduced; but neverthe-
less some other code is forced to appear inPspec, e.g.,
due to values of pointers that are difficult to guard.

� Partially-static structures: data structures that con-
tain some fields with known values, and other fields

4



that are dynamic.

� Pointers to partially static structures: For pointers
to partially-static data structures, Tempo must dis-
tinguish the static subcomponents from the dynamic
ones.

Tempo was used in all of the experiments reported in
Section 4 to generate specialized code.

3.2 TypeGuard: Dynamically Guarding
Quasi-invariants

TypeGuard is a tool for locating statements in the source
code of a program that write to quasi-invariant terms using
static type analysis. If the quasi-invariant is a statically-
allocated (i.e., global) variable, then guarding the assump-
tion that this property does not change is simple. We can
easily locate all program statements that assign to the vari-
able’s static name.

Unfortunately, most of the state properties in an op-
erating system that are likely to be quasi-invariant are
fields in heap allocated structures. For example, the quasi-
invariant current->uid == p->uid refers to two
specific instances of task struct, but there may be
hundreds of task struct structs in a running kernel.
Finding and guarding all places in the kernel that change
state properties on which specialized components depend
is the guarding problem.

We solve the guarding problem using a combination of
static and dynamic methods. Static type checking can lo-
cate all kernel source program statements that refer to the
struct type and field name that we are concerned with. A
guard is then placed at each such write. Guards do the run-
time checking to decide if the struct being modified is an
instance of the struct that needs to be guarded, and invoke
re-specialization if necessary.

Section 3.2.1 describes our tool to locate updates to
variables that require guarding as indicated by type in-
formation. Subsection 3.2.2 describes our guards: an
efficient run-time method for distinguishing among up-
dates to instances of structures of the guarded type: only
those instances pertaining to specialized code require re-
specialization when they are updated. Subsection 3.2.3
describes our prototype implementation of TypeGuard; a
tool for placing the guards described here.

3.2.1 Where to Place Guards

Consider the quasi-invariant

current->uid == p->uid

The quasi-invariant expression refers to the uid field of
an task struct structure. Guarding all writes to the
uid field of the task struct structure is problematic,

because there are many instances of the task struct
struct. However, we can at least use type checking to lo-
cate all of the accesses to structs of type task struct.

This method of locating updates to pertinent types is
only as effective as the type-safety of the kernel source
program. However, we can warn the programmer of type-
unsafe operations that may prevent effective location of all
statements that need to be guarded. Such operations in-
clude:

� type-casted assignment from or to the type of struct
with which we are concerned

� attempting to guard a field that is part of a union

� taking the address of a scalar field that must be
guarded

To explain the last item, consider that the uid field is
an integer. If a program statement does the following:

int * foo = &(current->uid);

Then foo constitutes a capability to violate our quasi-
invariant expression. However, we cannot guard all oper-
ations using foo, because its type is far too generic (most
of the system contains int * types) and its value may be
anonymously passed to other parts of the system. Thus we
resort to simply flagging the statement that takes the ad-
dress of our quasi-invariant term current->uid.

3.2.2 Guards: Re-Specialize If Necessary

The method described in Section 3.2.1 suffices to locate
all assignments to state variables of the type that appear
in our quasi-invariant expression, but cannot distinguish
among different instances of that type. Our specialization
concerns only two processes described by two particular
task struct structures, yet there are often hundreds of
instances of task struct structures in the running ker-
nel.

Whether a quasi-invariant is true of a particular
task struct structure is a dynamic property, and
so we resort to run-time testing of the quasi-invariant
expression to determine whether the update has violated
the quasi-invariant. However, it is only a violation of the
quasi-invariant if the structure was in fact the one referred
to by the expression; the other instances are irrelevant.
Furthermore, the quasi-invariant expression may involve
several structs, and so testing the expression requires
identifying the appropriate instances.

We address these problems by annotating all structs
that contain quasi-invariant terms with a special QUasi-
invariant IDentifier pointer field (QUID). In the case that
the task struct struct is the instance referred to in the
quasi-invariant expression, the QUID field points to an ob-
ject that encodes the quasi-invariant expression in such a

5



way that it can perform a guarded write to the struct. For
example, consider this update to current->uid:

current->uid = bar;

A guarded update of the current->uidwould be writ-
ten as:

if (current.QUID != NULL)
current.QUID->write_uid(bar);

else
current->uid = bar;

The update uid function writes the current->uid
field in any case, but also atomically adjusts any special-
ized components that depend on quasi-invariant expres-
sions that depend on this task struct.uid value.

This guarding code has the property that it very quickly
identifies struct instances that are not specialized, and
dispenses with further checking. However, if the struct
does contain quasi-invariant terms, it efficiently locates
the code necessary to evaluate the continued validity of
the quasi-invariant and invokes the checking code. The
guarding code is sufficiently simple that it can be packaged
inside a macro, so that the kernel programmer hardly need
know it’s there:

GW_uid(current, bar);

3.2.3 TypeGuard Prototype

We have constructed a tool called TypeGuard that does the
type-checking described above. The tool is based on the
SUIF compiler toolkit [36]. SUIF provides a basic frame-
work that parses C source code and stores it in a standard-
ized intermediate format that is used by each phase of the
compiler. We have used the SUIF library of functions for
manipulating this intermediate representation to process
the program as follows:

1. Locate all declared variables of the type we are con-
cerned with and build a list of their names.

2. Locate all writes to variables of those names.

3. Eliminate assignments to fields that we are not con-
cerned with.

4. Report the remaining statements as locations in the
program that need to be guarded.

TypeGuard currently only emits a list of locations in
the program that need to be guarded; it does not yet auto-
matically generate the guarding code. Future development
of TypeGuard will include a guard generator that actually
inserts the guard code rather than just indicating where
the guard code should be inserted. Automatic insertion
of guard code is relatively simple, but efficient insertion

of guard code requires some optimization, such as only
checking the quasi-invariant only once after a batch of ad-
jacent updates to quasi-invariant terms.

