
Reactive Functional Programming �

Richard B� Kieburtz

Oregon Graduate Institute of Science � Technology
P�O� Box ������ Portland� OR ��	��
���� USA

October ��� ����

Abstract

Reactive systems respond to concurrent� possibly unsynchronized streams of input events� Programming

reactive systems is challenging without language support for event�triggered actions� It is even more

challenging to reason about reactive systems� This paper explores a new conceptual basis for applying

functional programming techniques to the design and formal veri�cation of reactive systems� The

mathematical foundation for this approach is based upon signature coalgebras and derived proof rules

for coinduction� The concepts are illustrated with an example that has been used with the language

Esterel�

� Introduction

Reactive systems are characterized by sequences of history�determined reactions to external
events� It is known that a non�strict functional programming language can provide a suitable
linguistic vehicle for programming reactive systems because streams� modeling temporal se�
quences of values� can be represented� It is necessary to represent more than streams� however�
Current reactive programming languages� such as Esterel� Lustre and Statecharts provide im�
plicit or explicit representations of state� iterative control structures� and parallel threads of
activity� Use of these languages has advanced the state of the art of designing reactive systems�
however it is not easy to reason about their properties� For ease of reasoning� we should like to
have a sound programming logic that is expressive over the terms of the programming language�
A principal motivation for this research is to develop in tandem a programming notation well
suited to specifying reactive systems� and an associated programming logic�

The control structure needed for reactive programs is inherently iterative� not recursive�
The data of interest are in�nitary sequences or trees of states� representing the evolution of
systems that may never terminate� We have searched for an underlying mathematical structure
to model reactive systems� The structure we have found most useful is that of coalgebras� which
unfortunately� are not very well understood by most functional programmers�

�The research reported in this paper was supported by the USAF Materiel Command�

�

��� Mathematical models for programming

In the natural sciences and in related �elds of engineering� the importance of mathematical
models is well appreciated�

� Models abstract away confusing details and focus attention on fundamental concepts�

� They provide a theory in which to reason about properties of nature or complex engineered
systems�

� They make precise and quantitative the underlying relationships between directly and
indirectly observable phenomena and their controlling parameters�

� They provide structure to help engineers create reliable designs with predictable behavior�

Appropriate mathematical models for computations can serve the same useful functions that
they do in other sciences and engineering disciplines� But what models are most appropriate�

The models in common use in programming are cpo models of computational domains�
These allow us to calculate solutions to recursive equations� thought to be the universal foun�
dation of functional programming� However� these models don�t help much to abstract away
detail	they force us to encode it� The theory of cpo models is di
cult to apply	its logic is
based upon the principle of computational �or �xed�point� induction� Because of encodings�
the relationship of controlling parameters to observables is not always clear� although clarifying
this relationship is the main claim of functional programming� The structure that this theory
provides for the designer of programs is just function de�nitions written in terms of recursive
equations� It seems inadequate�

Our desire to have better mathematical models for programming has led us to seek less
universal� more detailed mathematical structures that may guide us to rely less on encodings
and more on compositional principles in designing programs� We believe we have found suitable
models in structure algebras and their duals� coalgebras� They are not universal but appear
to be adequate to model most classes of programs� with the exception of interpreters for pro�
gramming languages themselves� Interpreters for interesting languages require universal �i�e�
Turing complete� models of computation�

With the goals of our research set forth� we ask the reader�s patience in looking at an
unaccustomed way of formalizing functional programs� and invite herhis assessment of its
usefulness� Section � of the paper introduces the notation and concepts of programming with
coalgebras� Section � illustrates application of the concepts to solve a non�trivial example that
has previously appeared in the literature� and to verify some properties of the solution� Section
� presents conclusions�

��� Iterative functional programming

In the past few years� several researchers have observed that programming with bounded recur�
sion is algebraic in nature �Bir��� MFP��� Kie���� Some results of this body of research include
the discovery that recursion over typed data structures has a logical counterpart in structural
induction� that monads encapsulate e�ects in particular algebras� and that type�parametric

�

combinators can be embedded in a strict functional programming language to support this
style of program construction �KL���� There is a dual to algebraic programming and it is
useful in another style of functional programming� which is the topic of this paper�

Process�oriented programs are iterative� They are controlled by tests of their partial results�
driven by external events rather than by the interpretation of data� and are naturally modeled
by coalgebras� Because control is derived to meet external demand rather than induced by the
structure of arguments� a non�strict evaluation mechanism is needed� The rules of coinduction
induced by codatatypes are logical duals of the familiar rules of structural induction that are
induced by datatype de�nitions� Dual to the recursive structure of algebraic programs is the
iterative structure of coalgebraic programs� which can be made manifest by embedding a set
of type�parametric combinators in a non�strict programming language�

Examples of iterative algorithms are common� They include linear and tree�structured
searching� shift�reduce parsing� and both synchronous and asynchronous reactive systems� Be�
fore looking at examples� including proof rules� let�s introduce a formalism for expressing coal�
gebraic programs� The notation is used in DUALITY� which is a new functional language based
upon algebras and coalgebras as its fundamental computational structures� In this paper we
shall deal only with the coalgebraic part� An early version of this language has been imple�
mented and is described in a technical report �KL����

� Covarieties of coalgebras

A covariety is a class of coalgebras with a common signature� The archetypical example is the
covariety of stream coalgebras� whose signature is�

cosig Stream�a�ftype c� str�c � f�shd � a� �stl � cgg�

Here Stream is the name of the covariety and str is the name of its single sort� analogous to a
type constructor� Each Stream�coalgebra has a type parameter� a� a carrier type� c� and two
projectors identi�ed by the symbols �shd and �stl� The projectors are total functions whose
domain is the carrier and whose codomain is indicated by the typing given to each projector
identi�er in the signature� A signature of projectors can be thought of as a generalized record
declaration� Binding a type for the carrier and typed functions for the projectors de�nes a
speci�c coalgebra parameterized by the type variable� a�

Every covariety de�ned in this way contains a �nal coalgebra which is unique up to iso�
morphism� Call the carrier of the �nal Stream�coalgebra str�a� and call its projectors Shd and
Stl� The �nality condition asserts that given any coalgebra of the variety Stream� with bindings
fc �� t� �shd �� f� �stl �� gg� there is an assignment of the type parameter� a �� t�� and a
unique mapping� h � t � str�t��� which satis�es a homomorphism condition expressed by the
following pair of equations�

Stl � h � h � g

Shd � h � f

�

The signi�cance of the �nal coalgebra is that any Stream�coalgebra may be represented as an
in�nite sequence of values� Because of this property� it is often said that a stream is an in�nite
list� While that is certainly one way to encode a stream as data� it is by no means the only way�
If we accept that a stream is codata� then encoding it as data seems unnecessary� A codata
object is de�ned with methods for observing it� rather than with constructors for building its
representation�

Every stream is in�nite� that is� it is meaningful to iterate the projection operator Stl on
a stream arbitrarily many times� even though there is no way to witness the entire stream at
once� A stream provides a good model for an incrementally readable input �le� The projection
Shd yields the value of the �rst element of a stream� just as a get operation on an open �le
produces a value from it� The projection Stl yields the rest of a stream� but it is not manifested
until projections of it are taken� The situation is familiar in non�strict functional languages�

There are in�nitely many access paths to elements of a stream� A path is expressed by a
well�typed composition of the projectors Shd and Stl� i�e� Shd � Stl � � � � � Stl

� �z �

i times

� for i � ��

��� Generators of codata

We say that the carrier of a �nal coalgebra is a type of codata� meaning that data values can
be gotten from it by projection� Data and codata are distinguished by the type system of
DUALITY� When a sort of a covariety is used as a type constructor� it designates a type of
codata�

If T �a� is a covariety and t is a sort symbol of the signature T � a generator of sort t is a
function with a type c� t�a�� where the codomain can be recognized as a type of codata �� To
determine a generator� we must specify a coalgebra by naming a covariety� a type for the carrier
and bindings of functions for the projectors� Coalgebras are �rst�class objects of DUALITY�

Example ��� � Integer sequences
Declare a Stream coalgebra by�

coalgebra intseq
�
� Streamfc �� int� �shd �� id� �stl �� add�g

where add�
�
� �n� n� �� To obtain an expression of type str�int�� we can apply the DUALITY

combinator� gen�str �� to the coalgebra speci�cation� creating a generator for this type�

gen�str � intseq � int� str�int�

The combinator gen�str � is an instance of a higher�order combinator� gen� specialized to the sort
str of the covariety Stream� The higher�order combinators in DUALITY substitute for the re�
cursion operator found in conventional functional languages� The generator h

�
� gen�str � intseq

�Readers familiar with the notion of anamorphism �MFP��� may be tempted to identify generators with
anamorphisms� The analogy is false� in general� It would be valid in a computational domain of cpo�s� in which
the function space encompasses all functions de	neable by least 	xpoints� The models we consider are based
upon ordinary sets� not cpo�s� and the function spaces are comprised of partial functions� Moreover� they use
two kinds of domains� data
sets� and codata
computations��

�

is the unique map taking the coalgebra intseq to a �nal Stream coalgebra� The homomorphism
condition it satis�es is expressed by the pair of equations�

Shd � h � idint

Stl � h � h � add�

�

Other applications of Stream coalgebra generators de�ne pseudo�random number sequences�
sequences of unique identi�ers and other enumerated sets�

����� A proof rule for stream generators

All functional programmers are familiar with proof rules based upon induction� Somewhat
less familiar is the dual rule of coinduction� The possible observations of a codata object
are enumerable composites of a �nite basis of primitive witness functions� The coinduction
principle is that the �nitely observable properties of an object completely characterize it� even
if the object is not �nitary� An exposition of coinduction is given by Paulson �Pau����

To de�ne a proof rule for a stream of elements of type a� generated from a carrier of type t�
let P be a two�place� typed predicate symbol whose arguments range over t and a� respectively�
We prefer a two�place predicate because it can express the input�output relation of a function�
Coinduction extends the domain of the relation to in�nitary objects� A proof rule for a stream
of elements is�

x� � t
f � t� a

g � t� t� �x � t� P �x�� x�� P �x�� g x�

P �x�� x��� �P �x�� gen�str �fc �� t� �shd �� f� �stl �� gg x��

We have used a linear temporal operator� � �read as always�� as a quanti�er on the predicate
P in the consequent of the rule to express that the proposition P �x�� x� is asserted for every
element� x� of the generated stream�

��� Coalgebra homomorphisms de�ne iteration schemes

A compelling reason to consider coalgebras is that coalgebra homomorphisms� i�e� the structure�
preserving maps between coalgebras of a given covariety� conform directly to an iteration scheme
for computation� Thus coalgebras a�ord a mechanism to prescribe speci�c control structure for
a computation and to communicate this structure to program analysis and translation software�

For the covariety Stream� the related iteration scheme is linear search� For more complex
covarieties� the iteration schemes are more specialized� including algorithm schemes such as
binary search and shift�reduce parsing�

A coalgebra homomorphism is composed of two parts� a coalgebra speci�cation� such as
intseq in Example ���� and a control that selects among the projectors of the coalgebra� The

�

body of a control has the form of a conditional or a case expression� A control and a coalgebra
speci�cation are combined by an DUALITY combinator� cohom� suitably specialized to a sort of
the covariety� This forms a limit of the speci�ed coalgebra� determined by the control� It is� of
course� necessary to con�rm that such limits exist� in each case�

Example ��� � Sequential search
We shall de�ne a generic sequential search function� give a necessary and su
cient condition
for its termination� and give a hypothetical rule of logic to conclude a property of a search� Let
a be a type� p � a� bool and r � a� a� De�ne a sequential search combinator� while� by

while�p� r�
�
� cohom�str �Stream fc �� a� �shd �� ida� �stl �� rg

��x� let u � �shd x in
if �p u then u else �stl x�

The control is expressed as a lambda abstraction enclosed in parentheses� The expressions
on the arms of a conditional �or case expression� that forms the return expression of the
control must be applications of projectors of the coalgebraic variety� or as in this example�
identi�ers bound to such applications in a local de�nition� A control expression should not be
confused with a function declaration� in particular� the types of the expressions on the arms of
a conditional or case are not all of a common type�

A function composed with cohom�str � satis�es a set of conditional equations such as the
ones given below for the sequential search combinator�

p x � tt � while�p� r� x � while�p� r� �r x�

p x � � � while�p� r� x � ida x

The right�hand sides of the equations are formed by substitution into the control expression�
The bindings of the projectors �shd and �stl are taken from the coalgebra declaration� and
in addition� the de�ned combinator is recursively applied to every projector expression whose
codomain type has been speci�ed to be the carrier� In this example� the declaration �stl � c in
the signature dictates that while�p� r� is applied to �r x�� gotten from the binding of �stl� It is
not misleading to imagine the combinator expressions of DUALITY translated in this way into
recursive function de�nitions in a conventional language� However� the patterns of recursion
so obtained are rigidly constrained to tail recursion�

Of course� it is useful to have a more compact declaration for such a useful combinator
as while� � � and it is often made a language primitive� We have used it here as the simplest
illustration of coalgebraic program construction with explicit control� Before leaving the exam�
ple� we should call the reader�s attention to another aspect of the coalgebraic declaration� The
data transformation and the control are separated� and each is a �rst�class entity in DUALITY�
The data transformation is fully speci�ed by the coalgebra� which could be used in other dec�
larations with a di�erent control� The control speci�cation could be used with other Stream
coalgebras�

�

� Finite�state reactive systems

Finite�state systems are naturally modeled by multi�sorted coalgebras� The states of a system
correspond to sorts of a coalgebra� the carrier in each sort is comprised of the state variables� and
the projectors in each sort are the possible reactions in the corresponding state� Many of these
reactions take the system to another state� Traditional functional programming languages have
not been easy to use in describing reactive systems because the sequences of possible reactions
often seem to require complex mutual recursion for their speci�cation� Formulating a reactive
system as a coalgebra is easy because the use of multiple sorts provides a natural and detailed
structure for the speci�cation�

We shall illustrate the technique with an example of a synchronous reactive system previ�
ously used to illustrate programming in Esterel �BG����

Example ��� � The Re�ex game

The Re�ex game is a coin�operated machine on which a player measures the time constant of
her re�exes� After depositing a coin to start the game� she can depress a Ready button to
signify that she is prepared to start a trial� When she receives a Go signal from the machine�
she depresses a Stop button as quickly as she can� The machine times her response in several
trials� then displays the average response time� There are several illegal moves that must be
accounted for� If the Stop button is depressed after the player is ready but before Go has been
signaled� this action is interpreted as cheating and terminates the game� If either the Ready
or the Stop button is depressed when it is not expected� a warning bell sounds� but the game
is not interrupted� A coin drop always restarts the game� even when this event occurs during
the progress of a previous game�

The game also depends upon timing signals emitted by a clock� Clock ticks must be counted
to measure the player�s latency� Also� the Go signal is emitted after a randomly determined
number of clock ticks following depression of the Ready button by the player� And if a player
fails to respond within a predetermined interval when a response is expected� the game times
out�

The events that the machine must react to are a coin drop� depression of the Ready and Stop
buttons� and ticks of the clock� We assume that these events never occur exactly simultaneously�
or that they can be separated in a sequence�

Analysis of the Re�ex game shows that the machine can be described as having �ve major
states�

quiet� when no game is in progress�
start� when awaiting a Ready event to start a trial�
wait� when the player is awaiting a Go signal from the machine�
react� when he machine awaits a Stop event�
end� when the machine pauses to display the response time of the player�

The machine responds to events di�erently in each of these �ve states� Some of the responses
are transitions from one state to another� Figure � is a state transition diagram for the re�ex
game machine�

�

Quiet

End React

Start Wait

Coin

Coin

Coin

Coin, Stop

Ready ReadyCoin

Ready

* Coin, (time>delay) & (n_trials<Max)

(time>limit)

(time>random)(time>delay) &
(n_trials=Max)

Ready, Stop

Ready, Stop

Stop

(time>limit)

(*)

Figure ��Major states of the Re�ex game

In the solution of this problem as an Esterel program� the states of the game are not
manifest but are implicit in the control� The control consists of a nested loop structure�
triggered by events� that takes the machine through the possible sequences of state transitions�
Although Esterel provides intuitive syntax for coding even�driven nested loop structures� it is
still challenging to get them right� This represents the state�of�the�art in programming reactive
systems�

The Re�ex game can be modeled by a multi�sorted coalgebra� We associate a separate sort
with each of the major states of the game� In each of these states� we identify the possible reac�
tions and name them� The reactions in each state become the projectors of the corresponding
sort� The codomain type of each projector is the carrier that corresponds to the game state
to which the reaction leads� No explicit recursion or iteration is involved in programming the
game in this way�

The output of the Re�ex game will be modeled as a sequence of states� A state will include
state variables and output signals produced by a reaction� However� these are details that will
appear in a coalgebra for the game� None of these details are manifested in a covariety� A
signature for the covariety is�

cosig Re�ex�a� ftype q� s� w� r� t�
quiet�q � f�coin � s� �noop � qg�
start�s � f�reveal � a� �ready � w� �renew � s� �warn � s� �timeout � q� �tick � sg�
wait�w � f�reveal � a� �renew � s� �warn � w� �abort � q� �tick � w� �go � rg�
react�r � f�reveal � a� �react � t� �renew � s� �warn � r� �tick � r� �timeout qg�
end�t � f�reveal � a� �warn � t� �renew � s� �tick � t� �tock � s� ��nish � qgg

The projectors �reveal do not correspond to state transitions of the game� but are instead actual
projections of the machine state�

�

To specify the game� we shall specify a Re�ex�coalgebra� binding data transformation func�
tions associated with state transitions to each of the projector symbols� To determine all
trajectories of play� we shall generate a game tree� which will be codata� of course� To simulate
a game� we shall interpret a sequence of externally caused events �coin drops� clock ticks and
button pushes� as control for the projectors in each state�

Minor states of the game are determined by the values of three integer�valued state com�
ponents� These can be packaged as �elds of a record type�

record Stateftime� total time� trial number � intg�

Further� there are signals delivered to the actuators that implement the machine� These
unvalued signals can be represented by a set of elements of an enumerated type�

type Signals � set of �game over on j game over o� j go on j go o� j
tilt on j tilt o� j ring bell j bump random ��

There is one integer�valued signal which sends values to the display� The state components and
the signals are conveniently packaged as �elds of a record type� We declare

record Gamefstate � State� sigs � Signals� display � intg�

It is convenient to de�ne a pair of constants of type Game�

def initial game � fstate �� ftime �� �� total time �� �� trial number �� �g�
sigs �� �game over o�� go o�� tilt o� ��
display �� �g�

def tilt game � ffstate �� ftime �� �� total time �� �� trial number �� �g�
sigs �� �game over on� go o�� tilt on��
display �� �g�

There are also three integer constants� Time limit� Delay and Max trials� and a stream�
random� which is a randomly generated sequence of positive integers of bounded size� supplied
by the machine� As a notational abbreviation� let R	fX �� eg denote the record whose �elds
have the values of the corresponding �elds in the record R� except for �eld X � which has the
value of e�

The next task is to de�ne a coalgebra by specifying the projectors of each sort� These
correspond to the possible transitions from each state�

�

re�ex
�
� coalgebra Re�ex fq� s� w� r� t �� state�
quiet � f�coin �� �s� initial game�

�noop �� idGameg�

start � f�reveal �� �s� s�state�
�ready �� �s� s	 fs�state 	 ftime �� �g� sigs �� �bump random�g�
�renew �� �s� initial game�
�warn �� �s� s	 fsigs �� �ring bell �g�
�timeout �� �s� tilt game�
�tick �� �s� s	 fs�state 	 ftime �� s�time � �ggg�

wait � f�reveal �� �s� s�state�
�renew �� �s� initial game�
�warn �� �s� s	 fsigs �� �ring bell �g�
�abort �� �s� tilt game�
�tick �� �s� s	 fs�state 	 ftime �� s�time� �gg�
�go �� �s� s	 fs�state 	 ftime �� �g� sigs �� �go on�gg�

react � f�reveal �� �s� s�state�

�react �� �s� fstate �� ftime �� ��
total time �� s�state�total time� s�state�time�
trial number �� s�state�trial number� �g�

sigs �� �go o� �� display �� s�state�timeg�

�renew �� �s� initial game�
�warn �� �s� s	 fsigs �� �ring bell �g�
�tick �� �s� s	 fs�state 	 ftime �� s�state�time� �gg�
�timeout �� �s� tilt gameg�

end � f�reveal �� �s� s�state�

�renew �� �s� initial game�
�warn �� �s� s	 fsigs �� �ring bell �g�
�tick �� �s� s	 fs�state 	 ftime �� s�state�time� �gg�
�tock �� �s� fstate �� ftime �� �g�

display �� �g�
��nish �� �s� s	 fsigs �� �game over on��

display �� s�state�total time�Max trialsggg

A generator composed from this coalgebra� for instance� gen�quiet �re�ex � Game� quiet� when
applied to a value of the state variables generates� in response to demand� an in�nite game
tree rooted on the quiescent game state� Paths in the game tree incorporate all major�state
transitions allowed by the rules of the game� and in addition� some that are not allowed� The
game tree includes some paths that do not correspond to feasible trajectories of the actual game�
because transitions in the game tree are unconstrained by conditions on the state variables that
govern the progress of the actual game �i�e� the rules of the game��

To obtain a function that accurately simulates the game� the coalgebra must be composed

��

with a control that responds to input events and reads state variables to determine a game
path� The control is de�ned as a cluster of �ve expressions� one for each sort� as the game�s
response to events depends upon the major state that it occupies�

Since the codomain of the simulation is a function type� each component of the control is
a curried abstraction on two arguments� Since the �nal result is a stream of game states� the
body of each component of the control has the form of a Stream�generator� The �shd projector
de�ned in each game state translates each of the possible input events into a state transition
event� In some cases� the translation is conditioned by the elapsed time recorded in a game
state� Here is a de�nition of the control�

def transition
�
� �quiet � ��s� gen�str � Streamfc �� str�event��

�shd �� �es� let e � Shd es in

case e of
Coin� �coin s

j Ready� �noop s
j Stop� �noop s

j Tick� �noop s
end

�stl �� Stlg��
start � ��s� gen�str � Streamfc �� str�event��

�shd �� �es� let e � Shd es in

case e of

Coin� �renew s
j Ready� �ready s
j Stop� �warn s

j Tick� let v � �reveal s in
if v�time � Time limit then �tick s

else �timeout s
end

�stl �� Stlg��
wait � ��s� gen�str � Streamfc �� str�event��

�shd �� �es� let e � Shd es in

case e of

Coin� �renew s
j Ready� �warn s
j Stop� �abort s

j Tick� let v � �reveal s in
if v�time � random then �tick s

else �go s
end

�stl �� Stlg��

��

react � ��s� gen�str � Streamfc �� str�event��
�shd �� �es� let e � Shd es in

case e of

Coin� �renew s
j Ready� �warn s
j Stop� �react s

j Tick� let v � �reveal s in
if v�time � Time limit then �tick s

else �timeout s
end

�stl �� Stlg��
end � ��s� gen�str � Streamfc �� str�event��

�shd �� �es� let e � Shd es in

case e of

Coin� �renew s
j Ready� �warn s
j Stop� �warn s

j Tick� let v � �reveal s in
if v�time � Delay then �tick s

else let v � �reveal s in
if v�trial number � Max trials

then �tock s
else ��nish s

end

�stl �� Stlg��

A simulator for the Re�ex game is the function

cohom�quiet � re�ex transition � Game� str�event�� str�Game��

�

The domain constraints needed for the example of the Re�ex game can be established
by structural �Hindley�Milner� type checking� Note that the simulator is not expected to
terminate� in the usual sense� but rather to make �nite progress in response to each external
event that it receives� Finite progress is assured by observing �in the control code� that every
state transition event occurs in response to an external event� There are no spontaneous state
transitions� and therefore no in�nite sequence of spontaneous transitions that could block �nite
progress�

Programming the Re�ex game in terms of coalgebras is straightforward once the type of the
solution and of the component functions has been determined� The structure of the covariety
morphisms does not allow guesswork�

��

��� A veri�cation logic for the Re�ex game simulator

One of the most signi�cant advantages of formulating a �nite�state systems such as the Re�ex
game simulator as a coalgebra morphism is that the coalgebraic structure induces a comple�
mentary deductive logic in which properties of the system can be proved by coinduction� As
we shall see� the coinduction rules induced by the coalgebraic structure provide a �ne�grained
decomposition of proof obligations that must be discharged to establish a conjectured prop�
erty� We believe this structure will make veri�cation signi�cantly easier by removing most of
the guesswork� We expect it to be amenable to the application of automatic proof discovery
methods�

Corresponding to each carrier in the coalgebra signature declaration� we shall declare a
predicate symbol whose interpretation will characterize a speci�c property in the major state
�or sort� to which the carrier is bound� For the re�ex game example� these will be unary�

predicates� each relating an external event stream and a game state� The game state will be a
minor state of the major state that the predicate describes�

A coinduction rule for a coalgebra is formulated as a sequent clause� In the consequent
are clauses for each sort of a multi�sorted coalgebra� in the antecedent are sets of hypotheses
for each sort� The hypotheses for a given sort will correspond one�for�one to the projectors
de�nedF for that sort� The structure of a coinduction rule is induced directly by the signature
of a coalgebra�

Each clause in the consequent of a coinduction rule extends the interpretation of a predicate
to encompass all of the states of the corresponding sort in a potentially in�nite tree or sequence�
There will be one such clause for each sort of a multi�sorted coalgebra� allowing characterization
of a property speci�ed at each of the major states of a �nite�state model� throughout all minor
states that are reachable from a given initial state�

Each individual clause of an antecedent implies the transfer of a property under a projection�
For instance� referring to the Re�ex game� a clause that implies the transfer of a property via
the transition �ready is�

�u � s� es � str�event�� S�u�� W ��ready u�

where S and W are the predicate symbols associated with sorts s and w� respectively� Upon
substituting the binding for the transition �ready as given in the declaration of the coalgebra
re�ex� the clause becomes

�u � s� es � str�event�� S�u�� W �u	 fu�state	 ftime �� �gg�

When the coinduction rule is for a general coalgebra morphism �a cohom�� each hypothetical
implication must be quali�ed by a guard for the transition that can be read from the declaration
of the control for the morphism� Again referring to the re�ex game� the clause above� extended
as a hypothetical clause for the simulator� becomes

�In this example� we chose not to include an initial state as a parameter of the predicate because the initial
state is to be 	xed in each game� More generally� a two�place predicate� parametric on an initial state� would
allow the simulator to be characterised as a function from an arbitarily speci	ed initial state to the ensuing
behavior�

��

�u � s� es � str�event�� �transition�start u �Shd es� 	 �ready u��
S�u��W �u � fu�state� ftime �	
gg�

Further substituting the guard clause by its binding in the declaration of transition� the
hypothetical implication now relates the transition to the occurrence of an external event�

�u � s� es � str�event�� �Shd es 	 Ready�� S�u��W �u� fu�state� ftime �	
gg�

Following this recipe� we �nd the following coinduction rule for the Re�ex game simulator�

�u � q� es � str�event�� �Shd es 	 Coin�� Q�u�� S�initial state�
�u � q� es � str�event�� �Shd es 	 Ready�� Q�u�� Q�u�
�u � q� es � str�event�� �Shd es 	 Stop�� Q�u�� Q�u�
�u � q� es � str�event�� �Shd es 	 Tick�� Q�u�� Q�u�

�u � s� es � str�event�� �Shd es 	 Coin�� S�u� � S�initial state�
�u � s� es � str�event�� �Shd es 	 Ready�� S�es� u��W �u� fu�state� ftime �	
gg�
�u � s� es � str�event�� �Shd es 	 Stop�� S�es� u�� S�u � fsigs �	 �ring bell �g�
�u � s� es � str�event�� �Shd es 	 Tick�� �u�state�time � Time limit��

S�u�� S�u � fu�state� ftime �	 s�time �gg�
�u � s� es � str�event�� �Shd es 	 Tick�� �u�state�time � Time limit��

S�u�� Q�tilt game�

�u � w� es � str�event�� �Shd es 	 Coin��W �u�� S�initial state�
�u � w� es � str�event�� �Shd es 	 Ready��W �u��W �u� fsigs �	 �ring bell �g�
�u � w� es � str�event�� �Shd es 	 Stop��W �u�� Q�tilt game�
�u � w� es � str�event�� �Shd es 	 Tick�� �u�state�time � C random��

W �u��W �u� fu�state� ftime �	 s�time �gg�
�u � w� es � str�event�� �Shd es 	 Tick�� �u�state�time � C random��

W �u��W �u� fu�state� ftime �	
g� sigs �	 �go on �g�

�u � r� es � str�event�� �Shd es 	 Coin�� R�u�� S�initial state�
�u � r� es � str�event�� �Shd es 	 Ready�� R�u�� R�u� fsigs �	 �go on�g�
�u � r� es � str�event�� �Shd es 	 Stop�� R�u��

S�u � fstate� ftime �	
�
total time �	 s�state�total time s�state�time�
trial number �	 s�state�trial number �g�

signs �	 �go o��� display �	 s�state�timeg�
�u � r� es � str�event�� �Shd es 	 Tick�� �u�state�time � Time limit��

R�u�� R�u� fu�state� ftime �	 u�time �gg�
�u � r� es � str�event�� �Shd es 	 Tick�� �u�state�time � Time limit��

R�u�� Q�tilt game�

��

�u � t� es � str�event�� �Shd es 	 Coin�� T �u�� S�initial state�
�u � t� es � str�event�� �Shd es 	 Ready�� T �u�� T �u � fsigs �	 �ring bell �g�
�u � t� es � str�event�� �Shd es 	 Stop�� T �u�� T �u� fsigs �	 �ring bell �g�
�u � t� es � str�event�� �Shd es 	 Tick�� �u�state�time � Delay��

T �u�� T �u � fu�state� ftime �	 s�time �gg�
�u � t� es � str�event�� �Shd es 	 Tick�� �u�state�time � Delay� � �u�trial number �Max trials��

T �u�� S�u � fstate� ftime �	
g
display �	
g��

�u � t� es � str�event�� �Shd es 	 Tick�� �u�state�time � Delay� � �u�trial number �Max trials��
T �u�� Q�u� fsigs �	 �game over on��

display �	 s�state�total time�Max trialsg��

�u� � Game � es � str�event �� Q�u��� �Q�cohom�quiet� re�ex transition u� es�
�u� � Game � es � str�event �� S�u��� �S�cohom�start� re�ex transition u� es�
�u� � Game � es � str�event ��W �u��� �W �cohom�wait� re�ex transition u� es�
�u� � Game � es � str�event �� R�u��� �R�cohom�react� re�ex transition u� es�
�u� � Game � es � str�event �� T �u��� �T �cohom�end � re�ex transition u� es�

The temporal operator � �always� in the consequent formulas expresses precisely the sense in
which the predicate over game states is extended by coinduction to a predicate over a stream
of game states�

The textual extent of this coinduction rule is imposing� but keep in mind that it is amenable
to mechanical calculation from the three parts of the formal declaration of the Re�ex game
simulator� the signature� the coalgebra speci�cation and the control� The signi�cance of the
coinduction rule for veri�cation is that given a conjectured proposition of a property of the
potentially in�nite behaviors of the simulator as an intended consequent� the rule yields a �nite
set of �nitary propositions that must be discharged to prove the proposition� It accomplishes
a logical destructuring that is essential to constructing a formal proof� and it does so in a way
that is amenable to mechanization�

����� Proving safety properties of the Re�ex game

The consequents of the coinduction rule for the Re�ex game assert invariant properties of states
of the game� These are its so�called safety properties�

A simple safety property is that in every state� u�

Qt�u� �

C random � Time limit Delay � Time limit

u�state�time � Time limit

In this clause� the antecedent conditions relate the values of constants of the Re�ex game�
Without these relations� the property does not hold� To prove this property of a game started
in the quiescent state� we formulate the conjectured property as a consequent�

�u� � Game � es � str �event�� u��state�time � Time limit�
��state�time � Time limit��cohom�quiet� re�ex transition u� es�

for which we seek a proof by Re�ex game coinduction�
In the coinduction rule stated in the preceding section� choose Q
 S
 W
 R
 T
 Qt

and attempt to discharge each of the antecedents of the rule� Most of the antecedent clauses