3.3 Runtime Guarding Through Virtual
Memory Protection

The guard locating technique described in Section 3.2 is
effective in most cases. However, it is critically depen-
dent on the type-safety of the of the kernel source code and
the compiler. Our specialization techniques are aimed at
real legacy operatingsystems, thus we need another guard-
placement technique to locate kernel statements that may
escape TypeGuard’s notice through one of C’s many type
checking holes.

The MemGuard tool is a library of functions that use
virtual memory page protection to locate additional kernel
operations that require guarding. The basic notion is to set
the virtual memory page protection bits of a page contain-
ing a quasi-invariant term to read-only, in order to trap at-
tempts to change the quasi-invariant value and report them
as errors. Writes to other values on the same page that are
not recorded as quasi-invariant terms are simply written by
the MemGuard trap handler without generating a trap.

Clearly the performance penalty for writing to a page
via a trap handler is too high for MemGuard to participate
in a performance-oriented system, and that is not Mem-
Guard’s purpose. Rather, MemGuard is provided as a de-
bugging and development tool for the specialization ker-
nel programmer. The kernel programmer enables Mem-
Guard’s protection capabilities, runs the system through
a test suite, and then examines the log of quasi-invariant
violations produced by MemGuard. The kernel program-
mer then inserts guards at the locations indicated by Mem-
Guard, and iterates the process until the kernel passes the
test suite without complaint from MemGuard.

Figure 1 shows the API provided by the MemGuard li-
brary. Section 3.3.1 describes some of the implementation
details of MemGuard. Section 3.4.1 describes usage of the
MemGuard library.

3.3.1 MemGuard Implementation

When MemGuard is asked to guard a quasi-invariant term,
the first task is to turn off write-permissions for that page
in virtual memory. In some architecture/OS combinations,
such as the HP-UX operating system on the HP-PA archi-
tecture [6], we were able to locate protection bits in the
virtual memory hardware that were not used by the oper-
ating system. However, this is not always possible, and
so MemGuard must allocate a page descriptor for each
page containing quasi-invariant terms; the page descriptor
records whether that page was writable or not apart from
the protection imposed by MemGuard.

6



Enable()/Disable() Enable and disable the Mem-
Guard facility. This is useful to focus debugging on
a particular section of the kernel.

Protect(addr, size) Make the data at virtual ad-
dress addr of size size a quasi-invariant term, i.e.
complain if it is written to.

Release(addr) Remove MemGuard protection from
the quasi-invariant term at virtual address addr.

Write(addr, size) Write a new value into the
quasi-invariant term at address addr of size size.
It is an error if size does not match the size of
the quasi-invariant term when it was originally pro-
tected. Write is used to perform the guarded writes
required by TypeGuard. Write changes the quasi-
invariant term’s value without complaining.

Figure 1: The MemGuard API

Once the page is protected, all writes to that page will
trap to the MemGuard trap handler. Only a small frac-
tion of the writes will be to quasi-invariant terms, the oth-
ers will be to various kernel data structures that happen
to share the page.� Thus the page descriptor must also
contain a list of the quasi-invariant terms on the page so
that writes to the page can be differentiated between writes
to quasi-invariant terms (which log error messages) and
writes to neighboring kernel data structures (which pro-
ceed normally).

The cost of writing to non-protected data structures
residing on protected pages is, in part, determined by
how quickly the MemGuard trap handler can distinguish
between quasi-invariant terms and the neighboring data
structures: much of MemGuard’s overhead results from
this kind of false sharing.

Some regions of memory, such as the kernel’s statically
allocated data structures, are sufficiently dense that the
page descriptors can be laid out in a linear array indexed by
the address of the faulting page. This approach is not prac-
tical in general, because a 32-bit address space with 8 KB
pages results in 524,288 pages. 64-bit machines, such as
the HP-PA [6] and the DEC Alpha [30] further aggravate
this problem. Thus MemGuard must resort either to hi-
erarchical data structures [28], or explicitly allocated and
managed memory regions [31] that are sub-indexed lin-
early.

�Unfortunately, it is not possible to move a quasi-invariant term to a
separate page without inducing consistency checking problems at least
as difficult as the guarding problem itself.

Operation Min Avg. Max

Normal write 0 2 1.9
MemGuard write 1624 1971 2434

Table 1: Overhead of MemGuard Writes, in machine cy-
cles

3.4 MemGuard Performance

The time in cycles required for MemGuard to perform var-
ious operations is compared to the time for a normal write
is presented in Table 1. These measurements were per-
formed on a 100 MHz Pentium PC. The actual overhead
of runningan operating system with MemGuard active de-
pends on the particular terms being guarded and the work-
load being measured. However, this overhead should only
be incurred by kernel developers during guard-placement
trials.

3.4.1 Using MemGuard

As mentioned above, MemGuard is intended to act pri-
marily as a debugging tool to the specialization kernel
programmer. The kernel programmer finds undetected
updates to quasi-invariant terms by exercising the kernel
with a test suite and using MemGuard to detect the writes
to quasi-invariant terms. The thoroughness of the guard
coverage is a function of the degree to which the test suite
exercises the kernel. Access to the OS vendor’s test suite
enhances MemGuard’s utility.

3.5 Replugger: Dynamic Re-Specialization

When a quasi-invariant expression is violated, then the
system must adapt itself to the new circumstance without
relying on the quasi-invariant. When a guard detects that a
quasi-invariant has been violated, it invokes a specialized
version-management component, described in [10]. The
most common action to be taken by the version-manager
is to replace the dependent specialized components with
other, differently specialized components, or with generic
components. This replacement is called replugging, and
requires fast, safe, concurrent dynamic linking.

The challenge is to facilitate very low latency execu-
tion of a function via an indirect function pointer while
concurrently allowing the pointer to be changed. Locks
are a logical choice, but locks may substantially degrade
performance. In [9], we describe a portable algorithm
that supports low-latency invocation of replaceable func-
tions while allowing concurrent update of pointers to those
functions.

The need for sophisticated replugging is a function of
the kernel and the hardware. Table 2 shows the kinds of

7



Hardware
Kernel Uniprocessor Multiprocessor

Single-threaded function simple
pointer replugger

Multi-threaded simple counting
replugger replugger

Table 2: Replugging Needs as a Function of Kernel and
Processor Architectures

replugging systems needed for various combinations. The
definition of the terms is as follows:

uniprocessor, multiprocessor One CPU vs. multiple
CPU’s in a shared-memory multiprocessor.

single-threaded, multi-threaded : Whether or not more
than one thread from a single process can be concur-
rently executing a system call, an important distinc-
tion when system calls can block inside the kernel.

function pointer No replugging techniques required,
since the kernel is a giant mutex over the whole
machine. Thus a function pointer suffices, without
additional concurrency control requirements.

simple replugger An asymmetric concurrency control
mechanism, as described in [9]. This concurrency
control mechanism allows fast invocation of the re-
placeable function, and somewhat slower replace-
ment of the function.

counting replugger An enhancement to the simple re-
plugger that counts the number of threads executing
the specialized code. Making such a counting replug-
ger concurrent-safe requires an atomic increment of
some kind.

The experiments described in [26] were performed us-
ing HP-UX 9.04 (which is single-threaded) on an HP9000
S800 dual processor, and thus we implemented the sim-
ple replugger. The experiments described in section 4
of this paper were performed using Linux 2.0 on various
single-processor Pentium PCs, and thus only simple func-
tion pointers were used.

4 Experiments

This section presents the results of some experiments that
evaluate the effectiveness of our specialization toolkit in
broad areas of operating system specialization.

We would have preferred to be able to perform a di-
rect comparison between previous hand-specialized re-

sults and our tool-assisted specialization of the same sys-
tems. Unfortunately, this was not possible for a num-
ber of reasons. First, our specialization tools require the
system code to be written in ANSI C, but the subject of
the previous specialization experiments, HP/UX, is writ-
ten in K & R C. This was a major factor in our choice of
the Linux system for evaluating the toolkit. Second, we
could have repeated the hand-specialization experiments
on Linux, and compared them to the same specializations
done via the toolkit. Unfortunately, the portionsof the sys-
tem that were addressed in previous experiments have al-
ready been hand-specialized in the Linux system. Com-
ments from the developers who did this specialization [17]
bear out our claim that doing such specialization by hand
is difficult and obfuscates the system.

The rest of this section describe our experiences with
using the tools to specialize three disparate system com-
ponents: kernel signal delivery, RPC and memory alloca-
tion.

4.1 Signal Delivery

A common source for specialization opportunities comes
from transient “connections” between entities in the sys-
tem. These connections can be explicit, as when a process
opens a file to build a connection between the process and
the file, or they can be implicit, as when a group of pro-
cesses repeatedly communicate to achieve some common
goal. In any case, the transient connection between enti-
ties produces quasi-invariants describing the relationship
between the entities.

In previous file system specialization experiments [20,
26], the connection was between a process and a file, and
the quasi-invariants related to things such as the location
of the file, and whether the file was shared. In this exper-
iment, the connection is between two processes A and B,
where A is repeatedly sending UNIX signals to B. We
treat the target and destination processes and their rele-
vant properties as quasi-invariant, and specialize the sig-
nal delivery mechanism accordingly, using the Tempo par-
tial evaluation compiler augmented with some human as-
sistance.

4.1.1 Specializing Signal Delivery

Figure 2 shows the structure of the kill system
call. Each of the functions sys kill, kill proc,
send sig, and generate do some error checking and
interpretation on the signal and whether the sender has
the right to send it to the target. In addition, kill proc
searches the process table for the process with the speci-
fied pid. The source code for these functions is shown
in Figure 3.

Specialization proceeded in two steps. The first was

8



sys_kill(int pid, int sig)

kill_proc(int pid, int sig)

pid, sig

generate(int sig, task_struct * p)

task_struct *, sig

task_struct *, sig

send_sig(int sig, task_struct * p)

Figure 2: Linux kill System Call Architecture

to introduce a caching mechanism that would record the
previous target process and signal, and re-use this pointer
if a new kill system call is invoked with the same
target pid and sig values. The caching mechanism
consisted of a task struct * last sig to field
in the task struct structure, and an if statement in
kill proc right ahead of the search of the process table.

The caching mechanism was introduced by hand.
While partial evaluation is a powerful technique, it cannot
invent data structures and algorithms. In principle, the
process table search could be partially evaluated with
respect to the pid being searched for. Unfortunately,
the current state of partial evaluation technology would
require constructing a static process table to search, which
is a long and difficult process. The caching mechanism
took about 10 minutes to write.

The second step was partial evaluation of the code.
The generic kill source code shown in Figure 3 from
kill proc onward was compiled by Tempo, along with
the specification that the following values and fields are
static:

� the sig and pid parameters

� the current pointer, which points to the currently
executing process

� thelast sig andlast sig to cache fields in the
task struct structure

� the task struct.pid,
task struct.session, task struct.euid
and task struct.uid fields in the
task struct structure

The result is a specialized kill proc procedure called
kp usr1, as shown in Figure 4. Tempo has reduced 90
lines in three functions to a single function of 40 lines,
largely by eliminating redundant tests on quasi-invariant
properties such as the euid value of the target and desti-
nation processes.

asmlinkage int sys_kill (int pid, int sig)
{
int err, retval = 0, count = 0;

if (!pid)
return (kill_pg (current->pgrp, sig, 0));

if (pid == -1) {
struct task_struct *p;
for_each_task (p) {
if (p->pid > 1 && p != current) {
++count;
if ((err = send_sig (sig, p, 0)) != -EPERM)
retval = err;

}
}
return (count ? retval : -ESRCH);

}
if (pid < 0)
return (kill_pg (-pid, sig, 0));

/* Normal kill */
return (kill_proc (pid, sig, 0));

}

int kill_proc (int pid, int sig, int priv)
{
struct task_struct *p;

if (sig < 0 || sig > 32)
return -EINVAL;

for_each_task (p) {
if (p && p->pid == pid) {
return send_sig (sig, p, priv);

}
}
return (-ESRCH);

}

int send_sig (unsigned long sig, struct task_struct *p, int priv)
{
if (!p || sig > 32)
return -EINVAL;

if (!priv && ((sig != SIGCONT) || (current->session != p->session)) &&
(current->euid ˆ p->euid) && (current->euid ˆ p->uid) &&
(current->uid ˆ p->euid) && (current->uid ˆ p->uid) &&
!suser ())

return -EPERM;
if (!sig)
return 0;

/* Forget it if the process is already zombie’d. */
if (!p->sig)
return 0;

if ((sig == SIGKILL) || (sig == SIGCONT)) {
if (p->state == TASK_STOPPED)
wake_up_process (p);

p->exit_code = 0;
p->signal &= ˜((1 << (SIGSTOP - 1)) | (1 << (SIGTSTP - 1)) |

(1 << (SIGTTIN - 1)) | (1 << (SIGTTOU - 1)));
}
if (sig == SIGSTOP || sig == SIGTSTP || sig == SIGTTIN || sig == SIGTTOU)
p->signal &= ˜(1 << (SIGCONT - 1));

/* Actually generate the signal */
generate (sig, p);
return 0;

}

static inline void generate (unsigned long sig, struct task_struct *p)
{
unsigned long mask = 1 << (sig - 1);
struct sigaction *sa = sig + p->sig->action - 1;

/* Optimize away the signal, if it’s a signal that can
* be handled immediately (ie non-blocked and untraced)
* and that is ignored (either explicitly or by default) */

if (!(mask & p->blocked) && !(p->flags & PF_PTRACED)) {
/* don’t bother with ignored signals (but SIGCHLD is special) */
if (sa->sa_handler == SIG_IGN && sig != SIGCHLD)
return;

/* some signals are ignored by default.. (but SIGCONT already did its
deed) */

if ((sa->sa_handler == SIG_DFL) &&
(sig == SIGCONT || sig == SIGCHLD || sig == SIGWINCH || sig == SIGURG))
return;

}
p->signal |= mask;
if (p->state == TASK_INTERRUPTIBLE && (p->signal & ˜p->blocked))
wake_up_process (p);

}

Figure 3: Linux kill System Call Source Code

4.1.2 Signal Specialization Performance

The basic performance impact of signal specialization is
shown in Table 3, which compares the latency of sending
SIGUSR1 from a process to itself. Time is reported in �-

9



int kp_usr1 ()
{
struct task_struct *p;

{
int suif_tmp12send_sig_2_1;
int suif_tmp11send_sig_2_1;

suif_tmp11send_sig_2_1 = 0;
suif_tmp12send_sig_2_1 = suif_tmp11send_sig_2_1;
if (suif_tmp12send_sig_2_1) {
send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2 = -1;
goto pprocfin0;

}
if (((*(*current).last_sig_to).sig != (void *) 0) == 0) {
send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2 = 0;
goto pprocfin0;

}
{
struct sigaction *sa;
unsigned int *suif_tmp2;

sa = (struct sigaction *) ((char *)
(*(*(*current).last_sig_to).sig).action + 160) - 1;

suif_tmp2 = &(*(*current).last_sig_to).signal;
*suif_tmp2 = *suif_tmp2 | 512;
if ((*(*current).last_sig_to).state == 1 &&

((*(*current).last_sig_to).signal &
˜(*(*current).last_sig_to).blocked) != 0u)

wake_up_process ((*current).last_sig_to);

}
send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2 = 0;

pprocfin0: ;
}
return send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2;

}

Figure 4: Specialized kill System Call Source Code:
kill proc, send sig, and generate Folded and
Specialized

Kernel Latency (�-seconds)

Standard 44.1
Specialized 15.3

Table 3: Signal Latency: Speedup Due to Specialization

seconds, averaged over four executions of a program that
does 100,000 signals. The cost of signalling is a function
of the number of processes in the system: in this case, one
user was logged in, running an X11 server and three xterm
programs and associated shells, and a few other X11 appli-
cations running, for a total of 62 processes. Under these
(arguably typical) conditions, specialization improved the
total latency of signal delivery by 2.87, or 187%.

Total signal latency is composed of several factors, and
we did additional experiments to separate those factors
out. All of our specialization occurred in the kill system
call implementation, and did not affect the scheduler, or
the signal handler invocation mechanism. Sending a sig-
nal of 0 has the semantics of not invoking any signal han-
dler at all, and so we measured the total latency of send-
ing a signal of 0 to isolate the impact on the kill system
call, as shown in Table 4. Specialization has improved the
speed of thekill system call by 14.75, or 1,375%. A sys-
tem call that used to involve approximately 30 �-seconds
of work has been reduced to the null system call.

Kernel Latency (�-seconds)

Standard 29.5
Specialized 2.0

Table 4: Signal 0 Latency (no handler invocation):
Speedup Due to Specialization

Kernel Latency (�-seconds)

Standard 16.7
Specialized 13.8

Table 5: Single User Mode Signal Latency: Speedup Due
to Specialization

The work in the kill system call consists of searching
the process table, and interpreting the state of the parame-
ters and the processes to detect errors and special cases.
To minimize the time spent searching the process table,
and to minimize other noise from these experiments, we
re-ran these experiments in single-user mode, as shown in
Table 5. The size of the process table clearly has a major
impact on the cost of the kill system call, but specializa-
tion has still improved performance by 1.21, or 21%.

4.2 Application-level Impact

Finally, one might wonder what kind of application would
actually care about the performance of repeated sig-
nals. Our original intuition was that signals are used be-
tween processes to communicate asynchronous informa-
tion, such as the arrival of a video frame in a buffer [5].

However, this technique is also used to implement more
general services: Xavier Leroy’s POSIX Threads imple-
mentation for Linux [19] uses signals extensively for inter-
thread synchronization. Linux threads are somewhat un-
usual, in that they use kernel level processes with shared
address spaces, rather than threads within a single process,
much like Plan 9 [25] variable-weight processes. Signals
are used to communicate between these processes in the
thread library.