��

discharge trivially� either because they do not refer to the time parameter explicitly or they
set it to zero� There are �ve antecedent clauses in which the time parameter is incremented�
however� Each of these clauses is guarded by a condition that time is strictly less than one
of the constants Time limit� C random or Delay� Using the antecedent condition relating the
latter two constants to Time limit� it can be established that the implicand in each of the
clauses is satis�ed and the clause is discharged� Thus the property is proved to hold for every
game state reachable from an initial state that satis�es the property� by condinduction�

A related safety property that can be established is

Qtt�u� �
 u�state�total time �Max trials � Time limit

We can also state safety properties consequent to a restriction on the external event stream�
For instance we might assert

�u� � Game� es � str�event����next event � Coin�es� Q�u�� � �u��state�time � ���
��state�time � ���cohom�quiet � re�ex transition u� es�

for a game started from the quiescent state� To prove this assertion� we must infer from the
temporal logic assertion� ��next event � Coin� es� the proposition �es � str�event�� Shd es �
Coin� The derived proposition can then be used to restrict the domain of antecedent clauses
in a proof using the Re�ex game coinduction rule�

��� Liveness properties of the Re�ex game

Liveness properties� which assert that a state or state sequence with the property is eventually
reached in every unfolding of the game� require for their proof a speci�c measure of progress�
A monotonically increasing count of any external event can provide a suitable measure� pro�
vided that the timing event occurs almost everywhere in the event stream� Occuring almost
everywhere means that at every point in the stream� the next timing event will occur after at
most a �nite number of non�timing events� The almost everywhere restriction assures that the
observation of advancing time is never obscured by an in�nite stream of non�timing events�

In the Re�ex game� intuition tells us that the Tick event is a reasonable choice for the
timing event� We assume that it occurs almost everywhere in every possible stream of external
events� This assumption is essential� it cannot be proved from weaker assumptions�

A liveness property we should like to prove is that every game started by a coin drop
eventually terminates� We adopt for our de�nition of termination that either �a� the game enters
the quiescent state or �b� another coin is dropped� Note that we have no direct characterization
of the quiescent state �or any other major state� in terms of the program�s state variables� The
time attribute of the game state is only locally monotonic� It is monotonic with respect to
transitions from any state to itself� but is reset to zero on many transitions from one state to
another� Although the attribute trial number is monotonic throughout all transitions that do
not enter the quiescent state� we cannot use this attribute to characterize the quiescent state�
because it is not incremented immediately upon leaving the quiescent state�

��

States can be characterized by sets of initial sequences of event streams� but this is not very
convenient� It is more convenient to introduce a pseudo�variable� game over � bool� which is set
to true when the display event game over on is signalled� and to false when game over o� is
signalled� The quiescent state is then characterized by a true value of game over�

The property we have described can be decomposed into two independent clauses�

�u� � Game� es � str�event����next event � Coin�es�
��state�game over � true��cohom�quiet � re�ex transition u� es�

�u� � Game� es � str�event����next event � Coin�es� �u��state�game over � true��
��state�game over � true��cohom�quiet � re�ex transition u� es�

The second clause is a safety property� We shall attend to the �rst clause�
The most successful way yet developed to verify temporal properties of a �nite state system

uses model checking of temporal logic formulas�EC��� CGL���� The safety and liveness prop�
erties of the Re�ex game example can obviously be veri�ed by symbolic model checking� We
describe a variant of the stardard technique that uses symbolic inference to check monotonicity
properties of state variables over transition paths� We have not yet implemented this method�

An ordered� symbolic binary decision diagram �BDD��Bry��� Bry��� can be used to con�
struct a proof of a liveness property� Boolean pseudo�variables are introduced to represent the
boolean�typed expressions on which local control decisions are based� The nodes of the BDD
correspond to major states of the Re�ex game� split in cases in which more than one boolean
condition controls transitions from the state� The boolean control expressions for each state
are identi�ed by inspection of the control speci�cation�

�start� x� �� state�time � Time limit

�wait� x� �� state�time � C random

�react� x� �� state�time � Time limit

�end� x� �� state�time � Delay

�end �� x� �� state�trial number � Max trials

The pseudo�variables are ordered by x� � x� � x� � x� � x��
A nondeterministic BDD for the Re�ex game is shown in Figure ��a�� The solid arcs indicate

transitions possible when the value of the controlling pseudo�variable is positive� the dashed
arcs represent transitions possible on negative values of the control variables�

Notice that there are multiple positive �or negative� arcs from some nodes� This BDD
represents a nondeterministic FSA because transitions of the Re�ex machine also depend upon
external events which have not been represented in the control expressions bound to pseudo�
variables� Note also that in constructing Figure ��a�� transitions that require the Coin event
have been omitted because the Coin event is precluded by the antecedent clause of the liveness
assertion� Nondeterminism allows us to represent with the BDD all of the transitions possible
with event sequences that are restricted only by the assumptions that Tick events occur almost
everywhere and Coin events are never present� The liveness property that we seek can be
proved if we can show that the BDD of Figure ��a� can be reduced to the single node� ��

��

����� Reducing a BDD with repeated nodes

We shall describe �informally� how to reduce the BDD of Firgure ��a�� which represents the
asserted liveness property of the Re�ex game� Notice that this BDD contains paths from
ancestor nodes to leaf nodes that carry the same labels� We call these repeated nodes� A
path from an ancestor to a repeated node occurrence represents a loop in the state transition
diagram� To reduce the BDD� each of these paths must be shown to be only �nitely extensible
as it is elaborated by repeating transitions of the state machine�

1 1

S

R

E

S
S

E’

E

R

S

W

R

E

W

E’