Table 6 shows the impact of signal specialization on a
test program using this thread library. The test program is
an implementation of the classic producer-consumer prob-
lem, using thread mutex’s for synchronization. The test
does 100,000 producer-consumer iterations, with a buffer
size of four items. Table 6 shows that not only has signal
specialization improved average performance by 2.11 or
111%, but it has also substantially reduced the variance in
the program run time. Single-user mode tests of this pro-
gram eliminate the variance in both programs, and yield a

10



Experiment Run time in seconds
Kernel 1 2 3 4 Avg

Standard 8.26 13.82 9.35 16.05 11.87
Specialized 6.55 5.07 5.78 5.00 5.60

Table 6: Thread Mutex Performance for Four Runs

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

Figure 5: ANSI-C Malloc interface

3% benefit for specialization. The small performance gain
under these extreme circumstances is expected, but further
study is required to find the source of the variance in per-
formance in the multi-user mode.

4.3 Memory Allocation

Dynamic memory allocation is another example where
generalized system facilities fail to capitalize on regular-
ity present in real program behaviors. The standard malloc
interface is shown in Figure 5. While generic and concise,
this interface hides from allocator implementations details
that can be used to improve performance.

There are several dimensions to memory allocator per-
formance: latency, fragmentation, and locality. The need
to dynamically allocate memory is virtuallyubiquitous, so
the latency of allocator operations should be minimized.
Programmers are quick to code around the allocator if they
perceive latency to be unacceptable.

Fragmentation is a measure of how efficient an allocator
utilizes of memory. Fragmentation and allocator latency
necessarily trade-off against each other. Many studies em-
phasize that maximizing the allocator’s capacity to avoid
fragmentation should be the primary design objective [35].

Latency and fragmentation have traditionally been
identified as the key performance dimensions for malloc,
while locality effects are often overlooked. There are rea-
sons to believe that existing allocators have design traits
that cause them to negatively affect the client program’s
locality of reference.

Internally, allocators commonly employ performance
enhancing heuristics, such as boundary tags, that disregard
the penalty of polluting the data cache [16]. A boundary
tag is a technique that reduces the space overhead of the
allocator by placing bookkeeping data inside currently un-
used memory blocks. This can produce near pathologi-
cal reference patterns when the allocator does bookkeep-

Vmalloc_t* vmopen(Vmdisc_t* disc,
Vmethod_t* meth, int flags);

int vmclose(Vmalloc_t*);
int vmclear(Vmalloc_t*);
int vmcompact(Vmalloc_t* region);
int vmset(Vmalloc_t* region, int flags,

int type);
Void_t* vmalloc(Vmalloc_t* region,

size_t size);
Void_t* vmalign(Vmalloc_t* region,

size_t size, size_t align);
Void_t* vmresize(Vmalloc_t* region, Void_t* addr,

size_t size, int type);
int vmfree(Vmalloc_t* region, Void_t* addr);

Figure 6: Vmalloc interface

ing operations.
As the memory allocator has control over where heap

data is placed, it follows that the memory allocator has di-
rect influence on the memory reference pattern generated
by the client program. Poor placement policy can cause
the client to incur more memory penalties than otherwise
necessary. Recent work in memory allocation suggests
that specializing allocators to real program behavior is im-
perative in addressing all dimensions of allocator perfor-
mance [4, 2, 15, 32, 35].

4.3.1 Vmalloc: Towards Specialized Allocation

Vmalloc is an allocator that extends the standard mal-
loc interface with the notion of memory regions, each
of which has an associated discipline for obtaining new
memory and a method for managing it [32]. Figure 6 con-
tains a portion of the Vmalloc interface. By providingvar-
ious different disciplinesand methods, Vmalloc allows ap-
plication programmers an ability to tailor memory alloca-
tion to their needs.

Many of the specialization strategies proposed for mal-
loc can be mimicked easily with Vmalloc because of the
flexibility of its interface. Vmalloc’s general purpose allo-
cator is based on a best-fit method which combines use of a
splay tree data structure and several performance improv-
ing heuristics. Performance of Vmalloc’s best-fit allocator
is competitive with the best of several popular malloc im-
plementations [32].

Vmalloc provides a transitionpath to specializing mem-
ory allocation of legacy programs. A set of stubs is pro-
vided that allows the standard malloc calls to be redirected
to Vmalloc. Once Vmalloc is in place, the program can be
migrated in pieces to make use of Vmalloc’s more special-
ized methods.

11



4.3.2 Specializing Opportunities in Vmalloc

Our initial decision to investigate memory allocation
as a specialization candidate was that the size argu-
ment to malloc is very often static; calls of the form
malloc(sizeof(...)) are commonplace. Our ob-
jective is for Tempo to specialize Vmalloc’s best-fit allo-
cator based on the quasi-invariant resulting from a static
size.

The best-fit allocator contains three distinct strategies
corresponding to tiny, small, and large objects respec-
tively. Small objects are the simplest case. They can be
handled by indexing to one of a fixed number of linked
lists. Tiny objects are handled in a similar way, but require
additional work because bookkeeping data that Vmalloc
normally stores in the free objects will not fit. Large ob-
jects use a linked list to implement some caching of re-
cently freed objects, but falls back to a splay tree when
necessary. The splay tree is very effective for dealing with
bad allocation patterns, but nevertheless imposes much
more overhead in cases where a link list would do. Vmal-
loc employs several heuristics aimed precisely at avoiding
the splay tree. By specializing for static size arguments,
we can remove the initial interpretation and directly exe-
cute the appropriate strategy. For the small objects, this
leads to code similar in spirit of the synthesized allocators
produced by CustoMalloc [15].

The region abstraction provided by Vmalloc is yet an-
other example of binding a “connection” between system
entities. This binding allows Vmalloc to provide special-
ized services, but it imposes the familiar interpretation
overhead and associated indirections through region data
structures. The number of actual regions used by a pro-
gram would start at one and progress to some relatively
small number.

The region parameter given to each Vmalloc operation
is dynamic, but once determined it is likely invariant for
the lifetime of the program. For our experiment, we con-
centrate on the core operation of the general purpose al-
locator, the bestalloc() operation provided by the
best-fit method. We specialize bestalloc() with re-
spect to the default region; that is, the region associated
with the standard malloc stubs. The goal is to convert
all calls to malloc into calls to this specialized version of
bestalloc.

By identifying the region and size parameters as quasi-
invariant, we use Tempo remove a great deal of the latency
in the Vmalloc bestalloc operation. We note that, as
with caching introduced in the signal experiment, tech-
niques for improving the other performance dimensions of
memory allocation require higher level algorithmic spe-
cializations than partial evaluation provides. Vmalloc pro-
vides a framework for addressing the other dimensions,
while the application of Tempo to Vmalloc removes much

of the additional latency that would otherwise accompany
Vmalloc’s flexibility.

4.3.3 Vmalloc Specialization Performance

For our experiment we use a set of benchmark applications
provided by Benjamin Zorn’s memory allocation reposi-
tory [37]. The benchmarks are run to measure four sce-
narios.

The first scenario, LIBC, uses standard malloc imple-
mentation provided in the Linux libc library. The second,
VMALLOC, uses the unmodified Vmalloc via the mal-
loc compatibility stubs. The remaining scenarios, which
we call SynthoVmalloc1 and SynthoVmalloc2, measure
two alternative approaches to deploying Tempo special-
ized Vmalloc. The two specialized Vmallocs are distin-
guished by whether the original programs are recompiled.

In SynthoVmalloc1, we are interested in measuring the
feasibility of linking against a shared library version of
SynthoVmalloc. Invoking a function in a shared library
has overhead, but saves system space. The overhead will
negate some of the advantages gained through specializa-
tion but we have still converted multiple interpretations
into one up-front dispatch. This can be thought as a time-
space tradeoff where interpretation time has been traded
for cost of replication of code space. If code blowup be-
comes problematic, this technique might prove useful.

SynthoVmalloc2 aims for maximum specialization.
Client code is recompiled, so that fully static invocations
can make use of inlining.
Note to program committee: a bug

in one of our tools prevents us
from correctly parsing the vmalloc
source code. This bug is unrelated to
performance, and thus will not affect
the results reported elsewhere in
this paper. We are very confident
that we can fix this bug by the
final paper deadline, and expect
performance results similar to our
other experiments.

4.3.4 Further Experiments

We are interested in pursuing the locality dimension of
allocator performance, but we need new profiling tools.
Current profiling tools do not measure locality effects. We
plan to make use of Pentium hardware features which al-
low measurement of several kinds of cache event. The
same specializations above on size and region will be used
in conjunction with the specialized methods of Vmalloc to
improve locality. For example, we can identify important
common large object sizes and allocate them from using
Vmalloc’s pool method. Aside from decreased memory

12



overhead this affords, [4] shows how common initializa-
tions can be avoided to improve locality.

4.4 RPC Specialization

The specialization of Sun RPC (proposed in [34]) was
the first successful application of systems code using par-
tial evaluation, in particular the Tempo program special-
izer [8] (summarized in Section 3.1). Since the RPC
experiment is being reported in another submission to
SOSP’97 (Automatic Specialization of Sun RPC Using a
Partial Evaluator, by anonymous authors), we only out-
line the main results here.

The RPC experiment applied the Tempo program spe-
cializer to post process the client stub code produced by
Sun rpcgen stub generator. Their main idea is to take
advantage of the values declared at RPC initialization time
that remain constant through the execution of subsequent
RPC calls. Examples of these static values include the
choice of underlying protocol (e.g., UDP), plus the num-
ber and type of RPC parameters. Tempo takes the static
parameters, and specializes the client stub, producing per-
formance gains of between 2 to 3.5 times speedup in RPC
microbenchmarks and between 13% and 22% speedup for
an application program using RPC to send and receive in-
tegers of an array.

From the specialization toolkit point of view, the RPC
experiment is notable since the Sun RPC is commercial,
mature code. Two advantages follow from the application
of Tempo to commercial code. First, by preserving the
original source code, Tempo preserves the system main-
tainabilityand safety for the programmer. Second, the suc-
cessful use of Tempo to representative commercial system
shows the promise of applying Tempo to other industrial
strength operating systems code.

5 Related Specialization Tools

This section describes some related work developing tools
for specialization. Some of the tools described were actu-
ally designed for specialization, such as the C-Mix [1] par-
tial evaluation compiler. Others are general-purpose soft-
ware engineering tools that just happen to be useful for
specialization, such as the Lackwit C analysis tool.

5.1 C-Mix Partial Evaluation Compiler

C-Mix [1] is the only other partial evaluator for C pro-
grams besides Tempo. Like Tempo, C-Mix can partially
evaluate C programs, do inter-procedural analysis, and
deal with complex data structures and side-effects. How-
ever, it was not specifically designed to deal with systems
code, and thus its analysis is not as precise as Tempo’s. In

particular, C-Mix is point insensitive, which means that a
variable is considered dynamic as soon as it is dynamic in
any part of the program, including exception handling. C-
Mix is also more consumptive of code space, because it
eagerly replicates code to avoid problems in binding-time
analysis.

5.2 Lackwit C Program Understanding
Tool

Lackwit [22] is a program understanding tool for C based
on type inference. Lackwit discards C’s type system as
too weak to be useful, and instead infers its own dynamic
types for values based on the set of operations the value
participates in, derived from a conservative data flow anal-
ysis of the program. Thus Lackwit can construct rather
interesting types, e.g. the type of pointers that are allo-
cated and freed, as distinct from the type of pointers that
are allocated but not freed. This kind of analysis could be
very useful in placing guards for quasi-invariants in sys-
tem code, similar to TypeGuard. Lackwit performs more
precise analysis than TypeGuard, but at the expense of us-
ing an algorithm that is NP-hard in the worst case.

5.3 OMOS Dynamic Linking Tool

The Utah Flex project developed OMOS [23], an
object/meta-object server that allows the dynamic linking
of executable modules. OMOS provides for the dynamic
instantiation of executable modules, and wraps them in an
object-oriented package, even if they were not written in
an object-oriented language. OMOS provides consider-
ably more functionality than our replugger, including the
ability to specify which module should be loaded using
certain code properties, such as whether it is in memory,
or has been linked to sit at a particular address range.
Thus OMOS encompasses some of the functionality of
our quasi-invariant guards, but does the checking only at
load time.

6 Experiences and Discussion

This section summarizes our experiences with tool-based
specialization, beyond the performance improvements de-
scribed in Section 4, and highlights some ideas for future
research. The discussion ranges from comments on the
status and effectiveness of specific tools to more general
statements about the fundamental obstacles to the wide-
spread propagation of tool-based specialization.

6.1 Experiences with Specialization Tools

Not surprisingly, we found out that operating systems C
code is not an easy target for partial evaluation tools. We

13



discovered that despite Tempo’s state of the art binding
time analysis (BTA), we still had to find work arounds
to help it optimizing certain code paths containing point-
ers. For example, it does not currently handle assertions
about fields of structs accessed via pointers unless a con-
crete instance of the struct is provided. Such examples are
common in operating system code. Two approaches seem
promising in addressing this problem.

First, instead of trying to make BTA more sophisti-
cated in handling the obscure situations caused by point-
ers, frequently we found it more appealing to improve
obscure code. This indicates the desirability of semanti-
cally cleaner programming languages, such as Java, ML
or Modula-3, for building specialization-friendly operat-
ing systems. In particular, the use of Java for implement-
ing JavaOS has already shown some interesting optimiza-
tion opportunities, such as copy-elimination [21].

A second solution to the problem of analyzing point-
ers is to make the various stages of compilation explicit in
the original code. We have begun investigation into how
such staging should be expressed, using an object-oriented
paradigm [10, 33]. Other examples related to this kind of
approach are the use of an explicit eval function in func-
tional programming and the ’C (tick C) approach [11].

6.2 Experiences with Guarding Tools

The correctness and performance of a system containing
specialized code depend on the correctness and perfor-
mance of the guarding tools. There are interesting correct-
ness and performance trade-offs for each of the guarding
tools proposed in this paper.

MemGuard is guaranteed to catch all write accesses to
guarded locations. However, this degree of correctness
comes at the expense of high overhead for page protection
fault and single-step trap handling. Performance could be
improved somewhat by reducing the number of unneces-
sary page protection faults due to false sharing by laying
out data such that guarded locations are allocated on their
own private pages, or by employing hardware techniques,
such as Liedtke’s fine-grained page tables. The overhead
of single-step trap handling could also be avoided by sim-
ulating the completion of the faulting write instruction, but
at the expense of significantly increased complexity in the
tool.

Instead of guarding accesses to quasi-invariant terms
at run time, TypeGuard attempts to identify all writes to
fields of structs of a certain type at compile-time. How-
ever, types that are frequently used but rarely specialized
can impose a more guarding overhead than benefit gained
from specialization. TypeGuard’s coverage is limited by
the type safety of the particular program being analyzed:
arithmetic on variables of type void * make all type
analysis irrelevant. In a type-safe language such as Java,

the TypeGuard approach will be able to catch all such
writes.

Manual specialization is a potential source for intro-
ducing bugs into systems. In contrast, tool-based spe-
cialization has the potential to ease the software com-
plexity problem pointed out by the industry panel at
OSDI’96. Code that has been hand-specialized for perfor-
mance tends to be more complex and difficult to maintain,
aggravating the cost of OS development. Generic code,
which is correct but not specialized for various circum-
stances, is relatively simple and easy to maintain. Auto-
matic program specializers have the potential to transform
such generic code into specialized code, combining most
of the performance of hand-tuned code with the maintain-
ability of generic code.

6.3 Summary and Future Work

Overall, we observed significant leverage in managing the
specialized code. Specialization by hand would have re-
quired either multiple versions of the source, or a lot of
conditional compilation. With Tempo, the original code
remained mostly untouched. For instance, once the ini-
tial problems of partially evaluating the signal code were
solved, dozens of specialized versions of the kill system
call implementation followed in just a few minutes. We
expect the Tempo-produced specialized code to be much
more amenable to later examination than would be the
case for a hand specialized version.

The tools presented in this paper aid in the produc-
tion of specialized code paths and in guarding them. An-
other important problem is how to identify good opportu-
nities for specialization. In all our experiments to date, we
have identified them by hand, using expert knowledge and
heuristics to determine whether they wouldbe good oppor-
tunities for specialization.

It would be useful to have tools to identify hot spots
in operating systems, distill quasi-invariants of such hot
spots, and evaluate the feasibility of a given specialization
strategy. There are many difficult specialization policy is-
sues to solve such as whether a particular specialization
is worthwhile given a particular guarding strategy, which
specialized versions to generate ahead of time, which ones
to cache, and what policies to use for managing such a
cache.

Our experience shows the definite usefulness of our first
generation specialization tools. We are in the process of
developing more tools to increase the degree of automa-
tion of the specialization process.

14



7 Conclusions

Even though specializing operating systems has been
demonstrated to have the potential of significant perfor-
mance improvements, experience with specialization has
been limited to only a part of the research community.
This paper described a toolkit that should enable special-
ization to be used by more operating systems developers,
both research and commercial. We have evaluated the ef-
fectiveness of the toolkit by using the tools to success-
fully specialize a broader range of operating system com-
ponents than has previously been possible. The resulting
components performed significantly better than their un-
specialized versions, as we had hoped.

Furthermore, we found that automated specialization
combined with tool-assisted guarding provides the added
benefit of improving the maintainability of optimized
code, by obviating significant changes to the original
source. In this regard, successful experiments with pro-
duction operating system code demonstrate the potential
value of the toolkit beyond the research community.

Our experience with the toolkit has suggested areas for
further work, particularly the creation of tools that assist
developers identify useful opportunities for specialization.
Based the experiences reported in this paper, we see tool-
based specialization emerging as a key development tool
for efficient, adaptive and maintainable operating systems.

References
[1] L.O. Andersen. Binding-time Analysis and the Taming

of C Pointers. In Proceedings of ACM Symposium on
Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM’93), pages 47–58, Copenhagen, Denmark,
June 1993.

[2] David A. Barrett and Bejamin G. Zorn. Using lifetime pre-
dictors to improve memory allocation performance. In Pro-
ceedings of the 1993 SIGPLAN Conference on Program-
ming Language Design and Implementation, June 1993.

[3] Brian N. Bershad, Stefan Savage, Przemysław Pardyak,
Emin Gün Sirer, Marc Fiuczynski, David Becker, Susan
Eggers, and Craig Chambers. Extensibility, Safety and Per-
formance in the SPIN Operating System. In Symposium on
Operating Systems Principles (SOSP), Copper Mountain,
Colorado, December 1995.

[4] Jeff Bonwick. The slab allocator: An object-caching ker-
nel memory allocator. In USENIX Summer 1994 Technical
Conference, 1994.

[5] Authors anonymized for review. A Distributed Real-Time
MPEG Video Audio Player.

[6] Frederick W. Clegg, Gary Shiu-Fan Ho, Steven R. Kusmer,
and John R. Sontag. The HP-UX Operating System on HP
Precision Architecture Computers. Hewlett-Packard Jour-
nal, 37(12):4–22, December 1986.

[7] C. Consel and O. Danvy. Tutorial notes on partial evalu-
ation. In ACM Symposium on Principles of Programming
Languages, pages 493–501, 1993.

[8] Charles Consel and Francois Noël. A general approach to
run-time specialization and its application to C. In 23rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’96), St. Petersburgh
Beach, FL, January 1996.

[9] Authors anonymized for review. Fast Concurrent Dynamic
Linking for an Adaptive Operating System.

[10] Authors anonymized for review. Specialization Classes:
An Object Framework for Specialization.

[11] Dawson R. Engler, Wilson C. Hsieh, and M. Frans
Kaashoek. ‘C: A Language for High-Level, Efficient,
and Machine-Independent Dynamic Code Generation.
In 23rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’96), St.
Petersburgh Beach, FL, January 1996.

[12] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole
Jr. Exokernel: An Operating System Architecture for
Application-level Resource Management. In Symposium
on Operating Systems Principles (SOSP), Copper Moun-
tain, Colorado, December 1995.

[13] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann,
Godmar Back, and Stephen Clawson. Microkernels Meet
Recursive Virtual Machines. In Symposium on Operating
Systems Design and Implementation (OSDI), pages 137–
151, October 1996.

[14] Bryan Ford and Sai Susarla. CPU Inheritance Schedul-
ing. In Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 91–105, October 1996.

[15] Dirk Grunwald and Benjamin Zorn. Customalloc: Effi-
cient synthesized memory allocators. Software—Practice
and Experience, 23(8):851–869, August 1993.

[16] Dirk Grunwald, Benjamin Zorn, and Robert Henderson.
Improving the cache locality of memory allocation. In Pro-
ceedings of the 1993 SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 177–
186, June 1993.

[17] Michael K. Johnson. The Linux Ker-
nel Hacker’s Guide: A Tour of the Linux
VFS. http://www.redhat.com:8080/
HyperNews/get/fs/vfstour.html, 1996.

[18] N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation
and Automatic Program Generation. International Series
in Computer Science. Prentice-Hall, June 1993.

[19] Xavier Leroy. The LinuxThreads li-
brary. http://pauillac.inria.fr/
˜xleroy/linuxthreads/, 1996.

[20] Authors anonymized for review. Threads and Input/Output
in the Synthesis Kernel.

[21] James G. Mitchell. JavaOS: Back To The Future. In Sym-
posium on Operating Systems Design and Implementation
(OSDI), page 1, October 1996. Invited talk.

15



[22] Robert O’Callahan and Daniel Jackson. Lackwit: A Pro-
gram Understanding Tool Based on Type Inference. In
Proceedings of International Conference on Software En-
gineering (ICSE’97), Boston, MA, May 1997.

[23] Doug Orr. OMOS - an object server for program execu-
tion. In Proc. International Workshop on Object-Oriented
Operating Systems, 1992.

[24] Przemyslaw Pardyak and Brian N. Bershad. Dynamic bind-
ing for an Extensible System. In Symposium on Operating
Systems Design and Implementation (OSDI), pages 201–
212, October 1996.

[25] Rob Pike, Dave Presotto, Ken Thompson, and Howard
Trickey. Plan 9 from Bell Labs. In Proceedingsof the Sum-
mer UKUUG Conference, pages 1–9, London, UK, July
1990.

[26] Authors anonymized for review. Optimistic Incremental
Specialization: Streamlining a Commercial Operating Sys-
tem.

[27] Authors anonymized for review. The Synthesis Kernel.

[28] William Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. Communications of the ACM, 33(6), June
1990.

[29] P. Sestoft and A. V. Zamulin. Annotated bibliography on
partial evaluation and mixed computation. In D. Bjørner,
A. P. Ershov, and N. D. Jones, editors, Partial Evaluation
and Mixed Computation. North-Holland, 1988.

[30] Richard L. Sites. Alpha AXP Architecture. Communica-
tions of the ACM, 36(2):33–44, February 1993.

[31] Avadis Tevanian, Jr. Architecture-Independent Virtual
Memory Manager for Parallel and Distributed Environ-
ments: The Mach Approach. PhD thesis, Carnegie Mellon
University, December 1987.

[32] Kiem-Phong Vo. Vmalloc: A general and efficient memory
allocator. Software—Practice and Experience, 26(3):357–
374, March 1996.

[33] Authors anonymized for review. Declarative Specializa-
tion of Object-Oriented Programs.

[34] Eugen-Nicolae Volanschi, Gilles Muller, and Charles Con-
sel. Safe Operating system Specialization: The RPC Case
Study. In Proceedings of the First Annual Workshop on
Compiler Support for SystemSoftware, Tuscon, AZ, Febru-
ary 1996.

[35] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and
David Boles. Dynamic storage allocation: A survey and
critical review. In 1995 International Workshop on Mem-
ory Management, LNCS. Springer Verlag, 1195.

[36] Robert P. Wilson, Robert S. French, Christopher S. Wilson,
Saman P. Amarasighe, Jennifer M Anderson, Steve K.K.
Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall,
Monica S. Lam, and John L. Hennessy. SUIF: An
Infrastructure for Research on Parallelizing and Opti-
mizing Compilers. http://suif.stanford.edu/
suif/suif-overview/suif.html.

[37] Benjamin Zorn. A collection of malloc benchmarks.
ftp://ftp.cs.colorado.edu/pub/misc/malloc-benchmarks/.

16