S

W

x

x

x

x

x

x

x

x

1

2

3

4

5

1

3

5

(a) (b)

1

S

R

S

E’

x

x

x

1

3

5 {([],[$tock])}

{([Stop],[$react])}

{([Ready],[$ready,$go])}

1

(c) (d)

S

1x

R

E’

3x

Figure �

��

To establish that a path to a repeated node is only �nitely extensible� we examine the
control expressions bound to the pseudo�variables that label the arcs of the path� In our
example� these expressions are less�than inequalities� If we can show that the value of the
program variable on the left of the inequality grows to reach the expressed bound after a
�nite number of repetitions of the path then the corresponding pseudo�variable will eventually
become �� Su
cient conditions for this to occur are that the program variable is ��� monotonic
with respect to executions of the transition function that corresponds to the path and ���
increasing almost everywhere in any sequence of repetitions of the path�

Consider the path from the �rst occurrence of a node labeled wait to its repeated occurrence�
controlled by pseudo�variable x�� The program variable that appears in the corresponding
inequality is state�time� The path controlled by x� represents only the transitions �warn and
�tick� which are enabled by external events Ready and Tick� respectively� Inspection of the
coalgebra speci�cation Re�ex reveals that a �warn transition does not change state�time� while
a �tick transition increments its value� Thus the path satis�es condition ���� monotonicity of the
program variable� Furthermore� since the Tick event occurs almost everywhere in an external
event stream� the �tick transition will occur almost everywhere in a sequence of transitions
from state wait to itself� thus the path also satis�es condition ���� This argument proves the
temporal assertion ��x� � ���

This allows the BDD of Figure ��a� to be reduced by removing the repeated occurrence
of node wait and the arc leading to it� Similar reasoning justi�es removal of the repeated
occurrence of nodes ready� end� and the �rst repeated occurrence of node start leaving the
BDD depicted in Figure ��b�� The paths not controlled by a pseudo�variable in this BDD are
not of interest and can be reduced to single arcs�

In Figure ��c�� the arcs have been labelled with sets of the pairs of event sequences and cor�
responding transition actions represented by an interpretation of the arc in the Re�ex coalgebra�
The set of transition sequences from the root node to its repeated occurrence is gotten by taking
the cartesian product of the sequece of set�valued labels� As the labels on individual arcs are
all singletons� so is the composite label� which is f��Ready�Stop�� ��ready� �go� �react� �tock��g�

We examine the expression x�� x� and x� in the context of the path transition sequence�
The program variable state�time is not monotonic with respect to the transition sequence�
hence we cannot conclude that repeated extensions of the path would cause the variables x� or
x� to assume zero values� However� the program variable state�trial number is monotonically
increasing over this transition sequence� thus the arc labeled by x� and the repeated node start
can be eliminated� The resulting BDD� depicted in Figure ��d�� is reducible to the singleton
node � as its canonical form� This constitutes a proof of the conjectured liveness property�

� Conclusions

We have introduced a of functional programming notation that does not depend upon explicit
recursion in de�nitions but uses instead the structure of signature coalgebras� The important
contributions of this notation and the mathematical structures that underlie it are�

��

� The structure of a signature coalgebra provides a framework in which control and data
transformation are separately speci�ed� The major states of a system structure the design
of a program�

� All familiar iteration schemes can be modeled by varieties of coalgebras�

� Each variety of coalgebra has associated with it proof rules that virtually dictate the form
of proofs of safety properties of algorithms constructed with coalgebras of the variety�

� Liveness properties are veri�ed through a hybrid deduction scheme in which temporal
logical inference is used in conjunction with symbolic model checking�

References

�BG��� G erard Berry and Georges Gonthier� The ESTEREL synchronous programming lan�
guage� Design� semantics� implementation� Technical Report ���� INRIA� May �����

�Bir��� Richard S� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic of
Programming and Calculi of Discrete Design� volume �� of NATO Series F� Springer�
Verlag� �����

�Bry��� R� E� Bryant� Graph�based algorithms for boolean function manipulation� IEEE

Transactions on Computers� C����������!���� August �����

�Bry��� R� E� Bryant� Symbolic boolean manipulation with ordered binary decision diagrams�
ACM Computing Surveys� ���������!���� September �����

�CGL��� E� M� Clarke� O� Grumberg� and D� Long� Veri�cation tools for �nite�state concurrent
systems� In A Decade of Concurrency� Re�ections and Perspectives� volume ��� of
Lecture Notes in Computer Science� pages ���!���� Springer Verlag� �����

�EC��� E� A� Emerson and E� M� Clarke� Using branching time temporal logic to synthesize
synchronizations skeletons� Science of Computer Programming� �����!���� �����

�Kie��� Richard B� Kieburtz� Programming with algebras� Technical report� Oregon Graduate
Institute of Science " Technology� July �����

�KL��� Richard B� Kieburtz and Je�rey Lewis� Algebraic Design Language	Preliminary
de�nition� Technical report� Paci�c Software Research Center� Oregon Graduate
Institute of Science " Technology� January �����

�MFP��� Erik Meijer� Maarten Fokkinga� and Ross Paterson� Functional programming with
bananas� lenses� envelopes and barbed wire� In Proc� of 	th ACM Conf� on Functional

Programming Languages and Computer Architecture� volume ��� of Lecture Notes in
Computer Science� pages ���!���� Springer�Verlag� August �����

��

�Pau��� Lawrence C� Paulson� Co�induction and co�recursion in higher�order logic� Technical
Report TR ���� Computing Laboratory� Cambridge University� December �����

��

